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SUMMARY
This perspective highlights the importance of addressing social determinants of health (SDOH) in patient
health outcomes and health inequity, a global problem exacerbated by the COVID-19 pandemic. We provide
a broad discussion on current developments in digital health and artificial intelligence (AI), including large lan-
guage models (LLMs), as transformative tools in addressing SDOH factors, offering new capabilities for dis-
ease surveillance and patient care. Simultaneously, we bring attention to challenges, such as data standard-
ization, infrastructure limitations, digital literacy, and algorithmic bias, that could hinder equitable access to
AI benefits. For LLMs, we highlight potential unique challenges and risks including environmental impact, un-
fair labor practices, inadvertent disinformation or ‘‘hallucinations,’’ proliferation of bias, and infringement of
copyrights. We propose the need for a multitiered approach to digital inclusion as an SDOH and the devel-
opment of ethical and responsible AI practice frameworks globally and provide suggestions on bridging
the gap from development to implementation of equitable AI technologies.
INTRODUCTION

Globally, health equity is a pervasive and prevalent problem. In-

dicators of health often follow a social gradient: the lower the so-

cioeconomic position, the worse the health indicator.1,2 Factors

contributing to health indicators can be broadly classified into

five key domains, genetics, behavior, environmental and phys-

ical influences/environmental exposures, medical care, and so-

cial,3 of which social and behavioral factors account for up to

60% premature deaths.4

The COVID-19 pandemic, which led to lockdowns worldwide,

occurred against this backdrop of existing health inequality.5

COVID-19 infection and mortality rates were disproportionately

higher in socially disadvantaged regions, racial and ethnicminor-

ity groups, and marginalized populations across the globe.6,7 In

addition to a higher endemic prevalence of chronic diseases
This is an open access article under the CC BY-N
such as diabetes and cardiopulmonary conditions, social factors

are thought to be key contributors to this observed phenome-

non, e.g., living in crowded spaces, exposure to secondhand

smoke, limited access to ambulatory or acute healthcare, and in-

formation asymmetry.8,9 This pandemic has thrown social deter-

minants of health (SDOH) research into the global spotlight: to

achieve the goal of global health equity, addressing SDOH is

crucial.

SDOH

SDOH is defined by the World Health Organization as non-med-

ical conditions that affect one’s health and impact health-related

outcomes.10 Conventionally, SDOH refers to the environments

people reside andwork in and encompasses systems and forces

that influence one’s daily life such as policies related to the
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economy, political systems, and social norms. Its importance

has led to development of initiatives such as ‘‘Healthy People

2023’’ in the USA, which seeks to remove health disparities. Of

note, five key domains related to SDOH were identified, namely

economic stability, education access and quality, healthcare ac-

cess and quality, neighborhood and built environment, and

lastly, social and community context.11

A mounting body of evidence has shown that SDOH impacts

health outcomes significantly12: lead exposure in suboptimal

residential areas is associated with poorer cognitive function

and physical development in young children,13 and air pollution,

which is prevalent in disadvantaged regions, is causally related

to exacerbations of respiratory diseases14; children growing up

in impoverished communities are more likely to suffer from

emotional and mental stressors and subsequently are at higher

risk for premature mortality.15

Overall, despite the wealth of evidence available related to

SDOH and health outcomes, there remain significant evidence

gaps in the literature, particularly with regard to SDOHwith com-

plex health interactions, which include intangible factors such as

political, socioeconomic, and cultural constructs that are difficult

to quantify.16 Significant technical challenges lie in the designing

of studies, as some factorsmay not be amenable to conventional

studies such as randomized controlled trials.15 This is also com-

pounded by a long lag time to see the study effects and the need

for collection of extensive sociodemographic and economic fac-

tors. The advent of artificial-intelligence-related technologies

that are able to analyze large volume of healthcare data may

aid in allowing better risk stratification of patients and eliciting

understanding of the complex interactions between SDOH and

health outcomes.

Digital health and SDOH
Digital health tools helped to address major global health chal-

lenges through improved access to healthcare services,

strengthened health promotion and disease prevention, and

enhanced care experiences for professionals and patients.

Core digital domains include telehealth and artificial intelligence

(AI), supported by other technology domains such as big data

analytics, the internet of things (IoT), next-generation networks

(e.g., 5G), and privacy-preserving platforms, e.g., block-

chain.17,18 The COVID-19 global health crisis was amajor turning

point for digital health. Humanitarian and economic needs pre-

sented by the pandemic are driving the development and adop-

tion of new digital technologies at an unprecedented scale and

speed. Various digital technologies were in clinical implementa-

tion during COVID-19. In particular, AI proved to be a powerful

emerging technology that improved care during the pandemic

in various ways: forecast of infectious disease dynamics and

outcomes of public health interventions, disease surveillance

and outbreak detection, real-time population monitoring, and

timely and accurate diagnosis of infections, as well as prognosis

of disease severity.19

The past months have seen an accelerated development in

the field of generative AI with the release of large language

models (LLM) such as GPT-4, ChatGPT, and bidirectional

encoder representations from Transformers (BERT).20 In brief,

Transformer architecture, a type of neural network algorithm,
2 Cell Reports Medicine 5, 101356, January 16, 2024
forms the basis of LLMs—also known as ‘‘foundation models.’’

Transformers learn contextual information from sequential data

such as written text and audio signals.21 LLMs, trained on a

large corpus of data from a wide range of sources, contain

up to trillions of parameters that enable them to perform a

broad variety of tasks without the need for specific training.

Their application for the creation of new content has made

them a key technology in the field of generative AI.22 The devel-

opment of ChatGPT is outlined in Figure 1, illustrating the

concept of reinforcement learning with human in the loop. In

the biomedical space, proposed applications for LLMs are

wide ranging23,24: drug discovery and genome analysis; medi-

cal education; searching, analyzing, and interpreting large pa-

tient datasets; and generating human-like responses to

improve physician-patient communication.

Despite rapid technological advancements, a concerted effort

to address barriers to digital health such as challenges related to

leadership and strategic alignment, information and technology

governance, data management capacity, and systems integra-

tion, effective solution design is still lacking.25 Low digital liter-

acy, unequal access to digital health, and biased AI algorithms

have raised mounting concerns over health equity.26 As AI appli-

cations and LLM models become pervasive, we seek to under-

stand the potential pitfalls of AI in driving health inequalities

and identify key opportunities for AI in SDOH from a global

perspective.

OPPORTUNITIES FOR AI IN SDOH

SDOH data used in AI models
Current AI models incorporating SDOH utilize various levels of

data: individual-patient-level data, state- or neighborhood-level

data, or country-level data (Figure 2). SDOH data are most

collected by public health agencies. These datasets made avail-

able to public are often aggregated and anonymized reports or

figures. In AI model development, securing patient-level data is

often a priority.27 Between high-income countries (HICs) and

low- and middle-income countries (LMICs), we see a significant

difference in the amount of open-access patient-level data that

are availed under each SDOH domain. Table 1 illustrates exam-

ples of common SDOH data used in AI algorithms. As discussed

in the sections below, a lack of data standardization poses a sig-

nificant barrier to AI model development and validation across

different populations.

SDOH extraction from electronic health records (EHRs)
Up to 80% medical data are unstructured, and traditional

means of extracting information from this text are manual and

time consuming. Qualitative information about patients’ lifestyle

and social determinants is often embedded within unstructured

clinical notes of EHRs. Advances in natural language process-

ing (NLP) offer an efficient and automated approach to identify,

collect, and analyze useful SDOH information from existing

EHR systems and databases.30 Of note, deep learning (DL) al-

gorithms such as CNNs (convolutional neural networks) and

BERT have been applied to SDOH annotation from clinical un-

structured text.31,32 However, the NLP methodology with the

best performance for identification of less-well-studied SDOH



Figure 1. Reinforcement learning with human in the loop
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and longitudinal analyses of SDOH-related data remains a topic

of contention. LLMs have also been shown to have superior

performance in the extraction of SDOH compared to structured

data.33

Research on SDOH and health outcomes
Several reviews have evaluated the role of AI in assessing social

determinants, especially substance abuse, employment status,

and socioeconomic status on health outcomes.34 Across these

studies, the roles of AI and SDOH were most extensively evalu-

ated in patients with mental health and chronic diseases such as

diabetes, particularly with the incorporation of SDOH factors for

clinical risk prediction. The relationship between social determi-

nants and health outcomes is often indirect and complex,

involving different biopsychosocial processes.15 Advancements

in multilevel modeling have made it possible to combine individ-

ual-level and group-level SDOH data to improve disease surveil-

lance and prediction and evaluation of population health inter-

ventions.35 In addition, temporal evolution of SDOH factors,

geospatial relationships, and their impact on health outcomes

have also been poorly characterized by conventional statistical

methods. AI models generally outperform parametric models in

this respect.36 However, inherent weaknesses such as lack of

interpretability with consequent difficulty in deriving mechanistic
explanations may limit widespread application of AI models in

SDOH assessment.

Improve access to care
AI healthcare applications range broadly from disease diagnosis,

patient triage, disease surveillance, and prediction to personal-

izing treatment, health policy, and planning.37 Applications of AI

in LMICs are still fairly limited in scope, most frequently adopted

for the screening of non-communicable diseases such as diabetic

retinopathy, diagnosis of infectiousdiseases suchas tuberculosis,

and augmentation of maternal and child health.38,39 At a policy

level, AI modeling has been used to accurately identify high-risk

individuals for more targeted health policy generation.40

AI has the potential to democratize specialized care in under-re-

sourced settings and improve care accessibility, an important

SDOH. Democratization, used in our context, refers to the

endeavor of making healthcare universally accessible. In LMICs,

telehealth platforms can be coupled with innovative diagnostic

tests and home-basedmonitoring tools to promote delivery of pa-

tient-centric specialist care in a primary care setting. For example,

the integration of DL systems with smartphone-based applica-

tions has been developed to detect prevalent eye diseases such

as glaucoma and diabetic retinopathy in LMICs.41 Dacal et al.

described an end-to-end solution for diagnosis of soil-transmitted
Cell Reports Medicine 5, 101356, January 16, 2024 3



Figure 2. The interconnectedness of SDOH

data sources

Individual patient-level data flow into neighbor-

hood- and population-level data sources such as

population census reports.
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helminth infections in Kenya that includes a mobile app for image

digitization, a DL algorithm for automatic detection of pathogen,

and a telemedicine platform for analysis.42 High-risk pregnancy

detection in rural areas of Africa is now possible without trained

sonographers through the use a low-cost ultrasound probe

attached to a smartphone app installed with a real-time DL algo-

rithm.43 While current studies predominantly address the accu-

racy of various AI tools in different healthcare settings, we

acknowledge that a direct correlation between tool accuracy

and the enhancement of care quality or accessibility has not

been explicitly demonstrated. Empirical studies that holistically

examine the integration of AI tools into care systems, their impact

on patient outcomes, and broader systems-level outcomes are

necessary to solidify the claim that AI can truly democratize care

and enhance its accessibility and quality.

The role of AI in health service democratization is evident in

high-income settings aswell, particularly in the delivery of special-

ized care in radiology, pathology, and ophthalmology. These

countries possess the ability to scale and implement AI tools at

local or international levels for healthcare service delivery. AI tools

currently used in the screening and detection of debilitating dis-

eases such as diabetic retinopathy (DR) demonstrate high levels

of precision and cost effectiveness when implemented country

wide.44,45 Better health equity is then achieved through efficient

distribution of specialized person power and resources. In addi-

tion to right siting of specialized resources, AI enhances the overall

quality of healthcare. AI-powered algorithms have outperformed

physicians and traditional screening tools in detecting and diag-

nosing serious diseases such as skin and breast cancers.46,47

Detection of these conditions at early stages significantly in-
4 Cell Reports Medicine 5, 101356, January 16, 2024
creases response to traditional lines of

treatments that are potentially cheaper

and more accessible to the general

population.

LLMs in SDOH
LLMs like ChatGPT have the ability

to generate and replicate human re-

sponses in a highly convincing manner.

This linguistic ability, coupled with multi-

lingual capabilities,48,49 is purported to

be capable of enhancing communication

between healthcare providers and pa-

tients across geographical and language

borders. Through the provision of health

education and patient enquires, basic

medical advice can be administered

without the need to engage healthcare

professionals directly, which addresses

operational challenges in LMICs and
remote areas where healthcare professional manpower is in a

critical crunch. These models can support time-consuming,

administrative activities such as discharge report writing, patient

stay summaries, and patient history interrogation.50 In addition,

LLMs may overcome the infrastructural limitations (discussed

in the section below) imposed by semantic and syntactic inter-

operability in EHR system.51 However, despite the huge promise

of LLMs in transforming healthcare, the deployment of

these models needs to be approached with caution. The lack

of reliable and robust methods to distinguish between LLM-

generated and human-generated content amplifies healthcare

professionals’ and patients’ vulnerability to anthropomor-

phism.52,53 Inherent risks presented by LLM-based applications

include inadvertent disinformation or ‘‘hallucinations,’’ prolifera-

tion of bias, and infringement of copyrights, all of which can have

far-reaching societal and health equity implications. These tech-

nologies in their current form have the potential to incite harm,

especially in mental health, where NLP algorithms have shown

biases relating to religion, race, gender, nationality, sexuality,

and age.20 There is a need for a framework to govern the devel-

opment, deployment, technology assessment, and eventual

regulation of LLMs for medical applications. We discuss some

of the challenges and barriers relating to LLMs and SDOH below.

CHALLENGES AND BARRIERS

Lack of SDOH data standardization
A lack of a standardizedmethod of data collection and definitions

has impeded progress in global SDOH research. Take housing

data for example: it can include different definitions, metadata,



Table 1. Examples of publicly available SDOH data in HICs and LMICs

WHO SDOH domains Data collected by HICs28 Data collected by LMICs29

Economic stability household poverty ratio, type of

employment, occupation

type of employment, occupation

Education highest education level highest education level, native language

Healthcare services most recent doctor visit, most recent

wellness doctor visit, have a usual care

facility, type of usual care facility

any visit to health facility in last 12 months,

time spent traveling to healthcare facility

Social and community household composition, caregiving sources,

health insurance, working hours

household composition, health insurance

Neighborhood and built

environment

region of residence source of drinking water, access to toilet, access to

vehicular transport, materials used in the construction of home

Under each SDOH domain, a lack of congruence and standardization of variables collected reflects differences in prevailing health priorities of the

respective region.
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and measurements. There is a lack of standardized data ele-

ments, assessment tools,measurable inputs, anddata collection

practices in clinical notes for patient-level SDOH information.30

SDOH also presents at individual, neighborhood, and population

levels. LMICs face capacity constraints tohandle largedata.Data

sources owned by private sectors may not be available publicly

as discussed above. Data are often not harmonized nor interop-

erable across sectors, making data integration a challenge and

subsequent analysis/modeling difficult.29 The lack of standard-

ized terminologies and definitions will also limit semantic interop-

erability, posing a challenge to the implementation of algorithms.

This issue is not specific to LMICs. In Denmark, for example, the

healthcare sector is highly digitized, with a long history of health

data registry establishment. Robust healthcare research is

made possible due to individual-level record linkage between

all data sources.54 However, important SDOH variables such as

lifestyle factors are still not routinely captured in a standardized

manner. Furthermore, multicohort validation of AI models rely

heavily on standardized frameworks for SDOH data collection.

Initial efforts have been made to improve standardization of

SDOH data and integrate data into care delivery. The AMA Inte-

grated Health Model Initiative (IMHI) and Gravity project spear-

headed by the American Medicine Academy seeks to develop

consensus-driven standards for collection and transfer of SDOH

data with subsequent integration into CPT codes.55 The NHS En-

gland published a consensus common outcomes framework

(COF), which recommended the use of 3 primary care codes to

standardize recording of social-prescribing activities.56 However,

the codes lack the level of granularity that is required for the pur-

poseofSDOHresearch,AImodeling, and implementation.Another

widely available tool is the ICD-10 Z-codes (Z55–Z65) that repre-

sent SDOH data such as employment status, access to shelter,

and social insurance or welfare support. However, despite global

adoption of ICD-10, Z-codes are highly underutilized, with less

than 2% hospitalized patients having a Z-coded diagnosis.57

Health infrastructure limitations and environmental
impact
The lack of essential physical facilities, regulatory barriers, and

population readiness pose significant challenges to equitable im-

plementation of AI. Variances in internet connectivity, linguistic
compatibility, operational skills, and hardware prerequisites may

challenge access to benefits conferred by AI models and LLMs.

On the level of physical infrastructure, LMICs and remote areas

may not possess reliable telecommunication networks, stable

internet connections, or sufficient equipment. Recognizing infra-

structure limitations is essential for successful implementation of

digital tools, e.g., mobile applications, in many cases, need to

have the ability to work in both online and offline modes.58

Notably, disparities in technological access may further exacer-

bate global inequalities by disproportionately favoring specific co-

horts.59 Implementing digital solutions with lower technical re-

quirements and cost is promising. A multidisciplinary approach

supported by government, hospital systems, physicians, AI com-

panies, and industry partners is necessary to create a robust local

infrastructure of IT systems, clinical services, and digital commu-

nications networks.60 LMICs should invest in infrastructure for

local validation, and model recalibration will also lay the ground-

work for eventual contribution of local data to international data re-

positories.61 Aside fromphysical infrastructure, regulatory barriers

pose a critical challenge to successful clinical deployment of AI

models and digital health solutions. While a plethora of fully vali-

dated AI models can be found in published literature, clinical im-

plementation in practice is hampered by the lack of a clear regu-

latory approval and deployment roadmap.62 The development of

a regulatory framework for AI models is at its nascent stage. The

establishment of national and international regulatory standards

could accelerate technology adoption.

Intensive computing processes of AI and LLMs alike give rise to

environmental and potential labor impacts. LLMs, in particular,

require significant energy demands during the training process

and, correspondingly, result in high carbon emissions.63 This

can exacerbate existing environmental challenges including rising

carbon footprint,water use, andsoil pollutionof sealing,whichhas

implications for environmental quality and collective influence on

SDOH.52,64 Particular to LMICs, the engagement of low-cost

workers to perform annotation of toxic language (including text

embedding hate speech, sexual abuse, violence) may contribute

to negative psychological health outcomes among these

workers.65,66 It is thus imperative to examine the impact of the

aforementioned labor practices to ensure that advancements in

AI do not come at the expense of employee well-being.
Cell Reports Medicine 5, 101356, January 16, 2024 5
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Digital literacy, inclusivity, and culture of acceptance
Digital literacy and digital inclusivity are important indicators of

population readiness. Certain population groups fare better in

a digitized world, for example the younger, the better educated,

and/or urban dwellers. These groups consistently report higher

internet access and digital skills and will benefit the most from

digital and AI health technologies. Conversely, vulnerable groups

commonly experience high barriers to access, creating a digital

health paradox. Singapore is a digitally advanced nation with

almost universal digital availability, yet when COVID-19 forced

rapid digital adoption, gaps in access by vulnerable groups

such as low-income households, the elderly, and migrant

workers were found.67 Placing emphasis on digital inclusivity

as a ‘‘super’’ SDOH could mitigate health inequalities brought

about by AI and digital health technologies. Underpinning suc-

cessful implementation of digital health is innate trust and belief

in the benefits of digital technologies at an individual level. Care-

ful, calibrated change management strategies are critical but

often neglected by governments and healthcare leaders. This

is also critical to the cultural transformation of digital health

from traditional health services.

Pertaining to LLMs, we discussed in the above section the po-

tential of fine-tuned or domain-specific LLMs in mitigating

healthcare worker burdens through automation of clinical docu-

mentation and enhancement of healthcare conversations. How-

ever, widespread adoption of such technology is currently

impeded by concerns related to accuracy and consistency.

Medical document summarization involves more than just noting

facts; it also involves creation of an accurate narrative of the pa-

tient. Nuances of medical humanities, patient preferences, and

complexities of socioeconomic and psychological status have

yet to be fully replicated by generative AI.68 These current limita-

tions suggest that healthcare professionals may still have to

manually review outputs for accuracy that, in turn, may be

more time intensive and cognitively fatiguing.

Bias in algorithms and privacy concerns
Inadequate representation in training datasets may jeopardize

the effectiveness of AI-based health interventions in vulnerable

populations. AI models often generalize poorly in populations

outside of its data training and validation cohort. While models

may perform well in well-represented regions, disparate perfor-

mance in less-represented cohorts and minority populations

may perpetuate existing health disparities.69 Clinical AI models

often draw data from EHRs, biobanks, or genome databases, in

which groups with irregular or limited access to the healthcare

systems, e.g., ethnic minorities and immigrants, will be poorly

represented.70,71 Data shifts and model deterioration may result

inmissed diagnosis, inaccurate prognosis, and suboptimal treat-

ment recommendations in unrepresented cohorts.72,73 Along the

same vein, implementing algorithms trained using large datasets

hasbeenshown tobebiasedagainst individuals of different races

and socioeconomic status. For instance, chest X-ray classifiers

trained using datasets dominated by White patients performed

poorly in Medicare patients,74 and a risk prediction algorithm

trained using large datasets failed to triage African Americans

for necessary care.75 This will remain a pervasive problem since

more than half of the datasets used for clinical AI development
6 Cell Reports Medicine 5, 101356, January 16, 2024
originate from either the USA or China.61 Careful validation of AI

algorithms is imperative in ensuring reproducible results before

being deployed in other populations. To effectively combat

such bias, models should be trained using multi-institutional da-

tasets and surveyed for disparate performance during model

deployment.76 In addition to a lack of representation in datasets,

AI-driven clinical decision support may inadvertently reproduce

the biased judgements and decision-making that are entrenched

in real-world practice. Biases captured in unstructured clinical

notesmay be picked up by and replicated in NLP-based AI tools.

Along the same vein, bias in pretraining or fine-tuning datasets of

LLMs may encode historical and ongoing bias. Prejudiced, ste-

reotyped, and discriminatory outputs reflect empirically

observed patterns of judgements from pretraining datasets. In

an experiment using commercial LLMs, kidney function estima-

tion queries returned answers based on an outdated and race-

biasedmedical formula.77 At this juncture,we caution against un-

checked, unaccounted, and untested applications of LLM in

clinical decision support. LLMs may inadvertently perpetuate

these biases and contribute toward widening health inequities.

In the realm of data and model responsibility, the party that re-

mains liable for the outcomes of AI and LLMs remains unclear,

and it is important to note that absence of autonomy and

sentience renders a lack of moral agency in AI.78 Pertaining to

data privacy, patient-related data are entrusted to healthcare in-

stitutions and professionals, and the use of big data may lead to

potential unauthorized usage of personal data in predictive ana-

lyses.79 A lack of robust data privacy frameworks may introduce

vulnerabilities for penetration and manipulation of sensitive pa-

tient information. Reidentification of anonymized medical data

is possible with few spatiotemporal datapoints despite deidenti-

fication efforts.80 Vulnerable populations are in jeopardy when

SDOH data carrying sensitive and stigmatizing information are

uncovered. Examples of cybersecurity measures include user

authentication, audit trails, data encryption, and secure data

transmission mechanisms.58

Developments in privacy-preserving technologies are gaining

traction. Homomorphic encryption is one such solution that per-

mits for analyses to be performed securely on encrypted data

without the need for decryption. Generative adversarial networks

(GANs) are generative models that learn from the distribution of

healthcare data or medical images to create large, realistic syn-

thetic data.76 The privacy of patients is protected, as data cannot

be attributed to any single individual. In addition, GANs can be

used to augment healthcare datasets with class imbalance or

insufficient variability. Performance of models augmented by

GANs outperforms those trained using traditionally augmented

data using a fraction of the original training dataset.81 GANs pre-

sent as a novel tool to overcome both privacy concerns and

algorithmic bias discussed above. Federated machine learning

is a data-private, multisite, collaborative learning approach that

distributes model training and aggregates model weights

without the need to share individual patient datasets.82,83 Block-

chain technology facilitates secure and auditable exchange of

sensitive patient data, safeguarding data integrity and immuta-

bility. Blockchain can be coupled with the aforenamed privacy-

preserving techniques to augment AI algorithms while providing

an additional layer of data security.84,85



Figure 3. A multitiered approach for digital inclusion using WHO SDOH framework
The framework was adapted from Van Dijk.88
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FUTURE DIRECTIONS

Emphasis on digital inclusion
In the recent decades, digital literacy and internet access have

been increasingly recognized as ‘‘super’’ SDOHs due to their

complex interlink and ability to affect other SODH.86 A key barrier

to digital literacy lies in the digital divide, which afflicts disadvan-

taged populations more significantly. For example, approxi-

mately one-sixth of low-income household families in the USA

do not have broadband internet access.87

With expanding applications of AI and digital health, it is imper-

ative to devise strategies to bridge the digital divide in our pursuit

of health equity. The concept of digital inclusion encompasses

activities that allow for equitable access and use of information

communication technologies (https://www.digitalinclusion.org/

definitions/). Digital inclusion goes beyond simple possession

of internet-enabled devices and internet access; elements

such as digital literacy training, availability of technical support,

and applications to empower users are equally crucial (https://

www.digitalinclusion.org/definitions/). Within the EU, only about

half of the population possesses basic digital skills, despite

widespread access to the internet (https://digital-strategy.

ec.europa.eu/en/library/ict-work-digital-skills-workplace). We

propose a multitiered approach to evaluate and address digital

inclusion as an SDOH (Figure 3).

Global agenda for ethical and equitable AI practices
The establishment of global guidelines and framework is neces-

sary to guide the development, implementation, and evaluation

of AI-based digital health technologies to ensure efficacy sus-

tainability and equitability. Various guidelines and frameworks

have been developed to guide the ethical use of AI including

guidance from international bodies, e.g., the WHO (https://

www.who.int/publications/i/item/9789240029200) and UNI

Global Union (https://uniglobalunion.org/report/10-principles-

for-ethical-artificial-intelligence/)—however, significant diver-

gences exist in the interpretation and prioritization of specific

ethics principles.89 In addition, there is a lack of representation

from LMICs such as African and South American countries,

revealing a power imbalance in this ethical debate. Relevant
stakeholders from different global regions should be involved

in the development of a global consensus framework while

respecting variability in regional priorities, capabilities, and

challenges.60

Furthermore, on the research front, a global research agenda

for AI interventions relevant to addressing SDOH will ensure that

tools developed respond to population needs.37 Furthermore, AI

research in LMICs can be enhanced by international frameworks

to promote model transparency such as the ‘‘transparent report-

ing of a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD)’’ reporting guideline and ‘‘developmental

and exploratory clinical investigations of decision support sys-

tems driven by AI (DECIDE-AI).’’90,91

Bridge development to implementation
Greater efforts are also required to bridge development to imple-

mentation for AI-based technologies to maximize gain. Lessons

drawn from implementation science suggest a need to map out

unique circumstances and processes within each local setting to

identify potential interactions and barriers of technology imple-

mentation. Active engagement of local stakeholders such as

government agencies and non-governmental organizations

(NGOs) in the process of workflow design is essential, especially

in resource-limited settings.38,92 For example, DL algorithms

developed using computed tomography (CT) images cannot

be generalized or implemented in a region where CT scanners

are unavailable. Along the same vein, there is a need to conduct

economic evaluation of AI-based technologies under different

resource settings. For the under-resourced settings, the key is

to prevent life-threatening conditions, and thus the referral

thresholds by these digital tools will need to be carefully set

based on the health economic analysis that is feasible to the spe-

cific country. Cost-effective analyses of AI vs. standard of care

reveal useful information for policy makers and regulators such

as the optimal operating model or whether the new initiative

should be adopted at all.44,93

The ‘‘black box’’ nature of DL- and LLM-based models, com-

pounded by the tendency of LLMs to ‘‘hallucinate,’’ is a key

impediment to the development of trustworthy and explainable

AI models. Beyond improving accuracy of AI model outputs,
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significant effort and progress has been made in developing ex-

plainability techniques for machine learning and DL models,

such as saliency-based explainable AI (XAI).94 However, inter-

pretation of such techniques, e.g., SHAP, may not be sufficiently

‘‘layman’’ to facilitate rapid decision-making in clinical prac-

tice.95 In addition, there is still a paucity of evidence to quantify

improved clinician or patient trust in AI model output through

incorporation of these explainability techniques. We encourage

more research and exploration in examining factors that foster

greater user trust in AI models and the design of conceptual

models and frameworks96 to bridge the gap between model

development and effective implementation.

Conclusion
Achieving health equity remains a challenge, and addressing

SDOH is progressively becoming a global priority. In a post-

pandemicworld, the widening digital and health divide has thrown

caution to the use of AI and digital health technologies. Significant

challenges and barriers to equitable AI implementation remain,

especially with regard to overcoming infrastructure limitations

and algorithmic bias. Newer techniques and global collaborative

efforts have the potential to overcome these barriers and allow

disruptive and transformative digital health tools to flourish.
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