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Cell-type-directed design of synthetic 
enhancers

Ibrahim I. Taskiran1,2,3, Katina I. Spanier1,2,3, Hannah Dickmänken1,2,3, Niklas Kempynck1,2,3, 
Alexandra Pančíková1,2,3,4, Eren Can Ekşi1,2,3, Gert Hulselmans1,2,3, Joy N. Ismail1,3,5, 
Koen Theunis1,2,3, Roel Vandepoel1,2,3, Valerie Christiaens1,2,3, David Mauduit1,2,3 & 
Stein Aerts1,2,3 ✉

Transcriptional enhancers act as docking stations for combinations of transcription 
factors and thereby regulate spatiotemporal activation of their target genes1. It has 
been a long-standing goal in the field to decode the regulatory logic of an enhancer 
and to understand the details of how spatiotemporal gene expression is encoded in an 
enhancer sequence. Here we show that deep learning models2–6, can be used to 
efficiently design synthetic, cell-type-specific enhancers, starting from random 
sequences, and that this optimization process allows detailed tracing of enhancer 
features at single-nucleotide resolution. We evaluate the function of fully synthetic 
enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using 
transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers 
that target two cell types and minimal enhancers smaller than 50 base pairs that are 
fully functional. By examining the state space searches towards local optima, we 
characterize enhancer codes through the strength, combination and arrangement of 
transcription factor activator and transcription factor repressor motifs. Finally, we 
apply the same strategies to successfully design human enhancers, which adhere to 
enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by 
deep learning leads to better understanding of how enhancers work and shows that 
their code can be exploited to manipulate cell states.

Cell-type-specific expression of a target gene is achieved when a 
unique combination of transcription factors (TFs) activates a specific 
enhancer; whereas this enhancer remains either passively (default-off7,8) 
or actively repressed in other cell types (for example, through repres-
sor binding9 or corepressor/polycomb recruitment). Typically, when 
an enhancer is translocated to another chromosome or to an episomal 
plasmid, it maintains cell-type-specific control of its nearby reporter 
gene1,10. Therefore, its regulatory capacity is contained in the enhancer 
DNA sequence and has co-evolved to respond uniquely to a specific 
trans-environment in a cell type. A thorough understanding of how 
enhancer activation is encoded in its DNA sequence is important, as 
it is a key component for the modelling and prediction of gene expres-
sion2,11; for the interpretation of non-coding genome variation12,13; for 
the improvement of gene therapy; and for the reconstruction and 
manipulation of dynamic gene regulatory networks underlying devel-
opmental, homeostatic and disease-related cell states.

Many complementary approaches and techniques have been used 
to decode enhancer logic1. These include studies of individual enhanc-
ers by mutational analysis14–16, in vitro TF binding (for example, elec-
trophoresis mobility shift assay), cross-species conservation17 and 
reporter assays. The upscaling of such studies led to the identification 
of common features of coregulated enhancers18–20. These experimental 

findings also triggered the improvement of computational methods 
for the prediction of cis-regulatory modules, whereby feature selection 
and parameter optimization led to new insights into how binding sites 
cluster and how their strength (or binding energy) impacts enhancer 
function15,16,21–24. Wider adoption of genome-wide profiling of chromatin 
accessibility25, single-cell chromatin accessibility26–28, histone modifica-
tions29,30, TF binding31 and enhancer activity19,32 led to significantly larger 
training sets of coregulated enhancers that could then be used for a pos-
teriori discoveries of TF motifs and enhancer rules, aided by the growing 
resources of high-quality TF motifs33,34. Further mechanistic insight 
has been provided by thermodynamic modelling of enhancers35,36, 
in vivo imaging of enhancer activity37, the analysis of genetic variation 
through expression quantitative trait loci and chromatin-accessibility 
quantitative trait loci analysis12,38 and high-throughput in vitro bind-
ing assays39,40. Recently, the enhancer biology field embraced the use 
of convolutional neural networks (CNN) and network-explainability 
techniques that again provided a substantiall leap forward in terms 
of prediction accuracy and syntax formulation2–6,41–44.

An orthogonal strategy to decode enhancer logic is to engineer syn-
thetic enhancers from scratch. This approach has the advantage that the 
designer knows exactly which features are implanted, so that the mini-
mal requirements for enhancer function can be revealed. Recent work 
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showed the promise of CNN-driven enhancer design by successfully 
designing yeast promoters45 and by using a CNN to select high-scoring 
enhancers for S2 cells, from a large pool of random sequences4. Here, 
we tackle the next challenge in enhancer design: to design enhancers 
that are cell-type specific. To this end, we used previously trained deep 
learning models for which we have already validated the accuracy of 
nucleotide-level interpretation and motif-level predictions12,5 (Supple-
mentary Note 1). Using these enhancer models as a guide (or ‘oracle’), 
we tested three different sequence design approaches46,47 (Fig. 1).

In silico evolutions
As a first strategy for enhancer design, we created synthetic enhancers 
to specifically target Kenyon cells (KC) in the mushroom body of the 
fruit fly brain, using a nucleotide-by-nucleotide sequence evolution 
approach45 (Methods). This approach starts from a 500 base pair (bp) 
random sequence that is evolved from scratch (EFS) in silico towards 
a chosen cell type through several iterations. Prediction scores are 
calculated using DeepFlyBrain5, a deep learning model trained on dif-
ferentially accessible regions across several cell types of the Drosophila 
brain and that can recognize motif-level nucleotide arrangements for 
many cell types (Supplementary Note 1). At each iteration we performed 
saturation mutagenesis13,44,48 whereby all nucleotides were mutated 
one by one and each sequence variation was scored by DeepFlyBrain 
to select the mutation with the greatest positive delta score for the KC 
class (among 81 classes representing different cell types that the model 
learned to predict). We performed this procedure starting from 6,000 
GC-adjusted random sequences and observed that after 15 iterations, 
DeepFlyBrain KC prediction scores increased from around the minimal 
score (0) to nearly the maximum score (1), while remaining low for 
other cell types (Fig. 2a and Extended Data Fig. 1a,b). We found this 
greedy search to provide a good balance between computational cost 
and ability to efficiently yield high-scoring sequences, compared to 
alternative state space searches (Extended Data Fig. 2a–d and Methods).

Next, we investigated the initial (random) sequence and the specific 
paths that are followed through the search space towards local optima. 
For only a small fraction (3%) of random sequences, the prediction score 
remained below 0.5 even after 15 mutations (Extended Data Fig. 1c). 
These sequences were mostly characterized by more instances of 
repressor binding sites together with an increased number of muta-
tions required to generate sufficient activator binding sites. A second 
observation is that, even though 500 bp space is given to the model, the 

selected mutations accumulated in about 200 bp space, preferentially 
at the centre of the random sequence (Extended Data Fig. 1d,e).

We investigated the consequences of each mutation on shaping the 
enhancer code using DeepExplainer-based contribution scores (Fig. 2b; 
Methods). This revealed that initial random sequences harbour several 
short repressor binding sites by chance and these are preferentially 
destroyed during the first iterations (Extended Data Fig. 1f,g). These 
repressor sites contribute negatively to the KC class prediction and 
represent candidate binding sites for KC-specific repressor TFs such 
as Mamo and CAATTA5. The nucleotides with the highest impact rep-
resent mutations that destroy a repressor binding site and simultane-
ously generate a binding site for the key activators Eyeless (Ey), Mef2 
or Onecut. Eventually, DeepExplainer highlighted several candidate 
activator binding sites, whereby Ey, Mef2 and Onecut sites dominate 
(Fig. 2b and Extended Data Fig. 1f,g).

To test whether the in silico evolved enhancers can drive reporter 
gene expression in vivo, we randomly selected 13 sequences after 10 or 
15 iterations (Fig. 2c and Supplementary Figs. 1 and 2) and integrated 
them into the fly genome with a minimal promoter and a GFP reporter 
gene (Methods). Investigating the GFP expression pattern by confocal 
imaging showed that 10 of these 13 tested synthetic enhancers were 
active specifically in the targeted cell type, the KC (Fig. 2d and Extended 
Data Fig. 1h). Some enhancers did not show activity after ten muta-
tions but became active after an extra five mutations (Fig. 2d, Extended 
Data Fig. 1i,j and Supplementary Fig. 3). The three enhancers without 
GFP signal in KC were found to also be Dachshund negative, indicat-
ing the potential loss of KC (Extended Data Fig. 1k). Using assay for 
transposase-accessible chromatin by sequencing (ATAC-seq) on the 
brains of the transgenic lines, we verified that the synthetic enhancers 
become accessible when integrated into the genome (Extended Data 
Fig. 1l), as predicted by the model.

We also generated transgenic lines to test enhancers at different 
steps during the evolutionary design process (Supplementary Figs. 4 
and 5). We found that random sequences or sequences with only few 
mutations remain inactive, whereas enhancer activity is initiated when 
repressor sites are removed and Ey and Mef2 sites are generated; and 
activity further increases with more and stronger instances of activator 
motifs (Extended Data Fig. 1m,n).

To demonstrate that enhancers can be generated for other cell types, 
we started from the same random sequences as above and evolved 
them into perineurial glia (PNG) enhancers (Extended Data Fig. 2e). 
After 15 mutations, putative PNG repressor sites have been destroyed 
and activator sites have been generated (Fig. 2e and Supplementary 
Fig. 6). We validated six designed sequences by creating transgenic GFP 
reporter flies and confirmed that four were positive, as they drive GFP 
specifically in PNG cells (Fig. 2f and Extended Data Fig. 2f). Because 
the same random sequence was evolved into either KC or PNG enhanc-
ers, this experiment underscores that the chosen mutations and the 
candidate binding sites they destroy or generate, causally underlie the 
activity of these synthetic enhancers.

Given that KC enhancers can arise from random sequences after 10 
or 15 mutations, we proposed that certain genomic regions may require 
even fewer mutations to acquire KC enhancer activity. We scanned the 
entire fly genome and identified regions with high prediction scores 
but without chromatin accessibility in KC (Extended Data Fig. 2g,h; 
Methods). By applying sequence evolution to these sequences, three of 
four sequences became positive KC enhancers with only six mutations 
(Fig. 2g,h, Extended Data Fig. 2i,j and Supplementary Fig. 7). When the 
negative enhancer was further evolved, with an extra five mutations, it 
also became positive (Fig. 2g and Extended Data Fig. 2i,j). This suggests 
that KC enhancers, and probably other cell-type enhancers as well, can 
arise de novo in the genome with few mutations.

To summarize the changes that happened during the design process, 
we performed motif discovery across all 6,000 sequences, at each step 
of the optimization path (Extended Data Fig. 1f,g). This confirmed that 

Enhancer design strategies

Enhancer activity measurements

3. Generative design

Generator

Generated
sequences

Genomic
sequences

Discriminator

Noise

Score with model

ACGA...CTGC
TACG...TCCG
GTCA...TATC

GGCA...GACT
CATC...GCCA
ATGC...TACTDL

1. Sequence evolution

TCACGTGGTGAATTGCCACTTGCCCCCG

Random sequence

Prediction for each mutation

TCACGTGGTGAATTGCCACGTGCCCCCG

Choose best mutation iteratively

DL

1. Genomic integration (transgenic �ies)

Designed enhancer nGFP (reporter gene)minP

Inject �y embryos

Stain (α-GFP)
adult �y brains

2. Motif implanting

AGAATTATGTAAGCCCACGTAGATCAAGC

Random sequence

Prediction for each position

AGAATTTGCTCACTCAAGCGTAATCAAGC

Implant to best position

Scanning

Replacing with

DL

2. Episomal transfection (luciferase assays)

Designed enhancer LUC (reporter gene)minP

Transfect cultured cells

Measure
luciferase activity Luciferase

activity

Strong
Weak

Off

Fig. 1 | Deep learning-based enhancer design. Overview of enhancer design 
strategies and activity measurements of designed enhancers in Drosophila 
brains and human cell lines. DL, deep learning.



214  |  Nature  |  Vol 626  |  1 February 2024

Article

repressor sites are often present in random sequences and that they are 
preferentially destroyed during the first steps of the search algorithm. 
To experimentally test that these short repressor sites functionally 
cause repression, we selected three positive synthetic enhancers and 
three of the near-enhancers rescued from the genome and evolved 
these to become non-functional by manually choosing the mutations 
that decrease the prediction score by creating repressor binding sites 
(Extended Data Fig. 2i and Supplementary Figs. 8 and 9). We avoided 
mutating any of the predicted activator sites (Fig. 3a); thus, placed 
repressor motifs in between activator sites. New transgenic lines with 
these sequences integrated into the genome confirm that all tested 
enhancers have entirely lost their activity (Fig. 3b). This shows that 
enough repressor sites can dominate over a functional combination 
of activator sites.

The sequence evolution strategy thus represents an intuitive and 
efficient approach to generate cell-type-specific enhancers and to 
characterize their functional constituents.

Multiple cell-type codes
A single enhancer can be active in several different cell types49, and 
our earlier work suggested that this can be achieved by enhancers that 
contain several codes for different cell types, intertwined in a single 
approximately 500 bp sequence5. On the basis of this finding, we won-
dered whether a genomic enhancer that is active in a single cell type, 
could be synthetically augmented to become also active in a second 
cell type. To test this, we started with two optic lobe enhancers (amon 
and CG15117) that are accessible and active in T4/T5 and T1 neurons, 
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respectively5, and whose activity per cell type is also predicted cor-
rectly by DeepFlyBrain (Fig. 3c–e and Extended Data Fig. 3a–c). We then 
performed in silico evolution on these enhancers towards KC, while 
simultaneously maintaining a high prediction score for the original cell 
type. After 13 and 14 mutations, the enhancers were also predicted as KC 
enhancers but retained T4 and T1 binding sites. Testing the augmented 
sequences in vivo with a GFP reporter confirmed the spatial expansion 
of the enhancer activity to KC (Fig. 3f,g, Extended Data Fig. 3c–f and 
Supplementary Fig. 10; Methods).

Reciprocally, enhancers active in several cell types may be pruned 
towards a single cell-type code. We searched for genomic enhancers 
that score high for several cell types (Fig. 3h–l). We selected a Pkc53e 
enhancer that is accessible and active in both optic lobe T neurons and 
KC and predicted correctly by the model. This time, we drove the in 
silico evolution to maintain the KC prediction score, while decreasing 
the T neurons prediction score (Methods). After nine mutations, the 
sequence was predicted to have only KC activity (Fig. 3m). Nucleotide 
contribution scores show that the most important binding sites for KC 
were unaffected after nine mutations, whereas the activator binding 
sites were destroyed and new repressor binding sites were created for 
T neurons (Extended Data Fig. 3g). Testing the final sequence in vivo 
confirmed the spatial restriction of the enhancer activity (Fig. 3n). 
Together, our results indicate that, guided by the DeepFlyBrain model, 

intertwined enhancer codes can be independently dissected and 
altered.

Motif implantation
As a second strategy, we used a classical motif implantation approach 
to design KC enhancers. The rationale behind this strategy is based 
on our results above: nucleotide-by-nucleotide sequence evolution 
showed that all the selected mutations were associated with the crea-
tion or destruction of a TF binding site, rather than affecting contex-
tual sequence between motif instances (Fig. 2b,e,h and Extended Data 
Fig. 3d,e,g). This suggested that a combination of appropriately posi-
tioned activator motifs, without the presence of repressor motifs, would 
be sufficient to create a cell-type-specific enhancer. Furthermore, we 
reasoned that by applying this design strategy to thousands of random 
sequences we could gain more insight into the KC enhancer logic. To 
this end, we iteratively implanted strong TF binding site instances in 
2,000 random sequences, selecting locations with the highest predic-
tion score towards the KC class. We first implanted a single binding site 
for one of the four key activators of KC enhancers, namely, Ey, Mef2, 
Onecut and Sr5, and then specific combinations of sites in a particular 
implantation order (Extended Data Fig. 4a; Methods). This revealed 
that Ey and Mef2 had the strongest effect on the prediction score, while 
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Onecut and Sr increased the prediction score only marginally (Fig. 4a). 
Implanting Ey and Mef2 consecutively increased the score more than 
the sum of their individual contribution and their implantation order 
did not affect the final score. Adding Onecut and then Sr on top of Ey 
and Mef2 sites increased the scores even further until it reached the level 
that we obtained above after 15 mutations through in silico sequence 
evolution (Fig. 4a). We could also observe some minor preferences in 
the motif flanking sequence (for example, Mef2 is flanked by T or G in 
5′ and A or C in 3′; Extended Data Fig. 4a)

We also found that high-scoring configurations consisted of activa-
tor sites that are positioned close together within a distance usually 
smaller than 100 bp (Fig. 4b,c and Extended Data Fig. 4b). When the 

Ey and Mef2 pair were implanted on the same strand, we observed 
strong preference for a 5 bp distance (or 4 bp when implanted on 
opposite strands) between the two binding sites whereby Mef2 was 
located upstream of Ey (Fig. 4b and Extended Data Fig. 4c). For the Ey 
and Onecut pair, there was a strong preference for a 3 bp space and 
Onecut preferred the downstream side of Ey (Fig. 4c and Extended Data  
Fig. 4d).

We investigated the nucleotide contribution scores before and after 
motif implantations for an example sequence with high prediction 
score in which motifs were inserted close together (Fig. 4d,e and Sup-
plementary Fig. 11). The initial random sequence contained several 
repressor binding sites and the Ey binding site implantation destroyed 
the strongest repressor binding site. Mef2 and Onecut implantations 
followed the predicted spacing relative to Ey, with a distance of 5 and 
3 bp, respectively. This can explain why implantation of motifs at ran-
dom locations yields lower scoring sequences (Fig. 4a). Even though 
some repressor binding sites were still present at further distances, 
their relative negative contribution was decreased after the activa-
tor binding site implantations (Fig. 4e). Testing this designed 500 bp 
sequence in vivo confirmed specific activity in KC (Fig. 4f). Introduc-
tion of mutations to generate repressor sites close to the implanted 
motifs (none of the activator sites was modified) resulted in complete 
loss of enhancer activity in vivo, suggesting dominance of repressor 
motifs (Fig. 4d,e,g). Furthermore, a 49 bp subsequence, containing 
just the three binding sites, resulted in the same activity and specific-
ity in vivo (Fig. 4h,i and Supplementary Fig. 12). We further confirmed 
the robustness of the motif implanting design by validating in vivo a 
second 500 bp sequence showing increased spacing between motifs 
(Extended Data Fig. 4e,f,g). This result suggests that a functional KC 
enhancer can be created through motif-by-motif implantation with just 
these three binding sites and its size can be decreased to the minimal 
length required to contain these binding sites.

As a third strategy for enhancer design, we used generative adver-
sarial networks (GAN) that have been shown to be powerful generators 
in different fields43,48, including the generation of functional genomic 
sequences46. This method was less interpretable than in silico evolution 
or motif implanting but still allowed the generation of functional and 
specific enhancers (Supplementary Note 2).

Human enhancer design
We used our previously trained and validated melanoma deep learning 
model, DeepMEL2 (ref. 12) (Supplementary Note 1) with the same three 
strategies as before, to design human melanocyte or melanocyte-like 
melanoma (MEL) enhancers. As for the Drosophila experiments, we 
started from GC-adjusted random sequences (Extended Data Fig. 5a) 
and, by following the nucleotide-by-nucleotide sequence evolution 
approach, we evolved them into sequences with high prediction scores 
for the MEL class. This process drove the generation of activator bind-
ing sites (SOX10, MITF and TFAP2) and the destruction of ZEB motifs 
to resemble MEL genomic enhancers; the prediction scores started 
to plateau after 15 mutations (Fig. 5a and Extended Data Fig. 5b,c). We 
randomly selected ten regions that were evolved from scratch (EFS-
1–10) with 15 mutations and tested their activity with a luciferase assay 
in vitro, in a MEL cell line (MM001) (Fig. 5b,c and Methods). Seven of 
ten tested enhancers showed activity in the range of previously charac-
terized positive control (native) enhancers and none of them showed 
activity in a cell line that represents another melanoma cell state 
(mesenchymal-like, MM047) in which the MEL-specific TFs (SOX10, 
MITF and TFAP2) are not expressed (Fig. 5d and Extended Data Fig. 5d). 
When we integrated these synthetic enhancers into the genome of the 
MM001 cell line using lentiviral vectors (Methods), they generated an 
ATAC-seq peak, whereas neither the random sequences nor the evolved 
sequence when integrated in a non-MEL cell line are accessible (Fig. 5e 
and Extended Data Fig. 5e,f).
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Next, we tested the activity of a series of synthetic sequences, 
along the design path, from a random sequence to an active enhancer 
(Extended Data Fig. 6 and Supplementary Figs. 13 and 14). This shows 
that the predicted activity by DeepMEL2 correlates with the lucif-
erase reporter activity in vitro (Fig. 5f and Extended Data Fig. 5g), 
suggesting that the steps of increased activity are not biased to our 

DeepMEL2 model but reflect biological activity. Functional in silico 
evolved enhancers lost their activity and accessibility, when ZEB sites 
were generated in proximity of activator sites (Fig. 5e,f and Extended 
Data Figs. 5g and 8) and this repressive mechanism depended on the 
number and the strength of repressor sites (Extended Data Fig. 8a,b–e 
and Supplementary Fig. 15). We confirmed that the same principles of 
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repression apply to genomic enhancers, using the MEL enhancer in an 
IRF4 intron as example and through ChIP–seq we identified ZEB2 as the 
actual repressor TF (Fig. 5g,h and Supplementary Note 3). Mutating 
the endogenous ZEB2 site in the IRF4 enhancer causes a significant 
increase in activity, whereas mutations that generate more ZEB2 sites 
(without touching activator sites) decrease its activity (Fig. 5i and Sup-
plementary Note 3).

These findings could be further corroborated by scoring all 
sequences during the optimization process with two other deep 
learning models, namely, a newly trained ChromBPNet model50 on 
bulk MM001 ATAC-seq data (Methods) and the previously published 
Enformer model, for which the SK-MEL-5 ATAC-seq class represents the 
MEL state2. The Enformer model has a receptive field of 200 kilobases 
(kb) and can be used to predict both enhancer activity and target gene 
expression in the context of an entire gene locus. To simulate whether 
our synthetic enhancers do function like genomic enhancers in a com-
plex locus, we replaced the IRF4 enhancer studied above with synthetic 
enhancers, thus performing an in silico CRISPR experiment. Replace-
ment of the IRF4 enhancer by a random sequence results in no predicted 
accessibility, whereas replacement by different synthetic enhancers 
along their design path gradually obtains increased prediction scores 
for accessibility, H3K27Ac signal and CAGE gene expression (Fig. 5j,k 
and Extended Data Fig. 7b). Because Enformer contains more than 
600 chromatin accessibility (DNase hypersensitivity) output classes, 
across a wide variety of cell types, we used it to assess the specificity 
of our designed enhancers and found high prediction scores for only 
four classes, each representing either melanocytes or melanocyte-like 
melanoma cell states (Fig. 5l and Extended Data Fig. 7a). The ChromBP-
Net model shows continuous increases of predicted enhancer activity 
along the optimization path (Fig. 5m). Again, all three models cor-
rectly predict that synthetic enhancers, after they reach their high-
est activity level, can be switched off entirely by introducing point 
mutations that generate ZEB binding sites (Fig. 5j,k,m and Extended 
Data Fig. 7a,b). Furthermore, changing the location of the enhancer 
relative to the transcriptional start site did not alter its functionality, 
suggesting that the enhancers are not dependent on the local sequence 
context around the IRF4 enhancer location to be functional (Extended 
Data Fig. 7c). As a final example of in silico evolution, we identified a 
human ‘near-enhancer’ and rescued its activity with only four muta-
tions (Extended Data Fig. 9a–d).

We also applied the motif implantation strategy to design human 
enhancers. We implanted SOX10, MITF and TFAP2 binding sites to 
2,000 random sequences of 500 bp. Whereas implanting only MITF 
or TFAP2 resulted in a small increase in the prediction score, implant-
ing SOX10 alone had the strongest effect (Fig. 5n). Adding MITF and 
then TFAP2 on top of SOX10 sites increased the prediction scores to 
0.6 on average. The prediction scores continued increasing even fur-
ther after adding another set of SOX10, MITF and TFAP2 binding sites 
(Fig. 5n). We did not observe a preferential location for the implantation 
of MITF or TFAP2 relative to SOX10; however, both binding sites were 
located within 100 bp of SOX10 (Fig. 5o). The second SOX10 binding 
site was placed further away at a 200–250 bp distance relative to the 
first SOX10 (Fig. 5o). We selected four sequences with either single or 
double SOX10, MITF and TFAP2 implanted sites and tested their activ-
ity with luciferase assays. All enhancers showed activity in the range 
of native enhancers and adding the binding sites twice consistently 
increased the activity of the enhancers (Fig. 5p and Extended Data 
Fig. 10a,b,c). Replacing the implanted binding sites with their weaker 
versions taken from a native enhancer (IRF4) decreased the activity of 
the enhancers dramatically (Extended Data Fig. 10a,b,c). To confirm 
that the activity of the enhancers was driven by the implanted binding 
sites, we cut the sequences from the most upstream binding site to the 
most downstream binding site. These subsequences (116–164 bp) were 
also active with a slight change in their activity levels (Extended Data 
Fig. 10a,b,c). Finally, instead of choosing the best location for MITF 

and TFAP2 implantation, we implanted them at the closest location 
to the SOX10 binding site that would result in a positive change in the 
prediction score. These minimal enhancers (51–64 bp) were as active 
as their longer (500 bp) version (Extended Data Fig. 10a,b,c).

Finally, we applied the GAN-based sequence generation approach to 
the generation of human enhancers and obtained similar performances 
as with the Drosophila GAN-generated enhancers (Supplementary 
Note 2).

In conclusion, these results show that enhancer design strategies 
are adaptable to different biological systems and even other species, 
including human.

Discussion
Understanding the code of transcriptional regulation and using this 
knowledge to design synthetic enhancers has been a persistent chal-
lenge. We successfully designed synthetic enhancer sequences in 
human and fly guided by deep learning models. By combining a step-
wise enhancer design approach alongside model interpretation tech-
niques, we followed the trajectories of in silico enhancer emergence in 
Drosophila and human, towards local optima. Nucleotide-by-nucleotide 
evolution revealed that the selected mutations predominantly destroy 
candidate repressor TF binding sites and create candidate activator 
sites. Mostly, ten iterative mutations were sufficient to convert a ran-
dom sequence into a cell-type-specific functional enhancer. Similarly, 
for native yeast promoter sequences, it was recently shown that only 
four mutations could dramatically increase or decrease their activi-
ties45. This evolutionary design process may represent an optimized 
version of natural evolution of genomic enhancers. We found that 
the fly and human genomes contain ‘near-enhancers’ that require few 
mutations to become functional.

The location, orientation, strength and number of TF motifs in a 
single enhancer and their distance to other motifs are important  
features determining an enhancer code that is unique to each cell 
type. This array of well-arranged TF binding sites constitutes a dock-
ing platform for a specific combination of TFs. Their cooperative  
binding makes the enhancer accessible/active at different levels 
and in different cell types. We found certain enhancers to be active 
in several cell types. Besides the trivial possibility whereby two cell 
types share a common set of TFs that bind to a common set of sites 
(for example, different KC subtypes), we showed that some enhan
cers have evolved several intertwined codes (for example, KC and  
T neurons). We could prove this by either removing a code from a 
native dual-code enhancer or adding a second code to a native single- 
code enhancer.

The consequence of this motif-driven enhancer model is that it allows 
enhancer design by motif implantation. Several studies have used 
motif implantation in an attempt to reconstitute enhancer activity 
but successes of accurate in vivo activity have been limited51,52. More 
recently, motif embedding has also been used in combination with 
deep learning models4,6,53 with the advantage that many different 
motif implanting scenarios can be tested in silico, before perform-
ing experimental validation4,6,43,53, as compared to high-throughput 
testing of random implantations32,54,55. By exploiting motif implanta-
tion further, particularly by scoring each possible implant position, as 
well as combinations of motifs, we could reveal motif synergies (for 
example, Ey + Mef2 or SOX10 + MITF), as well as preferred orientations 
and distances between motifs, motif strengths and motif copy num-
ber. A minimal fly brain enhancer designed with three abutting motif 
instances illustrates that functional enhancers can be created without 
further sequence context. Compared to random insertions of motif 
instances52,56, deep learning guided implantation has the capacity to 
take the entire enhancer sequence into account. Consequently, what 
makes an enhancer is not only the optimal combination of motifs used 
(including each motif’s strength and copy number) but also the optimal 
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balance between repressor and activator motifs and the optimal motif 
arrangement.

Two of 13 KC enhancers remain negative, whereas one is inconclu-
sive. Nevertheless, this leads to a conservative success rate greater 
than 75%. We also envision several routes for further improvement in 
enhancer design. First, whereas our examples focused on adult cell 
types, we did not consider temporal changes. It thus remains to be 
investigated whether developmental enhancers with highly dynamic 
and complex output functions can be decoded and designed along 
the same principles. Studies of the shavenbaby enhancer in Droso­
phila showed that its output is affected by mutations in most of its 
nucleotides57. This may be due to a densely packed motif content, 
such as our minimal enhancer or to yet-unknown sequence features. It 
may be interesting to investigate such developmental enhancers with 
deep learning models58. Also, we observed slight variations in the GFP 
output pattern of (genomic and synthetic) enhancers. Incorporating 
such high-resolution variations in the training data may yield models 
with improved spatial and quantitative resolution. Lastly, the repres-
sor motifs identified by our models recruit TFs that cause a decrease 
in chromatin accessibility. However, this is probably not true for all 
transcriptional repressors (for example, binding sites of the REST 
repressor overlap with accessible chromatin59). A future challenge will 
be to take repressor motifs into account that do not decrease chromatin 
accessibility. To train such models, more enhancer activity data or gene 
expression data will be needed.

The successful application of enhancer design on both fly brain 
and human cancer cells has shown that simple, yet powerful strat-
egies guided by deep learning models are adaptable to different 
organisms or systems. Our proof-of-concept study is an encourag-
ing step forward towards the development of organism-wide deep 
learning models. Such models will facilitate the generation of syn-
thetic enhancers during development, disease and homeostasis; and 
will further improve our understanding and control of the genomic  
cis-regulatory code.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06936-2.

1.	 Davidson, E. H. Genomic Regulatory Systems: Development and Evolution (Academic, 
2001).

2.	 Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating 
long-range interactions. Nat. Methods 18, 1196–1203 (2021).

3.	 Minnoye, L. et al. Cross-species analysis of enhancer logic using deep learning. Genome 
Res. 30, 1815–1834 (2020).

4.	 de Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. DeepSTARR predicts enhancer activity 
from DNA sequence and enables the de novo design of synthetic enhancers. Nat. Genet. 
54, 613–624 (2022).

5.	 Janssens, J. et al. Decoding gene regulation in the fly brain. Nature https://doi.org/10.1038/ 
s41586-021-04262-z (2022).

6.	 Avsec, Ž. et al. Base-resolution models of transcription-factor binding reveal soft motif 
syntax. Nat. Genet. 53, 354–366 (2021).

7.	 Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene 
expression. Genes Dev. 25, 2227–2241 (2011).

8.	 Jacobs, J. et al. The transcription factor Grainy head primes epithelial enhancers for 
spatiotemporal activation by displacing nucleosomes. Nat. Genet. 50, 1011–1020  
(2018).

9.	 Payankaulam, S., Li, L. M. & Arnosti, D. N. Transcriptional repression: conserved and 
evolved features. Curr. Biol. 20, R764–R771 (2010).

10.	 Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding 
sequences. Nature 444, 499–502 (2006).

11.	 Linder, J., Srivastava, D., Yuan, H., Agarwal, V. & Kelley, D. R. Predicting RNA-seq coverage 
from DNA sequence as a unifying model of gene regulation. Preprint at bioRxiv https://
doi.org/10.1101/2023.08.30.555582 (2023).

12.	 Atak, Z. K. et al. Interpretation of allele-specific chromatin accessibility using cell 
state-aware deep learning. Genome Res. 31, 1082–1096 (2021).

13.	 Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning–
based sequence model. Nat. Methods 12, 931–934 (2015).

14.	 Yuh, C. H., Bolouri, H. & Davidson, E. H. Genomic cis-regulatory logic: experimental and 
computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998).

15.	 Patwardhan, R. P. et al. Massively parallel functional dissection of mammalian enhancers 
in vivo. Nat. Biotechnol. 30, 265–270 (2012).

16.	 Kheradpour, P. et al. Systematic dissection of regulatory motifs in 2000 predicted  
human enhancers using a massively parallel reporter assay. Genome Res. 23, 800–811 
(2013).

17.	 Hare, E. E., Peterson, B. K., Iyer, V. N., Meier, R. & Eisen, M. B. Sepsid even-skipped 
enhancers are functionally conserved in Drosophila despite lack of sequence 
conservation. PLoS Genet. 4, e1000106 (2008).

18.	 Kvon, E. Z. et al. Genome-scale functional characterization of Drosophila developmental 
enhancers in vivo. Nature 512, 91–95 (2014).

19.	 Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by 
STARR-seq. Science 339, 1074–1077 (2013).

20.	 Zinzen, R. P., Girardot, C., Gagneur, J., Braun, M. & Furlong, E. E. M. Combinatorial binding 
predicts spatio-temporal cis-regulatory activity. Nature 462, 65–70 (2009).

21.	 May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nat. Genet. 44, 
89–93 (2011).

22.	 Narlikar, L. et al. Genome-wide discovery of human heart enhancers. Genome Res. 20, 
381–392 (2010).

23.	 Ghandi, M., Lee, D., Mohammad-Noori, M. & Beer, M. A. Enhanced regulatory sequence 
prediction using gapped k-mer features. PLoS Comput. Biol. 10, e1003711 (2014).

24.	 Kantorovitz, M. R. et al. Motif-blind, genome-wide discovery of cis-regulatory modules in 
Drosophila and mouse. Dev. Cell 17, 568–579 (2009).

25.	 Meuleman, W. et al. Index and biological spectrum of human DNase I hypersensitive sites. 
Nature 584, 244–251 (2020).

26.	 Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell 
chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

27.	 Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human 
immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37,  
925–936 (2019).

28.	 Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. 
Cell 174, 1309–1324 (2018).

29.	 Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. 
Nature 489, 57–74 (2012).

30.	 Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and 
characterization. Nat. Methods 9, 215–216 (2012).

31.	 Yan, J. et al. Transcription factor binding in human cells occurs in dense clusters formed 
around cohesin anchor sites. Cell 154, 801–813 (2013).

32.	 Smith, R. P. et al. Massively parallel decoding of mammalian regulatory sequences 
supports a flexible organizational model. Nat. Genet. 45, 1021–1028 (2013).

33.	 Weirauch, M. T. et al. Determination and Inference of eukaryotic transcription factor 
sequence specificity. Cell 158, 1431–1443 (2014).

34.	 Rauluseviciute, I. et al. JASPAR 2024: 20th anniversary of the open-access database of 
transcription factor binding profiles. Nucleic Acids Res. https://doi.org/10.1093/nar/
gkad1059 (2023).

35.	 He, X., Samee, M. A. H., Blatti, C. & Sinha, S. Thermodynamics-based models of 
transcriptional regulation by enhancers: the roles of synergistic activation, cooperative 
binding and short-range repression. PLoS Comput. Biol. 6, e1000935 (2010).

36.	 Parker David, S., White Michael, A., Ramos Andrea, I., Cohen Barak, A. & Barolo, S. The 
cis-regulatory logic of Hedgehog gradient responses: key roles for Gli binding affinity, 
competition and cooperativity. Sci. Signal. 4, ra38–ra38 (2011).

37.	 Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 
358–368 (2016).

38.	 Deplancke, B., Alpern, D. & Gardeux, V. The genetics of transcription factor DNA binding 
variation. Cell 166, 538–554 (2016).

39.	 Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327–339 
(2013).

40.	 Zhu, F. et al. The interaction landscape between transcription factors and the 
nucleosome. Nature 562, 76–81 (2018).

41.	 Koo, P. K., Majdandzic, A., Ploenzke, M., Anand, P. & Paul, S. B. Global importance analysis: 
an interpretability method to quantify importance of genomic features in deep neural 
networks. PLoS Comput. Biol. 17, e1008925 (2021).

42.	 Karollus, A., Mauermeier, T. & Gagneur, J. Current sequence-based models capture gene 
expression determinants in promoters but mostly ignore distal enhancers. Genome Biol. 
24, 56 (2023).

43.	 Toneyan, S., Tang, Z. & Koo, P. K. Evaluating deep learning for predicting epigenomic 
profiles. Nat. Mach. Intell. 4, 1088–1100 (2022).

44.	 Yuan, H. & Kelley, D. R. scBasset: sequence-based modeling of single-cell ATAC-seq using 
convolutional neural networks. Nat. Methods 19, 1088–1096 (2022).

45.	 Vaishnav, E. D. et al. The evolution, evolvability and engineering of gene regulatory DNA. 
Nature https://doi.org/10.1038/s41586-022-04506-6 (2022).

46.	 Zrimec, J. et al. Controlling gene expression with deep generative design of regulatory 
DNA. Nat. Commun. 13, 5099 (2022).

47.	 Killoran, N., Lee, L. J., Delong, A., Duvenaud, D. & Frey, B. J. Generating and designing DNA 
with deep generative models. Preprint at https://doi.org/10.48550/arXiv.1712.06148 
(2017).

48.	 Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence 
specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 
831–838 (2015).

49.	 Preger-Ben Noon, E. et al. Comprehensive analysis of a cis-regulatory region 
revealspleiotropy in enhancer function. Cell Rep. 22, 3021–3031 (2018).

50.	 Brennan, K. J. et al. Chromatin accessibility in the Drosophila embryo is determined  
by transcription factor pioneering and enhancer activation. Dev. Cell 58, 1898–1916 
(2023).

51.	 Vincent, B. J., Estrada, J. & DePace, A. H. The appeasement of Doug: a synthetic approach 
to enhancer biology. Integr. Biol. 8, 475–484 (2016).

https://doi.org/10.1038/s41586-023-06936-2
https://doi.org/10.1038/s41586-021-04262-z
https://doi.org/10.1038/s41586-021-04262-z
https://doi.org/10.1101/2023.08.30.555582
https://doi.org/10.1101/2023.08.30.555582
https://doi.org/10.1093/nar/gkad1059
https://doi.org/10.1093/nar/gkad1059
https://doi.org/10.1038/s41586-022-04506-6
https://doi.org/10.48550/arXiv.1712.06148


220  |  Nature  |  Vol 626  |  1 February 2024

Article
52.	 Swanson, C. I., Schwimmer, D. B. & Barolo, S. Rapid evolutionary rewiring of a structurally 

constrained eye enhancer. Curr. Biol. 21, 1186–1196 (2011).
53.	 Koo, P. K. & Ploenzke, M. Improving representations of genomic sequence motifs in 

convolutional networks with exponential activations. Nat. Mach. Intell. 3, 258–266 (2021).
54.	 King, D. M. et al. Synthetic and genomic regulatory elements reveal aspects of 

cis-regulatory grammar in mouse embryonic stem cells. eLife 9, e41279 (2020).
55.	 Davis, J. E. et al. Dissection of c-AMP response element architecture by using genomic 

and episomal massively parallel reporter assays. Cell Syst. 11, 75–85 (2020).
56.	 Tsai, A., Alves, M. R. & Crocker, J. Multi-enhancer transcriptional hubs confer phenotypic 

robustness. eLife 8, e45325 (2019).
57.	 Fuqua, T. et al. Dense and pleiotropic regulatory information in a developmental 

enhancer. Nature 587, 235–239 (2020).
58.	 de Almeida, B. P. Targeted design of synthetic enhancers for selected tissues in the 

Drosophila embryo. Nature https://doi.org/10.1038/s41586-023-06905-9 (2024).
59.	 Imrichova, H. & Aerts, S. ChIP–seq meta-analysis yields high quality training sets for 

enhancer classification. Preprint at bioRxiv https://doi.org/10.1101/388934 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1038/s41586-023-06905-9
https://doi.org/10.1101/388934
http://creativecommons.org/licenses/by/4.0/


Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
number of synthetic enhancers that were tested using transgenic flies 
was determined to be minimally six per cell type and it was bounded 
by the feasibility of the transgenic animal generation experiments. In 
total, 68 transgenic fly lines were generated. The number of synthetic 
enhancers that were used with luciferase assays was determined to be 
minimally ten per different category (in silico evolution, motif embed-
ding, GAN, repressors and mutational steps). In total, 97 sequences were 
tested using luciferase assay. The initial random sequences (used for 
sequence evolution and motif implantation) were sampled from the 
sequence space that matches the GC content of the genomic sequences. 
Flies fitting the sex (equal amount of male flies and female flies) and 
age (less than 10 days) criteria were selected randomly for all experi-
ments. In this study, we didn’t perform experiments that needed to be 
allocated into different groups. The investigators were blinded when 
performing cloning, transfection, antibody staining and luciferase 
experiments by using enhancer IDs.

Statistics and reproducibility
Statistics were calculated using Scipy (v.1.6.0; RRID: SCR_008058)60. 
The results here and throughout the manuscript were visualized 
using matplotlib (v.3.1.1; RRID: SCR_008624)61. The deep learning 
models were run in a conda environment in which python (v.3.7; RRID: 
SCR_008394), tensorflow-gpu (v.1.15; RRID: SCR_016345)62, numpy 
(v.1.19.5; RRID: SCR_008633)63, ipykernel (v.5.1.2; RRID: SCR_024813) 
and h5py (v.2.10.0; RRID: SCR_024812) packages were installed. The 
same results were obtained from different replication experiments. 
Several brains (at least ten) were stained and imaged for the fly experi-
ments. Three biological replicates were performed for the main lucif-
erase experiments. Two biological replicates were performed for the 
negative control luciferase experiments. No biological replicates were 
performed for ATAC-seq or ChIP–seq experiments.

In silico saturation mutagenesis
To measure the effect of each possible single mutation on a given DNA 
sequence, we performed in silico saturation mutagenesis, as described 
earlier13,48,64. We first generated the sequences of all single mutations for 
a given 500 bp sequence (three possible mutations for each nucleotide, 
making 1,500 sequences in total). We scored these sequences and the 
initial sequence with the deep learning models. For a chosen class, 
we calculated the delta prediction score by subtracting the score of 
the initial sequence from the score of the mutated sequence for each 
mutation.

Random sequence generation
We generated random 500 bp sequences to use as a previous set for the 
in silico sequence evolution and motif implantation by using the numpy.
random.choice([“A”,“C”,“G”,“T”]) command. For each position, instead 
of using 25% probability for each nucleotide to be chosen, we used the 
frequency of the nucleotides from fly or human genomic regions for 
each position. In these genomic regions, the GC content was higher 
in the centre of the regions on average relative to the flankings. We 
used 6,126 KC regions for fly and 3,885 MEL regions for human that we 
identified in our previous publications3,5.

In silico sequence evolution
By using the saturation mutagenesis scores mentioned above, we per-
formed in silico sequence evolution. For the in silico evolution from 
random sequences, we calculated saturation mutagenesis scores for a 
random sequence. Then, we selected the mutation that had the highest 
positive delta prediction score for the selected class (for γ-KC, class no. 
35 in DeepFlyBrain; for PNG, class no. 34 in DeepFlyBrain; for MEL, class 

no. 16 in DeepMEL2). For the selected sequence with one mutation, we 
recalculated the saturation mutagenesis scores for each nucleotide and 
again selected the mutation with the highest delta score and repeated this 
procedure until the initial random sequence accumulated 20 mutations.

Even though we used a simple objective function to direct the 
sequence evolution towards a single cell type, without explicitly penal-
izing off-target cell types, the generated sequences were mostly active 
only in the targeted cell type. We believe this is because of the type of 
enhancer models we are using, which were trained on cell-type-specific 
accessible regions. When more general models are used, for example 
trained on entire ATAC-seq tracks, adapted objective functions can 
be used and are available in our code. The cell-type-specific activity 
of our synthetic enhancers suggests that: (1) activator binding sites 
were not created for other cell types; and (2) repressor sites, which are 
present in random sequences by chance, were not destroyed for other 
cell types. For example, in KC we observed that activator binding sites 
are usually longer than repressor sites (18 and 10 bp versus 5 and 6 bp 
for Ey, Mef2, Mamo and CAATTA, respectively). This implies that a 
random sequence is more likely to have several repressor binding sites 
by chance compared to activator sites (Extended Data Fig. 1f). Indeed, 
the average prediction scores of our initial 6,000 random sequences 
were close to zero for all classes. This may at least in part explain why 
earlier enhancer design efforts may have failed.

We used 6,000 initial random sequences for KC and PNG and 4,000 
for MEL. For the generation of KC enhancers from genomic regions, 
we performed six iterative mutations. For the many cell-type code 
enhancers, we started from optic lobe enhancers and in each iteration 
we manually selected the mutations that increased the γ-KC prediction 
score while maintaining the optic lobe prediction scores high. For the 
pruning experiment of a multiple cell-type code enhancer into only 
KC code, we manually selected the mutations that maintain the γ-KC 
prediction score high while decreasing the optic lobe prediction scores. 
The DeepFlyBrain class numbers used for optic lobe neurons are 23 for 
T1, 20 for T2 and 2 for T4 neurons.

To rescue the designed enhancers that were weak or negative, we per-
formed five more mutations on both from-scratch and from-genomic 
sequences.

To repress the sequences with the creation of repressor binding sites, 
we selected single or double mutations manually, by going over in silico 
saturation mutagenesis plots calculated on the evolved sequences.

To explore the alternative in silico sequence evolution paths besides 
choosing the best mutation (greedy algorithm), we chose the top 20 
mutations on each sequence for every incremental step starting from 
a random sequence. We followed this procedure for five incremental 
mutational steps. Starting from the random sequence used to generate 
enhancer KC EFS-4, we obtained 3.2 million paths/sequences at the end.

Nucleotide contribution scores
We used a network explaining tool, called DeepExplainer (SHAP pack-
age65,66; RRID: SCR_021362), to calculate the contribution of each nucle-
otide to the final prediction of the deep learning model for the chosen 
class. We used randomly selected 250 genomic regions to initialize 
the explainer.

DeepFlyBrain model takes a single strand as an input. For a given 
500 bp, we multiplied the explainer’s output by the one-hot encoded 
DNA sequence and visualized it as the height of the nucleotide letters. 
DeepMEL2 model takes forward and reverse strands separately as an 
input. In this case, the explainer results in contribution scores for each 
strand. We first took the average contribution score for each nucleo-
tide and then multiplied it by the one-hot encoded DNA sequence to 
visualize.

Motif annotation
To identify TF binding sites during the in silico evolution of designed 
sequences, we used TF-Modisco (v.0.5.5.4; RRID: SCR_024811)67 and 
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Cluster-Buster(RRID: SCR_024810)68. First, we calculated the nucleo-
tide contribution scores on every mutational step, including random 
sequences. Then, we ran TF-Modisco on each mutational step separately 
to identify which patterns are appearing/disappearing. The TF-Modisco 
parameters we used were num_to_samp=5000, sliding_window_size=15, 
flank_size=5, target_seqlet_fdr=0.15, trim_to_window_size=15, initial_
flank_to_add=5, final_flank_to_add=5, final_min_cluster_size=60. After 
investigating the TF-Modisco patterns that were identified on each 
mutational step, we used mutational step 1 for KC and mutational step 
4 for MEL to collect the identified patterns, as they contained all the 
activator and repressor patterns. (Earlier steps did not have good rep-
resentation of activators because they are close to random sequences. 
Later steps did not have good representation of repressors because they 
were destroyed during the mutational steps.) We trimmed the patterns 
on the basis of information content (threshold = 0.1) and saved them 
as a .cb file to be used by the Cluster-Buster.

By using the TF-Modisco patterns, we ran Cluster-Buster (with -c  
0 and -m 3 options) to identify motifs on each mutational step, includ-
ing random sequences. We selected only the motif instances from 
Cluster-Buster results and merged (by using BEDTools v.2.30.0; RRID: 
SCR_006646; ref. 69) the overlapping hits of the motifs into a single 
hit. We calculated mean + s.d. on the hit scores coming from random 
sequences for each motif separately and used these thresholds to get 
the significant hits.

Identification of TF binding sites similar to TF-Modisco patterns was 
performed using Tomtom (RRID: SCR_024809)70 using the cisTarget 
motif collection (RRID: SCR_024808)71.

Scoring the fly genome
To identify the regions that have high prediction scores for γ-KC 
but have less accessibility in γ-KC, we scored the whole fly genome. 
We used the bedtools makewindows -g dm6.chromsize -w 500 -s 50  
command69 to create the coordinates of the binned fly genome with a 
500 bp window and 50 bp stride. We removed the regions that are not 
exactly 500 bp. This resulted in 2,750,893 regions to be scored with the 
DeepFlyBrain model. We used the stats function of deeptools/pyBigWig 
package (RRID: SCR_024807)72 to calculate mean γ-KC accessibility 
values for each bin.

Motif implanting
To implant binding sites into 500 bp sequences, we started from a ran-
dom sequence. We implanted a binding site into every possible location 
on the random sequence one-by-one by replacing the nucleotides on 
the random sequences with the binding site. Then, we scored these 
sequences with the model. We selected the binding site position that 
gives the highest prediction score and implanted the motif on that  
position. Then, starting from this sequence with one binding site 
implanted, we implanted the next binding sites one-by-one by using 
the same procedure. The sequence of binding sites that maximize the 
TF-Modisco pattern score were selected to implant and they are as fol-
lows: Ey, TGCTCACTCAAGCGTAA; Mef2, CTATTTATAG; Onecut, ATCGAT; 
Sr, CCACCC; SOX10, AACAATGGGCCCATTGTT; MITF, GTCACGTGAC;  
and TFAP2, GCCTGAGGC. We used 2,000 initial random sequences for 
KC and 2,000 for MEL. The weaker binding sites taken from the IRF4 
enhancer are as follows: SOX10_1, GTGAATGACAGCTTTGTT; SOX10_2, 
TACAAGTATCTCCATTGT; MITF_1, ATCATGTGAA; MITF_2, GCCATAT 
GAC; TFAP2_1, TCTTCAGGC; and TFAP2_2, CCCTGTGGT.

When TF motifs are implanted at random positions in a random 
sequence, prediction scores are very low, probably because repres-
sor sites remain present. Likewise, to be able to generate a functional 
enhancer through random sequence generation, many sequences need 
to be generated (that is, 100 million and 1 billion; refs. 38,73).

To measure if there is a preference for a flanking sequence when 
performing motif implanting, we aggregated all the sequences aligned 
by the location of the implanted motif. Then, we calculated the position 

probability matrix and visualized it by subtracting 0.25 from each  
position.

To measure the effect of different background sequences on the 
minimal KC enhancer, we generated 1 million random sequences with 
the size of 20 bp. Then, we replaced the 20 bp spanning the position 
where Ey, Mef2 and Onecut binding sites implanted that occupied the 
6 bp flankings on both sides and 8 bp intermotif space. Then, we scored 
the sequences with the model and measured the effect of different 
backgrounds around the motif implantation area.

Generative adversarial network
To train a GAN model, we used Wasserstein GAN architecture with 
gradient penalty74 similar to earlier work47. The model consists of two 
parts: generator and discriminator. Generator takes noise as input 
(size is 128), followed by a dense layer with 64,000 (500 × 128) units 
with ELU activation, a reshape layer (500, 128), a convolution tower 
of five convolution blocks with skip connections, a one-dimensional 
(1D) convolution layer with four filters with kernel width 1 and finally 
a SOFTMAX activation layer. The output of the generator is a 500 × 4 
matrix, which represents one-hot encoded DNA sequence. Discrimina-
tor takes 500 bp one-hot encoded DNA sequence as input (real or fake), 
followed by a 1D convolution layer with 128 filters with kernel width 1, 
a convolution tower of five convolution blocks with skip connections, 
a flatten layer and finally a dense layer with one unit.

Each block in the convolution tower consists of a RELU activation 
layer followed by 1D convolution with 128 filters with kernel width 5. 
The noise is generated by the numpy.random.normal(0, 1, (batch_size, 
128)) command. We used a batch size of 128. For every train_on_batch 
iteration of the generator, we performed ten train_on_batch iterations 
for the discriminator. We used Adam optimizer with learning_rate of 
0.0001, beta_1 of 0.5 and beta_2 of 0.9. We trained the models for around 
260,000 batch training iteration for KC and around 160,000 batch 
training iteration for MEL.

We used 6,126 KC regions for the fly model and 3,885 MEL regions for 
the human model, which we identified in our previous publications, 
as real genomic sequences to train the models. After the training, we 
sampled 6,144 (48 × batch size) sequences for KC and 3,968 (31 × batch 
size) sequences for MEL by using the generator for every 10,000 batch 
training iteration. The sampled synthetic sequences were generated 
by calculating predictions on noise and then the numpy.argmax() 
command was used to convert the predictions into one-hot encoded 
representations.

Background model
To compare against the GAN-generated sequences, we generated ran-
dom sequences in different orders by using the CreateBackground-
Model function from the INCLUSive package (RRID: SCR_013488)75 
based on the same genomic regions that we used to train GANs.

Training ChromBPNet models
For training ChromBPNet models we used a prereleased version (v.
1.3-pre-release; RRID: SCR_024806) from the ChromBPNet GitHub 
repository (https://github.com/kundajelab/chrombpnet/tree/
v1.3-pre-release). We followed all the preprocessing and training steps 
as described in the tutorial: from the aligned ATAC reads in the MM001 
BAM file, we made a BigWig of Tn5 insertion sites, trained a bias model 
that predict Tn5 binding sites in non-peak regions which is then used 
in the ChromBPNet model to filter out Tn5 bias. ChromBPNet uses 
2,114 bp DNA sequence as input and predicts both the ATAC track and 
the natural log count of the aligned reads for the central 1,000 bp. To 
be able to score 500 bp DNA sequences (IRF4 enhancer and synthetic 
enhancers), we used the flanking sequences of the cloned/integrated 
enhancer sequences surrounded by the integrated cassette. Both scalar 
and track prediction were plotted. Flanking sequences are provided in 
the Supplementary Code.
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Using the Enformer model
We used the Enformer model (RRID: SCR_024805) to do in silico 
CRISPR experiments. We took the IRF4 locus (chr. 6: 339010:453698) 
centred by the IRF4 enhancer (chr. 6: 396104:396604). We replaced 
the endogenous IRF4 enhancer with the random/ evolved/ repressed 
designed sequences and calculated the prediction scores for the 
related cell types. The prediction scores were plotted as showing 
the whole locus. For DNase and ChIP-Histone:H3K27ac tracks, the 
mean values were calculated using the middle three bins or one bin 
spanning the enhancer location. For CAGE tracks, the mean values 
are calculated using one bin spanning the transcriptional start site 
of IRF4. The index of the tracks that we used to get the prediction 
scores are as follows—4,832: CAGE/melanoma cell line:G-361, 162: 
DNase/SK-MEL-5, 2,162: ChIP-Histone:H3K27ac/foreskin melanocyte  
male newborn.

To measure the locational effect of the designed enhancers on 
gene expression, chromatin accessibility and histone modification, 
we moved the synthetic enhancer around the IRF4 locus; (1) to 10 kb 
upstream, (2) 5 kb upstream (which is next to the promoter of the IRF4 
gene) and (3) 17.5 kb downstream of the original location.

Cloning of synthetic Drosophila enhancers
Synthetic sequences were ordered from Twist Bioscience, precloned 
in the pTwist ENTR vector. The motif-implantation and double-coded 
sequences were synthesized with an extra 5′ CACC sequence as 
double-stranded DNA (gBlocks Gene Fragments) by IDT. The 49 bp 
motif-implantation sequence was ordered from IDT as forward and 
reverse single-stranded DNA oligos, which were then annealed for 
5 min at 95 °C and cooling down to RT over 1 h. The double-stranded 
DNA sequences were then cloned into the pENTR/D-TOPO plasmid 
(Invitrogen).

All sequences were introduced in a modified pH-Stinger vector76, 
containing nuclear GFP, Hsp70 promoter, gypsy insulators and attB site 
for phiC31 integration, through Gateway LR recombination reaction 
(Invitrogen). A total of 2 µl of the reaction was transformed into 25 µl of 
Stellar chemically competent bacteria (Takara). Plasmid minipreps were 
performed using the NucleoSpin Plasmid Transfection-grade Mini kit 
(Macherey-Nagel) and sequenced with Sanger sequencing to confirm 
the correct insertion of the regions in the destination plasmid. After 
confirmation of the sequence, plasmid midipreps were performed 
using the NucleoBond Xtra endotoxin-free Midi kit (Macherey-Nagel). 
Next, the plasmids were sent to FlyORF (Switzerland) for injection in 
Drosophila embryos (21F site on chromosome 2l) and positive trans-
formants were selected on the basis of eye colour.

Drosophila flies were raised on a yeast-based medium at 25 °C under 
a 12 h/12 h day/night light cycle.

Immunohistochemistry analysis of Drosophila brains
Brains of adult flies (Drosophila melanogaster, less than 10 days old, 
equally mixed sex) were dissected in PBS and transferred to a tube for 
fixation in 4% formaldehyde in PBS for 20 min. All incubations were 
done at room temperature, unless otherwise indicated. Brains were 
washed in PBS with 0.3% Triton-X (PBST) three times for 10 min each, 
then they were placed in blocking solution (5% normal goat serum 
(Abcam) in PBST) for 3 h. We incubated the brains overnight at 4 °C in 
primary antibodies diluted in blocking solution (rabbit anti-GFP, IgG 
(Invitrogen), 1:1,000 and mouse anti-Dachshund, mAB dac1-1 (DSHB), 
1:250). The brains were then washed in PBST three times for 10 min 
each and incubated with the fluorochrome-conjugated secondary 
antibodies diluted in blocking solution for 2 h (Alexa Fluor 488 donkey 
anti-rabbit IgG (Invitrogen), 1:500 and Alexa Fluor 647 goat anti-mouse 
IgG (Invitrogen), 1:500). Next, brains were washed in PBS three times 
for 10 min each. Finally, samples were mounted onto microscope slides 
with Prolong Glass Antifade Mountant (Invitrogen).

For image acquisition, a Zeiss LSM900 microscope equipped with 
Airyscan2 in combination with a ×20 objective (Plan Apo 0,80 Air) was 
used. The setup was controlled by ZEN blue (v.3.4.91, Carl Zeiss Micros-
copy GmbH). GFP was excited with a blue diode 100 mW at 488 nm and 
tiled images were collected with emission filter BP450-490/BS495/
BP500-550.

Cloning of synthetic human enhancers
The 500 bp synthetic sequences were ordered from Twist Bioscience, 
precloned in the pTwist ENTR vector. The 500 bp regions were intro-
duced in the pGL4.23-GW luciferase reporter vector (Promega) through 
Gateway LR recombination reaction (Invitrogen) and 2 µl of the reaction 
was transformed into 25 µl of Stellar chemically competent bacteria 
(Takara).

Synthetic sequences shorter than 150 bp were ordered as gBlocks 
from IDT (Integrated DNA Technologies) with 5′ (cccgtcgacgaattctgca 
gatatcacaagtttgtacaaaaaagcaggct) and 3′ (acccagctttcttgtacaaagtg 
gtgataaacccgctgatcag) adaptors. The pGL4.23-GW luciferase reporter 
vector was linearized through inverse PCR with primers Lin_pSA335_
short_ME_For (gtggtgataaacccgctgatcag) and Lin_pSA335_short_ME_
Rev (tctgcagaattcgtcgacggg). The short sequences and the linearized 
vector were combined in an NEBuilder reaction (New England Biolabs) 
and 2 µl of the reaction was transformed into 25 µl of Stellar chemically 
competent bacteria.

For all cloning procedures, plasmid minipreps were performed using 
the NucleoSpin Plasmid Transfection-grade Mini kit (Macherey-Nagel) 
and sequenced with Sanger sequencing to confirm the correct insertion 
of the regions in the destination plasmid.

To generate stable cell lines with synthetic enhancers, the syn-
thetic sequences were cloned into the pSA351_SCP1_intron_eGFP 
vector (Addgene no. 206906). The vector was linearized through 
inverse PCR with primers Lin_pSA351_For (ctgagctccctagggtact) and 
Lin_pSA351_Rev (cgactcgaggctagtctc). The synthetic sequences were 
PCR-amplified from their respective pGL.23-GW vector with their 
respective primer pairs: MM_EFS_1_For (gagactagcctcgagtcgctgatt 
gtttgaaccattgttacgatttgg) and MM_EFS_1_Rev (agtaccctagggagctcag 
caattttgttttttgcgcgtgac) for MM-EFS-1 sequences; MM_EFS_4_For 
(gagactagcctcgagtcgtgatatgtattcacccatgccctca) and MM_EFS_4_Rev 
(agtaccctagggagctcaagggtttgtatatgtatgctcctttatacga) for MM-EFS-4 
sequences; MM_EFS_8_For (gagactagcctcgagtcgatacgcacgacaaagcct 
cat) and MM_EFS_8_Rev (agtaccctagggagctcacactgtacaaggcatcccgc) for 
MM-EFS-8 sequences; IRF_4_For (gagactagcctcgagtcggctgccattggtgtg 
gattttaag) and IRF_4_Rev (agtaccctagggagctcaactggcatcgagacggg) for 
IRF4 sequences. The PCR amplicons and the linearized vector were com-
bined in an NEBuilder reaction and 2 µl of the reaction was transformed 
into 25 µl of Stellar chemically competent bacteria. Plasmid minipreps 
were performed using the NucleoSpin Plasmid Transfection-grade 
Mini kit (Macherey-Nagel) and sequenced with Sanger sequencing to 
confirm the correct insertion of the regions in the vector. After confir-
mation of the sequence, plasmid maxipreps were performed using the 
NucleoBond Xtra endotoxin-free Maxi kit (Macherey-Nagel).

Transfection and luciferase assay
MM001 and MM047 were seeded in 24-well plates and transfected with 
400 ng of pGL4.23-enhancer vector + 40 ng of pRL-TK Renilla vector 
(Promega) with Lipofectamine 2000 (Thermo Fisher Scientific). As 
positive controls, the previously published enhancers MLANA_5-I, 
IRF4_4-I and TYR_−9-D or ABCC3_11-I and GPR39_23-I were used for 
MM001 and MM047, respectively77. One day after transfection, lucif-
erase activity was measured through the Dual-Luciferase Reporter 
Assay System (Promega) by following the manufacturer’s protocol. 
Briefly, cells were lysed with 100 µl of passive lysis buffer for 15 min 
at 500 rpm. A total 20 µl of the lysate was transferred in duplicate in a 
well of an OptiPlate-96 HB (PerkinElmer) and 100 µl of luciferase assay 
reagent II was added in each well. Luciferase-generated luminescence 
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was measured on a Victor X luminometer (PerkinElmer). A total of 100 µl 
of the Stop & Glo Reagent was added to each well and the luminescence 
was measured again to record Renilla activity. Luciferase activity was 
estimated by calculating the ratio luciferase/Renilla; this value was 
normalized by the ratio calculated on blank wells containing only rea-
gents. Three biological replicates were done per condition for MM001 
and two biological replicates for MM047.

Production of lentivirus
The lentivirus plasmids were transfected in HEK 293 T cells by use of 
the Lipofectamine 3000 reagent (Thermo Fisher Scientific). A total 
of 30 µg of pooled plasmid DNA was combined with 20 µg of a Pax2 
plasmid (Addgene no. 12260; RRID: Addgene_12260) and 10 µg of 
the MD2.G plasmid (Addgene no. 12259; RRID: Addgene_12259). At 
48 h posttransfection, medium was collected and refreshed. At 72 h 
posttransfection, medium was collected a second time. Both medium 
collections were combined and spun down for 5 min at 1,500 rpm. 
Supernatants was carefully collected with a blunt needle and a syringe 
and filtered through a 45 µm syringe disc filter (Millex-HV Millipore) 
into an Ultra-15 MWCO100 centrifugal filter (Amicon). The concentra-
tor tube containing the supernatants was spun down at 4,000 rpm for 
approximately 45 min until the desired volume of 250 µl was reached. 
The virus suspension was aliquoted and stored at −80 °C.

Transduction of melanoma cells
The MM001 cells were seeded into a six-well plate at a density of 
250,000 cells per well. Transduction was performed by adding 5–40 µl 
of lentivirus and Polybrene at 8 µg ml−1. Cells were incubated for 24 h 
before washing away the Polybrene with PBS and with growth medium. 
After 3 days the cells were split and expanded further.

OmniATAC-seq
Omni-assay for transposase-accessible chromatin using sequencing 
(OmniATAC-seq) was performed as described previously78. Briefly, 
50,000 MM001 cells transduced with the enhancer pools were resus-
pended in 50 µl of cold ATAC-seq resuspension buffer (RSB; 10 mM 
TrisHCl pH 7.4, 10 mM NaCl and 3 mM MgCl2 in water) containing 
0.1% NP40, 0.1% Tween-20 and 0.01% digitonin by pipetting up and 
down three times. This cell lysis reaction was incubated on ice for 
3 min. After lysis, 1 ml of ATAC-seq RSB containing 0.1% Tween-20 
was added and the tubes were inverted to mix. Nuclei were then 
centrifuged for 10 min at 500g in a prechilled (4 °C) fixed-angle  
centrifuge. Supernatant was removed and nuclei were resuspended 
in 50 µl of transposition mix (25 µl of 2× TD buffer, 2.5 µl of trans-
posase (Nextera Tn5 transposase, Illumina), 16.5 µl of PBS, 0.5 µl of 
1% digitonin, 0.5 µl of 10% Tween-20 and 5 µl of water) by pipetting up 
and down six times. Transposition reactions were incubated at 37 °C 
for 30 min in a thermoblock. Reactions were cleaned-up by MinElute 
(Qiagen). Transposed DNA was amplified (ten cycles) with primers 
i5_Indexing_For (aatgatacggcgaccaccgagatctacacnnnnnnnntcgtcg 
gcagcgtcagatgtg) and i7_Indexing_Rev (caagcagaagacggcatacgagat 
nnnnnngtctcgtgggctcggagatgt). All libraries were sequenced on a 
NextSeq2000 instrument (Illumina).

Reads were demultiplexed using bcl2fastq (v.2.20; RRID: SCR_ 
015058; https://emea.support.illumina.com/sequencing/sequencing_ 
software/bcl2fastq-conversion-software.html). Adaptors were trimmed  
by trimgalore (v.0.6.7; RRID: SCR_011847; https://github.com/Felix
Krueger/TrimGalore). Reads were mapped to a custom hg38 genome, 
which contains integrated sequences as extra chromosomes, using 
bwa-mem2 (v.2.2.1; RRID: SCR_022192)79. By using SAMtools (v.1.16.1; 
RRID: SCR_002105)80, reads were sorted and deduplicated and reads 
from the blacklisted regions (https://www.encodeproject.org/files/
ENCFF356LFX/) were cleaned. Bigwig files with RPGC normaliza-
tion were generated by using deepTools (v.3.5.0; RRID: SCR_016366)  
bamCoverage72.

ChIP–seq
ChIP–seq was performed by following the Myers Lab ChIP–seq Proto-
col v.011014 on 2 × 107 MM001 cells. A total of 5 µg of rabbit anti-ZEB2 
(1 mg ml−1; Bethyl A302-473A; RRID: AB_3076293) was used for ChIP. A 
total of 15 ng of immunoprecipitated DNA was used to perform library 
preparation according to the Illumina TruSeq DNA Sample prepara-
tion guide. Briefly, the immunoprecipitated DNA was end-repaired, 
A-tailed and ligated to diluted sequencing adaptors (1/100). After PCR 
amplification with i5_Indexing_For and i7_Indexing_rev (18 cycles) and 
bead purification (Agencourt AmpureXP, Analis), the libraries with 
fragment size of 300–500 bp were sequenced using the NextSeq2000 
instrument (Illumina).

Reads were demultiplexed using bcl2fastq (v.2.20; RRID: 
SCR_015058). Adaptors were trimmed by trimgalore (v.0.6.7; RRID: 
SCR_011847). Reads were mapped to hg38 using bwa-mem2 (v.2.2.1; 
RRID: SCR_022192)79. By using SAMtools (v.1.16.1; RRID: SCR_002105)80, 
reads were sorted and deduplicated and reads from the blacklisted 
regions (https://www.encodeproject.org/files/ENCFF356LFX/) 
were cleaned. Bigwig files with RPGC normalization were gener-
ated by using deepTools (v.3.5.0; RRID: SCR_016366) bamCover-
age72. Peaks were called using MACS2 (v.2.1.2.1; RRID: SCR_013291)  
callpeak81.

Cell lines
MM001, MM047 and MM099 were obtained from G. Ghanem and 
were cultured in Ham’s F-10 Nutrient Mix (Invitrogen) + 10% FBS (Inv-
itrogen). We authenticated the cell lines by checking their genomic, 
transcriptomic and epigenomic profiles12,82,83. HEK293T used for 
lentivirus production was obtained from ATCC (catalogue no. CRL-
3216; RRID: CVCL_0063) and were cultured in DMEM (Invitrogen) + 10% 
FBS (Invitrogen). Cell lines were tested for mycoplasma contamination 
before experiments and were found to be negative.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Cloned Drosophila and human sequences were provided as Supple-
mentary Tables. DeepMEL, DeepMEL2 and DeepFlyBrain deep learn-
ing model files were obtained from Kipoi84 (http://kipoi.org/models/
DeepMEL; https://kipoi.org/models/DeepFlyBrain) with Zenodo 
record ids 3592129, 4590308 and 5153337. The fasta files used to train 
GAN models and the trained GAN models are available on Zenodo at 
https://doi.org/10.5281/zenodo.6701504. Custom genomes (hg38 
and dm6) generated in this study are available on Zenodo at https://
doi.org/10.5281/zenodo.10184648. Chromatin accessibility values in 
KC in adult Drosophila brains were obtained from GSE163697 (ref. 39).  
In vitro saturation mutagenesis on IRF4 data were obtained from https://
kircherlab.bihealth.org/satMutMPRA/85. Chromatin accessibility of 
Drosophila and transduced melanoma lines and ZEB2 ChIP–seq data 
generated for this study have been submitted to the NCBI Gene Expres-
sion Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE240003.

Code availability
Code used to load deep learning models, create random sequences, 
perform sequence evolution, perform motif implantation and train 
GAN models together with the IPython Notebooks that reproduces all 
the figures were provided as Supplementary Code. The data to run the 
scripts, the models and the intermediate files can be found together 
with the code at https://doi.org/10.5281/zenodo.10184648.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | In silico sequence evolution from random sequences. 
a, Distribution of GC content in GC-adjusted random sequences (green) and fly 
genomic regions (red). b, Prediction score distribution of the sequences 
(n = 6,000 sequences) for all classes after 10 mutations. The KC-specific classes 
and their class number are indicated. In b,c, the box plots show the median 
(centre line), interquartile range (box limits) and 5th and 95th percentile range 
(whiskers). c, Prediction score distribution of the sequences that do not reach 
0.5 prediction score threshold after 15 mutations for the γ-KC class (n = 180 
sequences) after each mutation. d, Distribution of distances (n = 6,000) 
between farthest mutations on each sequence after 10 iterative mutations.  
The orange line shows the median. e, Location of the generated mutations 
across the random sequences (n = 6,000 sequences). f, Average number of 
motif hits at each mutational step compared to genomic enhancers. g, Delta 
number of motifs in each mutational step. The TF-Modisco patterns and the 
most similar position weight matrices from the cisTarget motif database are 
shown at the top of each plot. The patterns that are upside-down are the ones 
contributing negatively to the model’s prediction and they are destroyed by 

the model on each step. h, Top: Dachshund staining (red) highlights KC location 
in the fly brain. Bottom: colocation of the Dachshund (red) and GFP (green) 
staining from enhancer EFS-13. i, In vivo enhancer activity of the cloned 
sequences with no or weak enhancer activity. j, Prediction scores, at each 
mutational step, of 4 sequences with no enhancer activity after 10 mutations. 
The selected iterations (10th and 15th mutations) are indicated with a dashed 
line. k, Dachshund (red) and GFP (green) staining for three negative enhancers. 
l, Drosophila adult brain bulk-ATAC-seq profile of 6 transgenic flies that have 
the designed enhancers integrated. The chromatin accessibility profile of the 
integrated enhancers (left) and two control regions gish enhancer (middle) and 
Appl enhancer (right) are shown. m, Prediction scores, at each mutational step, 
of 3 EFS sequences. The selected iterations to study intermediate mutational 
steps (0, 2, 4, 6, 8, 10 mutations) are indicated with a dashed line. n, In vivo 
enhancer activity of fly lines with subsequent mutational steps. After 8 
mutations of a random sequence, the enhancer becomes active in all three lines 
(EFS-3, 4 and 7) marked by GFP expression. In panels h,i,k,n, the expected 
location of γ-KC is shown with dashed circles. Scale bars, 100 µm.
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Extended Data Fig. 2 | State space optimization, design of perineurial glia 
enhancers and modification of genomic sequences toward KC enhancers. 
a, Prediction score distribution for 3 million sequences generated by selecting 
the top 20 best mutations for 5 incremental mutational steps. Blue line, score 
of EFS-4 from the greedy algorithm. b, Zoomed-in version of panel a to the 
sequences that have higher prediction score than 0.25. c, Prediction score  
of evolved sequences by greedy algorithm (EFS-4) vs the best of 3 million 
sequences on each mutational step. d, Nucleotide contribution score of the 
original and evolved sequences as well as delta prediction score of in silico 
saturation mutagenesis for EFS-4 (top) and the top scoring sequence (bottom) 
e, Prediction scores of 6 selected PNG sequences at each mutational step for 
PNG model (left) and KC model (right). The selected iteration (15th mutation)  
is indicated with a dashed line. f, In vivo enhancer activity of the cloned PNG 

sequences with no enhancer activity. g, Comparison between γ-KC prediction 
score and mean γ-KC accessibility for the binned fly genome regions. The 
selected regions with high prediction and low accessibility are highlighted with 
blue, orange, green and red dots. h, γ-KC ATAC-seq profile of the four selected 
regions. The exact location of the regions is indicated with dashed lines.  
i, Prediction scores of 4 selected KC near-enhancer sequences at each mutational 
step for KC model. The selected iteration (6th mutation) is indicated with a 
dashed line. After the 6th mutation, 4 more mutations are performed in FP3  
to improve prediction score while 7 or 8 mutations are performed in the three 
other sequences to generate repressor sites. j, In vivo enhancer activity of the 
cloned WT genomic “near-enhancer” sequences with no enhancer activity.  
The expected location of KC is shown with dashed circles. Scale bars, 100 µm.



Extended Data Fig. 3 | Enhancer design toward multiple cell type codes.  
a, Chromatin accessibility profile near CG15117 gene. b, In vivo enhancer activity 
of the wild-type (WT) CG15117 enhancer. c, CG15117 enhancer prediction scores 
for each cell type (top) and prediction scores for the γ-KC and T1 classes after 
each mutational step. d, Nucleotide contribution scores of WT CG15117 enhancer 
sequence and after 14 mutations for T1 (top) and γ-KC (bottom). e, Nucleotide 
contribution scores of WT amon enhancer sequence and after 13 mutations  
for T4 (top) and γ-KC (bottom). f, In vivo enhancer activity of the WT CG15117 

enhancer and after 14 mutations. The CG15117 enhancer showed a slightly 
altered T1 pattern following incorporation of the KC code. g, Nucleotide 
contribution scores of WT Pkc53e enhancer sequence and after 9 mutations for 
T2 (top), T1 (middle) and γ-KC (bottom). In b, e, the expected location of KC is 
shown with dashed circles. Scale bars, 100 µm. In d,f,g, the position of the 
mutations is shown with dashed lines, the mutational order is written in between 
top and bottom plots and motif annotation is indicated with strong (s) or weak 
(w) motif instances.
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Extended Data Fig. 4 | Enhancer design by motif implanting. a, Preferred 
nucleotides flanking implanted motifs (n = 2,000). Dashed lines, motifs 
boundaries. b, Distribution of Onecut locations relative to Mef2, Sr to Ey, Sr to 
Mef2 and Sr to Onecut, respectively (n = 2,000). c, Distribution of Mef2 locations 
relative to Ey when both are on the same strand, Ey is on the negative strand, 
Mef2 is on the negative strand and both are on the negative strand, respectively 
(n = 2,000). d, Distribution of Onecut locations relative to Ey when Ey is on the 

positive strand and when Ey is on the negative strand, respectively (n = 2,000). 
e, DeepFlyBrain KC prediction score of the ME-2 sequence after consecutive 
motif implanting. f, In vivo enhancer activity of ME-2 enhancer. The expected 
location of KC is shown with dashed circles. Scale bar, 100 µm. g, Nucleotide 
contribution scores of the ME-2 motif implanting sequence (top) and in silico 
saturation mutagenesis assays (bottom). Each dot on the saturation mutagenesis 
plot represents a single mutation and its effect on the prediction score (y axis).



Extended Data Fig. 5 | Human enhancer design by in silico evolution.  
a, Distribution of GC content in GC-adjusted random sequences (green)  
and human genomic regions (red). b, Average number of motif hits at each 
mutational step compared to genomic enhancers. c, Delta number of motifs in 
each mutational step. The TF-Modisco patterns and the most similar position 
weight matrices from the cisTarget motif database are shown at the top of each 
plot. ZEB2 upside-down pattern is contributing negatively to the model’s 
prediction and is destroyed by the model on each step. d, Bar plot showing the 
mean luciferase signal (log2 fold-change over Renilla) in a MES melanoma line 
(MM047) of the synthetic MEL enhancers (generated by in silico sequence 

evolution), showing no activity compared to positive control genomic MES 
enhancers. The bar shows the mean (n = 2 biological replicates). e, MM001 (left) 
and MM099 (right) ATAC-seq profiles of all integrated lentiviral EFS reporters. 
f, MM001 ATAC-seq profile of 3 integrated EFS reporters: initial (top), evolved 
(middle) and post-evolution with repressive sites (bottom). g, DeepMEL2 
prediction score (left), luciferase activity levels in MM001 (middle) and 
correlation between prediction score and activity (right) for EFS-1 (top) and 
EFS-8 (bottom) sequences after incremental mutation steps. In e, f, red dashed 
lines indicate boundaries of the enhancer. In g, the error bars show the standard 
error of the mean (n = 3 biological replicates).



Article

Extended Data Fig. 6 | Intermediate steps of in silico evolution and 
generation of repressor sites in human generated enhancers. Nucleotide 
contribution scores of EFS-4 at different mutational steps; 0 (random 

sequence), 3, 4, 7, 8, 12, 15, 15+Repressors. ZEB2 motif annotation is indicated 
with strong (s) or weak (w) motif instances.



Extended Data Fig. 7 | Human enhancer design by in silico evolution.  
a, Prediction scores for the top 50 DNase tracks for MEL EFS sequences.  
The four first DNAse tracks are: foreskin melanocyte male newborn, SK-MEL-5, 
foreskin melanocyte male newborn, SK-MEL-5. b, Enformer prediction tracks 
for three classes and ChromBPNet MM001 ATAC prediction tracks (right) for 
melanoma EFS-1 (top) and EFS-8 (bottom) sequences added in place of the  

IRF4 enhancer. c, Enformer prediction tracks for three classes for melanoma 
EFS-4 sequences added 10 kb upstream, 5 kb upstream or 17.5 kb downstream 
of the IRF4 enhancer. In b, c, top track: random sequence prediction score, 
other tracks: delta of mutated sequence prediction score vs random sequence 
prediction score.
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Extended Data Fig. 8 | ZEB2 repression of in silico evolved MEL enhancers.  
a, Prediction scores for each mutational step and after the addition of repressor 
sites for 3 EFS sequences. b, Nucleotide contribution scores (DeepMEL2 MEL 
class) showing the creation of single or multiple repressor binding sites by 
single or double mutations in the EFS-4 sequence. c–e, In vivo enhancer activity 

of EFS-4 (c), EFS-1 (d) and EFS-8 (e) after the generation of repressor binding 
sites. ZEB2 motif annotation is indicated with strong (s) or weak (w) motif 
instances. The error bars in c–e, show the standard error of the mean (n = 3 
biological replicates).



Extended Data Fig. 9 | Human enhancer rescue. In the fly brain, we applied in 
silico sequence evolution to create enhancers from genomic regions with high 
scores that did not show chromatin accessibility and could consequently be 
considered as ‘near-enhancer’ sequences. We extended this approach to MEL 
enhancers. We started from a human sequence that has no MEL enhancer 
activity, but its homologous sequence in the dog genome is accessible and 
active as MEL enhancer. We used DeepMEL to introduce 4 mutations that 
restored the activator binding sites in the human sequence, resulting in a 
rescue of the activity, as measured by luciferase activity. a, Dot plot showing 
the mean luciferase signal (log2 fold-change (FC) over Renilla) versus prediction 
score for the MEL class of the WT human and dog genomic sequences and the 
rescued human sequences. b, Nucleotide contribution scores of the dog, 

human-rescued and human-WT sequences (top 3 rows) and in silico saturation 
mutagenesis assay of human-WT sequence (bottom). c, As a variation of this 
approach, we introduced two mutations in a weak MEL enhancer which resulted 
in a 10-fold increase in enhancer activity. Dot plot showing the mean luciferase 
signal (log2 FC over Renilla) versus prediction score for the MEL class of the 
wild-type and enhanced enhancers. d, Nucleotide contribution scores of the 
wild-type (middle) and enhanced (top) enhancers and in silico saturation 
mutagenesis assay of wild-type enhancer (bottom). In a, c, the error bars show 
the standard error of the mean (n = 3 biological replicates). S, SOX10; M, MITF; 
T, TFAP2. In b,d, each dot on the saturation mutagenesis plot represents a 
single mutation and its effect on the prediction score (y axis). The position of 
the mutations is shown with dashed lines and circles.
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Extended Data Fig. 10 | Human enhancer design by motif implantation.  
a-b, Bar plots show the mean luciferase signal (log2 fold-change over Renilla) of 
the synthetic sequences, which were generated by motif implantation, tested 
in MM001 (a, MEL melanoma cell line, n = 3 biological replicates) and MM047 
(b, MES melanoma cell line, n = 2 biological replicates). Values of 2 previously 
validated MES regions are displayed for MM047. The error bars in a, show the 
standard error of the mean. c, Nucleotide contribution scores of the selected 
synthetic sequences in their initial form (first row), after adding SOX10, MITF 

and TFAP2 motifs once (second row), after adding SOX10, MITF and TFAP2 
motifs twice (third row), weaker-motif version of the third row after replacing 
implanted motifs with weaker sites (fourth row), cut version of the second row 
where only the part with the binding sites were taken (fifth row, left) and minimal 
version of the second row where MITF and TFAP2 are placed as close as possible 
to SOX10 (fifth row, right). The names of the motifs and their implantation order 
are indicated at the top. The position of the motifs is shown with dashed lines.
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