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Transcriptional enhancers act as docking stations for combinations of transcription
factors and thereby regulate spatiotemporal activation of their target genes'. It has

been along-standing goalin the field to decode the regulatory logic of an enhancer
and to understand the details of how spatiotemporal gene expressionisencodedinan
enhancer sequence. Here we show that deep learning models® ¢, can be used to
efficiently design synthetic, cell-type-specific enhancers, starting from random
sequences, and that this optimization process allows detailed tracing of enhancer
features at single-nucleotide resolution. We evaluate the function of fully synthetic
enhancersto specifically target Kenyon cells or glial cells in the fruit fly brain using
transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers
that target two cell types and minimal enhancers smaller than 50 base pairs that are
fully functional. By examining the state space searches towards local optima, we
characterize enhancer codes through the strength, combination and arrangement of
transcription factor activator and transcription factor repressor motifs. Finally, we
apply the same strategies to successfully design human enhancers, which adhere to
enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by
deep learningleads to better understanding of how enhancers work and shows that
their code can be exploited to manipulate cell states.

Cell-type-specific expression of a target gene is achieved when a
unique combination of transcription factors (TFs) activates a specific
enhancer; whereas this enhancer remains either passively (default-off”®)
oractively repressedin other cell types (for example, through repres-
sor binding’ or corepressor/polycomb recruitment). Typically, when
anenhanceristranslocated to another chromosome or to an episomal
plasmid, it maintains cell-type-specific control of its nearby reporter
gene'™®, Therefore, its regulatory capacity is contained in the enhancer
DNA sequence and has co-evolved to respond uniquely to a specific
trans-environment in a cell type. A thorough understanding of how
enhancer activation is encoded in its DNA sequence is important, as
itisakey component for the modellingand prediction of gene expres-
sion®"’; for the interpretation of non-coding genome variation>">; for
the improvement of gene therapy; and for the reconstruction and
manipulation of dynamic gene regulatory networks underlying devel-
opmental, homeostatic and disease-related cell states.

Many complementary approaches and techniques have been used
to decode enhancerlogic'. These include studies of individual enhanc-
ers by mutational analysis™*™, in vitro TF binding (for example, elec-
trophoresis mobility shift assay), cross-species conservation" and
reporter assays. The upscaling of such studies led to theidentification
of common features of coregulated enhancers'® %, These experimental

findings also triggered the improvement of computational methods
forthe prediction of cis-regulatory modules, whereby feature selection
and parameter optimization led to new insights into how binding sites
cluster and how their strength (or binding energy) impacts enhancer
function®*?* Wider adoption of genome-wide profiling of chromatin
accessibility?, single-cell chromatin accessibility** %, histone modifica-
tions?**°, TF binding® and enhancer activity®*led to significantly larger
training sets of coregulated enhancers that could then be used forapos-
terioridiscoveries of TF motifs and enhancer rules, aided by the growing
resources of high-quality TF motifs****, Further mechanistic insight
has been provided by thermodynamic modelling of enhancers®?,
invivoimaging of enhancer activity?, the analysis of genetic variation
through expression quantitative trait lociand chromatin-accessibility
quantitative trait loci analysis'*® and high-throughput in vitro bind-
ing assays***°. Recently, the enhancer biology field embraced the use
of convolutional neural networks (CNN) and network-explainability
techniques that again provided a substantiall leap forward in terms
of prediction accuracy and syntax formulation? 414,
Anorthogonalstrategy to decode enhancer logicis to engineer syn-
theticenhancers fromscratch. Thisapproach has the advantage that the
designer knows exactly which features areimplanted, so that the mini-
mal requirements for enhancer function can be revealed. Recent work
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showed the promise of CNN-driven enhancer design by successfully
designing yeast promoters* and by using a CNN to select high-scoring
enhancers for S2 cells, from a large pool of random sequences*. Here,
we tackle the next challenge in enhancer design: to design enhancers
thatare cell-type specific. To thisend, we used previously trained deep
learning models for which we have already validated the accuracy of
nucleotide-level interpretation and motif-level predictions'?* (Supple-
mentary Note1). Using these enhancer models as aguide (or ‘oracle’),
we tested three different sequence design approaches*** (Fig. 1).

Insilico evolutions

Asafirststrategy for enhancer design, we created synthetic enhancers
to specifically target Kenyon cells (KC) in the mushroom body of the
fruit fly brain, using a nucleotide-by-nucleotide sequence evolution
approach® (Methods). Thisapproach starts from a 500 base pair (bp)
random sequence that is evolved from scratch (EFS) in silico towards
achosen cell type through several iterations. Prediction scores are
calculated using DeepFlyBrain®, a deep learning model trained on dif-
ferentially accessible regions across several cell types of the Drosophila
brainand that can recognize motif-level nucleotide arrangements for
many cell types (Supplementary Note1). Ateachiteration we performed
saturation mutagenesis>***¢ whereby all nucleotides were mutated
one by one and each sequence variation was scored by DeepFlyBrain
toselectthe mutation with the greatest positive deltascore for the KC
class (among 81 classes representing different cell types that the model
learned to predict). We performed this procedure starting from 6,000
GC-adjusted random sequences and observed that after 15iterations,
DeepFlyBrain KC predictionscoresincreased from around the minimal
score (0) to nearly the maximum score (1), while remaining low for
other cell types (Fig. 2a and Extended Data Fig. 1a,b). We found this
greedy search to provide agood balance between computational cost
and ability to efficiently yield high-scoring sequences, compared to
alternative state space searches (Extended Data Fig. 2a-d and Methods).

Next, weinvestigated the initial (random) sequence and the specific
pathsthat are followed through the search space towards local optima.
Foronly asmallfraction (3%) of random sequences, the prediction score
remained below 0.5 even after 15 mutations (Extended Data Fig. 1c).
These sequences were mostly characterized by more instances of
repressor binding sites together with an increased number of muta-
tions required to generate sufficient activator binding sites. A second
observationisthat, eventhough 500 bp spaceis giventothe model, the

selected mutations accumulated inabout 200 bp space, preferentially
at the centre of the random sequence (Extended Data Fig. 1d,e).

Weinvestigated the consequences of each mutation onshapingthe
enhancer code using DeepExplainer-based contribution scores (Fig. 2b;
Methods). This revealed thatinitial random sequences harbour several
short repressor binding sites by chance and these are preferentially
destroyed during the first iterations (Extended Data Fig. 1f,g). These
repressor sites contribute negatively to the KC class prediction and
represent candidate binding sites for KC-specific repressor TFs such
as Mamo and CAATTA’. The nucleotides with the highest impact rep-
resent mutations that destroy a repressor binding site and simultane-
ously generate a binding site for the key activators Eyeless (Ey), Mef2
or Onecut. Eventually, DeepExplainer highlighted several candidate
activator binding sites, whereby Ey, Mef2 and Onecut sites dominate
(Fig. 2b and Extended Data Fig. 1f,g).

To test whether the in silico evolved enhancers can drive reporter
gene expressioninvivo, we randomly selected 13 sequences after 10 or
15iterations (Fig. 2c and Supplementary Figs.1and 2) and integrated
theminto the fly genome with aminimal promoter and a GFP reporter
gene (Methods). Investigating the GFP expression pattern by confocal
imaging showed that 10 of these 13 tested synthetic enhancers were
activespecificallyinthetargeted cell type, the KC (Fig. 2d and Extended
Data Fig. 1h). Some enhancers did not show activity after ten muta-
tionsbutbecame active after an extra five mutations (Fig. 2d, Extended
DataFig.li,j and Supplementary Fig. 3). The three enhancers without
GFP signal in KC were found to also be Dachshund negative, indicat-
ing the potential loss of KC (Extended Data Fig. 1k). Using assay for
transposase-accessible chromatin by sequencing (ATAC-seq) on the
brains of the transgeniclines, we verified that the synthetic enhancers
become accessible when integrated into the genome (Extended Data
Fig.1l), as predicted by the model.

We also generated transgenic lines to test enhancers at different
steps during the evolutionary design process (Supplementary Figs. 4
and 5). We found that random sequences or sequences with only few
mutations remain inactive, whereas enhancer activity isinitiated when
repressor sites are removed and Ey and Mef2 sites are generated; and
activity furtherincreases with more and stronger instances of activator
motifs (Extended Data Fig.1m,n).

Todemonstrate that enhancers canbe generated for other cell types,
we started from the same random sequences as above and evolved
them into perineurial glia (PNG) enhancers (Extended Data Fig. 2e).
After 15 mutations, putative PNG repressor sites have been destroyed
and activator sites have been generated (Fig. 2e and Supplementary
Fig. 6). We validated six designed sequences by creating transgenic GFP
reporter flies and confirmed that four were positive, as they drive GFP
specifically in PNG cells (Fig. 2f and Extended Data Fig. 2f). Because
the samerandomsequence was evolved into either KC or PNG enhanc-
ers, this experiment underscores that the chosen mutations and the
candidate bindingsites they destroy or generate, causally underlie the
activity of these synthetic enhancers.

Given that KC enhancers can arise from random sequences after 10
or15mutations, we proposed that certain genomic regions may require
even fewer mutations to acquire KC enhancer activity. We scanned the
entire fly genome and identified regions with high prediction scores
but without chromatin accessibility in KC (Extended Data Fig. 2g,h;
Methods). By applying sequence evolution to these sequences, three of
four sequences became positive KC enhancers with only six mutations
(Fig.2g,h, Extended DataFig. 2i,j and Supplementary Fig. 7). When the
negative enhancer was further evolved, with an extra five mutations, it
alsobecame positive (Fig. 2g and Extended Data Fig. 2i,j). This suggests
that KC enhancers, and probably other cell-type enhancers as well, can
arise de novo in the genome with few mutations.

Tosummarize the changes that happened during the design process,
we performed motif discovery across all 6,000 sequences, at each step
ofthe optimization path (Extended Data Fig. 1f,g). This confirmed that
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Fig.2|Insilicosequence evolution towards functional enhancers.

a, Prediction score distribution of the sequences for the y-KC class (n=6,000
sequences) after each mutation. The box plots show the median (centre line),
interquartile range (box limits) and 5th and 95th percentile range (whiskers)
for KC-directed (blue) or random drift (orange) mutations. b, Nucleotide
contributionscores for the y-KC class of aselected random sequenceinits
initial form (top) and after insilico evolution (bottom). ¢, Prediction scores
of13selected sequences at each mutational step. Dashed line indicates the
selectediteration (10th or 15th mutation).d, In vivo enhancer activity of

the cloned KC sequences with positive enhanceractivity. e, Nucleotide
contributionscores for the PNG class of the same selected random sequence
asinb (top) and after PNG-directed mutations (bottom). f, In vivo enhancer

repressor sites are often presentin random sequences and that they are
preferentially destroyed during the first steps of the search algorithm.
To experimentally test that these short repressor sites functionally
cause repression, we selected three positive synthetic enhancers and
three of the near-enhancers rescued from the genome and evolved
these to become non-functional by manually choosing the mutations
that decrease the prediction score by creating repressor binding sites
(Extended Data Fig. 2i and Supplementary Figs. 8 and 9). We avoided
mutating any of the predicted activator sites (Fig. 3a); thus, placed
repressor motifsinbetween activator sites. New transgenic lines with
these sequences integrated into the genome confirm that all tested
enhancers have entirely lost their activity (Fig. 3b). This shows that
enough repressor sites can dominate over a functional combination
of activator sites.

214 | Nature | Vol 626 | 1February 2024

activity of the cloned PNG sequences. Top-middle, initial random sequence;
top-left,random sequence after 10 mutations toward KC evolution; top-right,
random sequence after 15 mutations toward PNG evolution; bottom, three
otherrandom sequences after mutations toward PNG evolution. g, Invivo
enhanceractivity of the cloned genomic sequences with 6 mutations (11 for FP3).
h, Nucleotide contribution scores of aselected genomic sequenceinits initial
form (top) and after six iterations (bottom).Inb,e,h, dashed line shows the
position of the mutations, the mutational order and type of nucleotide
substitutions are writtenin between top and bottom plots and motif annotation
isindicated with strong (s) or weak (w) motifinstances. Ind,f,g, the expected
location of KC isshown with dashed circles. Scale bars, 100 pm.

The sequence evolution strategy thus represents an intuitive and
efficient approach to generate cell-type-specific enhancers and to
characterize their functional constituents.

Multiple cell-type codes

A single enhancer can be active in several different cell types*’, and
our earlier work suggested that this can be achieved by enhancers that
contain several codes for different cell types, intertwined in a single
approximately 500 bp sequence®. On the basis of this finding, we won-
dered whether a genomic enhancer that is active in a single cell type,
could be synthetically augmented to become also active in a second
celltype. To test this, we started with two optic lobe enhancers (amon
and CGI15117) that are accessible and active in T4/T5 and T1 neurons,
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Fig.3|Spatial expansion andrestriction of enhancer activity. a, Nucleotide
contributionscore and delta predictionscore forinsilico saturation mutagenesis
ofthe EFS-4 enhancer after ten mutations (first and second row) and after
addingrepressors (third and fourth row). Dashed line shows the position of the
mutations. Black circles, selected mutations to generate repressor sites. Motif
annotationisindicated with strong (s) or weak (w) motifinstances.b, Invivo
enhancer activity ofenhancers before (top-left) and after adding repressor
sites. ¢, Chromatin accessibility profile near the amon gene. d, In vivo enhancer
activity of theamon enhancer. e, Theamon enhancer prediction scores for each
celltype.f, Prediction scores for the y-KC and T4 classes after each mutational
step. g, Invivoenhanceractivity of the amon enhancer after 13 mutations. The
amonenhancer conserved exactly the same pattern of activity for T4 following

respectively®, and whose activity per cell type is also predicted cor-
rectly by DeepFlyBrain (Fig. 3c-e and Extended Data Fig. 3a-c). We then
performed insilico evolution on these enhancers towards KC, while
simultaneously maintaining a high prediction score for the original cell
type. After 13 and 14 mutations, the enhancers were also predicted as KC
enhancers butretained T4 and T1binding sites. Testing the augmented
sequences in vivo with a GFP reporter confirmed the spatial expansion
of the enhancer activity to KC (Fig. 3f,g, Extended Data Fig. 3c-fand
Supplementary Fig.10; Methods).

Reciprocally, enhancers active in several cell types may be pruned
towards a single cell-type code. We searched for genomic enhancers
that score high for several cell types (Fig. 3h-1). We selected a Pkc53e
enhancer thatisaccessible and active inboth opticlobe T neurons and
KC and predicted correctly by the model. This time, we drove the in
silico evolution to maintain the KC prediction score, while decreasing
the T neurons prediction score (Methods). After nine mutations, the
sequence was predicted to have only KC activity (Fig.3m). Nucleotide
contribution scores show that the mostimportant binding sites for KC
were unaffected after nine mutations, whereas the activator binding
sites were destroyed and new repressor binding sites were created for
T neurons (Extended Data Fig. 3g). Testing the final sequence in vivo
confirmed the spatial restriction of the enhancer activity (Fig. 3n).
Together, our resultsindicate that, guided by the DeepFlyBrain model,

incorporationofthe KC code. h, Number of regions that score high (>0.3) for
several celltypes. i, Comparison between y-KC and T1 prediction score for the
accessibleregionsin fly brain (n=95,931). The selected region with high y-KC
and T1predictionis highlighted with ablue dot. j, Chromatin accessibility
profile of this region (Pkc53e) in several cell types. k, In vivo enhancer activity
ofthe Pkc53e enhancer.l, Pkc53e enhancer prediction scores for each cell
type.m, Predictionscores for the y-KC, T1and T2 classes after each mutational
step. n, Invivo enhancer activity of the multi cell-type enhancer after nine
mutations.Inb,d,g,k,ndashed circles show the expected location of KC. Scale
bars,100 pm. AST, astrocytes; CTX, cortex glia; ENS, ensheathing glia; PNG,
perineurial glia; SUB, subperineurial glia; T1-T5, T1-T5 neurons; o/B,a/B-KC;
o/, o’/B"-KC; y, y-KC.

intertwined enhancer codes can be independently dissected and
altered.

Motifimplantation

As asecond strategy, we used a classical motifimplantation approach
to design KC enhancers. The rationale behind this strategy is based
on our results above: nucleotide-by-nucleotide sequence evolution
showed that all the selected mutations were associated with the crea-
tion or destruction of a TF binding site, rather than affecting contex-
tual sequence between motifinstances (Fig.2b,e,h and Extended Data
Fig.3d,e,g). This suggested that acombination of appropriately posi-
tioned activator motifs, without the presence of repressor motifs, would
be sufficient to create a cell-type-specific enhancer. Furthermore, we
reasoned that by applying this design strategy to thousands of random
sequences we could gain more insight into the KC enhancer logic. To
this end, we iteratively implanted strong TF binding site instances in
2,000 random sequences, selecting locations with the highest predic-
tionscore towards the KC class. We firstimplanted a single binding site
for one of the four key activators of KC enhancers, namely, Ey, Mef2,
Onecutand Sr’, and then specific combinations of sitesin a particular
implantation order (Extended Data Fig. 4a; Methods). This revealed
that Ey and Mef2 had the strongest effect on the prediction score, while
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Onecut and Srincreased the prediction score only marginally (Fig. 4a).
Implanting Ey and Mef2 consecutively increased the score more than
the sum of their individual contribution and their implantation order
did not affect the final score. Adding Onecut and then Sr on top of Ey
and Mef2sitesincreased the scores even further untilitreached thelevel
that we obtained above after 15 mutations through in silico sequence
evolution (Fig. 4a). We could also observe some minor preferences in
the motif flanking sequence (for example, Mef2is flanked by T or Gin
5’and A or Cin3’; Extended Data Fig. 4a)

Wealso found that high-scoring configurations consisted of activa-
tor sites that are positioned close together within a distance usually
smaller than 100 bp (Fig. 4b,c and Extended Data Fig. 4b). When the
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Ey and Mef2 pair were implanted on the same strand, we observed
strong preference for a 5 bp distance (or 4 bp when implanted on
opposite strands) between the two binding sites whereby Mef2 was
located upstream of Ey (Fig. 4b and Extended Data Fig. 4c). For the Ey
and Onecut pair, there was a strong preference for a3 bp space and
Onecut preferred the downstreamside of Ey (Fig. 4cand Extended Data
Fig.4d).

Weinvestigated the nucleotide contribution scores before and after
motif implantations for an example sequence with high prediction
score inwhich motifs were inserted close together (Fig. 4d,e and Sup-
plementary Fig. 11). The initial random sequence contained several
repressor binding sites and the Ey binding site implantation destroyed
the strongest repressor binding site. Mef2 and Onecut implantations
followed the predicted spacing relative to Ey, with a distance of 5 and
3 bp, respectively. This can explain why implantation of motifs at ran-
dom locations yields lower scoring sequences (Fig. 4a). Even though
some repressor binding sites were still present at further distances,
their relative negative contribution was decreased after the activa-
tor binding site implantations (Fig. 4e). Testing this designed 500 bp
sequence in vivo confirmed specific activity in KC (Fig. 4f). Introduc-
tion of mutations to generate repressor sites close to the implanted
motifs (none of the activator sites was modified) resulted in complete
loss of enhancer activity in vivo, suggesting dominance of repressor
motifs (Fig. 4d,e,g). Furthermore, a 49 bp subsequence, containing
justthe three binding sites, resulted in the same activity and specific-
ityinvivo (Fig.4h,iand Supplementary Fig.12). We further confirmed
the robustness of the motif implanting design by validating in vivo a
second 500 bp sequence showing increased spacing between motifs
(Extended Data Fig. 4e,f,g). This result suggests that a functional KC
enhancer can be created through motif-by-motifimplantation with just
these three binding sites and its size can be decreased to the minimal
length required to contain these binding sites.

As athird strategy for enhancer design, we used generative adver-
sarial networks (GAN) that have been shown to be powerful generators
indifferent fields***3, including the generation of functional genomic
sequences*®. This method was less interpretable thaninsilico evolution
or motifimplanting but still allowed the generation of functional and
specific enhancers (Supplementary Note 2).

Human enhancer design

We used our previously trained and validated melanomadeep learning
model, DeepMEL2 (ref.12) (Supplementary Note 1) with the same three
strategies as before, to design human melanocyte or melanocyte-like
melanoma (MEL) enhancers. As for the Drosophila experiments, we
started from GC-adjusted random sequences (Extended Data Fig. 5a)
and, by following the nucleotide-by-nucleotide sequence evolution
approach, we evolved theminto sequences with high prediction scores
for the MEL class. This process drove the generation of activator bind-
ing sites (SOX10, MITF and TFAP2) and the destruction of ZEB motifs
to resemble MEL genomic enhancers; the prediction scores started
to plateau after 15 mutations (Fig. 5a and Extended Data Fig. 5b,c). We
randomly selected ten regions that were evolved from scratch (EFS-
1-10) with15 mutations and tested their activity with a luciferase assay
invitro, in a MEL cell line (MMOO1) (Fig. 5b,c and Methods). Seven of
tentested enhancers showed activity in the range of previously charac-
terized positive control (native) enhancers and none of them showed
activity in a cell line that represents another melanoma cell state
(mesenchymal-like, MM047) in which the MEL-specific TFs (SOX10,
MITF and TFAP2) are not expressed (Fig. 5d and Extended Data Fig. 5d).
When we integrated these syntheticenhancersinto the genome of the
MMOO1 cellline using lentiviral vectors (Methods), they generated an
ATAC-seq peak, whereas neither the random sequences nor the evolved
sequence whenintegrated inanon-MEL cell line are accessible (Fig. 5e
and Extended Data Fig. Se,f).
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Next, we tested the activity of a series of synthetic sequences,
along the design path, fromarandom sequence to anactive enhancer
(Extended DataFig. 6 and Supplementary Figs. 13 and 14). This shows
that the predicted activity by DeepMEL2 correlates with the lucif-
erase reporter activity in vitro (Fig. 5f and Extended Data Fig. 5g),
suggesting that the steps of increased activity are not biased to our

relative to SOX10

relative to first SOX10

predictions for EFS-4 sequencesreplacing /IRF4enhancer:initial score and
score changes postmutations. Ref. pred., reference predictions; Alt. - ref. pred.,
deltaalternative versus reference predictions. k, Enformer predictions per
mutationstep and after repressor addition for MEL EFS sequences. I, Prediction
scores for top 50 DNase tracks for EFS-4 sequences. Four first tracks are foreskin
melanocyte male newborn and SK-MEL-5 tracks. m, ChromBPNet ATAC MMO0O01
(MEL) and MMO047 (MES) prediction scores for EFS sequences, across mutations
and postrepressor addition. n, Prediction score distribution for MEL class
(n=2,000sequences) after motifimplantation. o, Relative TF locations
distribution (n=2,000). p, Luciferase signal (log, FC over Renilla) comparison
of motif-implanted sequences and genomic enhancers. Ina,n, box plots show
themedian (centreline), interquartile range (box limits) and 5thand 95th
percentile range (whiskers). Error barsind,f,p denote meanstandard error
(n=3biologicalreplicates).S, SOX10; M, MITF; T, TFAP2.

DeepMEL2 model but reflect biological activity. Functional in silico
evolved enhancers lost their activity and accessibility, when ZEB sites
were generated in proximity of activator sites (Fig. Se,f and Extended
Data Figs. 5g and 8) and this repressive mechanism depended on the
number and the strength of repressor sites (Extended Data Fig. 8a,b-e
and Supplementary Fig. 15). We confirmed that the same principles of
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repression apply to genomic enhancers, using the MEL enhancerinan
IRF4intron as example and through ChIP-seqweidentified ZEB2 as the
actual repressor TF (Fig. 5g,h and Supplementary Note 3). Mutating
the endogenous ZEB2 site in the IRF4 enhancer causes a significant
increaseinactivity, whereas mutations that generate more ZEB2 sites
(withouttouchingactivator sites) decrease its activity (Fig. 5iand Sup-
plementary Note 3).

These findings could be further corroborated by scoring all
sequences during the optimization process with two other deep
learning models, namely, a newly trained ChromBPNet model*® on
bulk MMO0O1 ATAC-seq data (Methods) and the previously published
Enformer model, for which the SK-MEL-5 ATAC-seq class represents the
MEL state’. The Enformer model has a receptive field of 200 kilobases
(kb) and canbe used to predict both enhancer activity and target gene
expressioninthe context of an entire gene locus. To simulate whether
our synthetic enhancers do function like genomic enhancers in acom-
plexlocus, wereplaced the IRF4 enhancer studied above with synthetic
enhancers, thus performing anin silico CRISPR experiment. Replace-
ment of the /RF4enhancer by arandom sequence resultsin no predicted
accessibility, whereas replacement by different synthetic enhancers
alongtheir design path gradually obtainsincreased prediction scores
for accessibility, H3K27Ac signal and CAGE gene expression (Fig. 5j,k
and Extended Data Fig. 7b). Because Enformer contains more than
600 chromatin accessibility (DNase hypersensitivity) output classes,
across a wide variety of cell types, we used it to assess the specificity
of our designed enhancers and found high prediction scores for only
four classes, eachrepresenting either melanocytes or melanocyte-like
melanoma cell states (Fig. 5land Extended Data Fig. 7a). The ChromBP-
Net model shows continuousincreases of predicted enhancer activity
along the optimization path (Fig. 5m). Again, all three models cor-
rectly predict that synthetic enhancers, after they reach their high-
est activity level, can be switched off entirely by introducing point
mutations that generate ZEB binding sites (Fig. 5j,k,m and Extended
Data Fig. 7a,b). Furthermore, changing the location of the enhancer
relative to the transcriptional start site did not alter its functionality,
suggesting that the enhancers are not dependent onthelocal sequence
contextaround the /RF4 enhancer location to be functional (Extended
Data Fig. 7c). As a final example of in silico evolution, we identified a
human ‘near-enhancer’ and rescued its activity with only four muta-
tions (Extended Data Fig. 9a-d).

We also applied the motif implantation strategy to design human
enhancers. We implanted SOX10, MITF and TFAP2 binding sites to
2,000 random sequences of 500 bp. Whereas implanting only MITF
or TFAP2resulted in asmallincrease in the prediction score, implant-
ing SOX10 alone had the strongest effect (Fig. 5n). Adding MITF and
then TFAP2 on top of SOX10 sites increased the prediction scores to
0.6 on average. The prediction scores continued increasing even fur-
ther after adding another set of SOX10, MITF and TFAP2 binding sites
(Fig.5n). We did not observe a preferential location for the implantation
of MITF or TFAP2 relative to SOX10; however, both binding sites were
located within 100 bp of SOX10 (Fig. 50). The second SOX10 binding
site was placed further away at a 200-250 bp distance relative to the
first SOX10 (Fig. 50). We selected four sequences with either single or
double SOX10, MITF and TFAP2 implanted sites and tested their activ-
ity with luciferase assays. All enhancers showed activity in the range
of native enhancers and adding the binding sites twice consistently
increased the activity of the enhancers (Fig. 5p and Extended Data
Fig.10a,b,c). Replacing the implanted binding sites with their weaker
versions taken from a native enhancer (IRF4) decreased the activity of
the enhancers dramatically (Extended Data Fig. 10a,b,c). To confirm
that the activity of the enhancers was driven by theimplanted binding
sites, we cut the sequences from the most upstream binding site to the
mostdownstream binding site. These subsequences (116-164 bp) were
also active with a slight change in their activity levels (Extended Data
Fig.10a,b,c). Finally, instead of choosing the best location for MITF
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and TFAP2 implantation, we implanted them at the closest location
to the SOX10 binding site that would result in a positive change in the
prediction score. These minimal enhancers (51-64 bp) were as active
as their longer (500 bp) version (Extended Data Fig.10a,b,c).

Finally, we applied the GAN-based sequence generation approach to
the generation of human enhancers and obtained similar performances
as with the Drosophila GAN-generated enhancers (Supplementary
Note 2).

In conclusion, these results show that enhancer design strategies
are adaptable to different biological systems and even other species,
including human.

Discussion

Understanding the code of transcriptional regulation and using this
knowledge to design synthetic enhancers has been a persistent chal-
lenge. We successfully designed synthetic enhancer sequences in
human and fly guided by deep learning models. By combining a step-
wise enhancer design approach alongside modelinterpretation tech-
niques, we followed the trajectories of in silico enhancer emergencein
Drosophilaand human, towards local optima. Nucleotide-by-nucleotide
evolutionrevealed that the selected mutations predominantly destroy
candidate repressor TF binding sites and create candidate activator
sites. Mostly, teniterative mutations were sufficient to convert a ran-
domsequenceinto acell-type-specific functional enhancer. Similarly,
for native yeast promoter sequences, it was recently shown that only
four mutations could dramatically increase or decrease their activi-
ties®. This evolutionary design process may represent an optimized
version of natural evolution of genomic enhancers. We found that
the flyand human genomes contain ‘near-enhancers’ that require few
mutations to become functional.

The location, orientation, strength and number of TF motifsin a
single enhancer and their distance to other motifs are important
features determining an enhancer code that is unique to each cell
type. This array of well-arranged TF binding sites constitutes a dock-
ing platform for a specific combination of TFs. Their cooperative
binding makes the enhancer accessible/active at different levels
and in different cell types. We found certain enhancers to be active
in several cell types. Besides the trivial possibility whereby two cell
types share acommon set of TFs that bind to a common set of sites
(for example, different KC subtypes), we showed that some enhan-
cers have evolved several intertwined codes (for example, KC and
T neurons). We could prove this by either removing a code from a
native dual-code enhancer or adding asecond code to a native single-
code enhancer.

The consequence of this motif-driven enhancer modelis thatit allows
enhancer design by motifimplantation. Several studies have used
motif implantation in an attempt to reconstitute enhancer activity
but successes of accurate in vivo activity have been limited®*2. More
recently, motif embedding has also been used in combination with
deep learning models*®>* with the advantage that many different
motif implanting scenarios can be tested in silico, before perform-
ing experimental validation****?, as compared to high-throughput
testing of random implantations®>**%, By exploiting motif implanta-
tion further, particularly by scoring each possible implant position, as
well as combinations of motifs, we could reveal motif synergies (for
example, Ey + Mef2 or SOX10 + MITF), as well as preferred orientations
and distances between motifs, motif strengths and motif copy num-
ber. A minimal fly brain enhancer designed with three abutting motif
instancesillustrates that functional enhancers canbe created without
further sequence context. Compared to random insertions of motif
instances®**®, deep learning guided implantation has the capacity to
take the entire enhancer sequence into account. Consequently, what
makes an enhancer is not only the optimal combination of motifs used
(including each motif’s strength and copy number) but also the optimal



balance betweenrepressor and activator motifs and the optimal motif
arrangement.

Two of 13 KC enhancers remain negative, whereas one is inconclu-
sive. Nevertheless, this leads to a conservative success rate greater
than 75%. We also envision several routes for further improvementin
enhancer design. First, whereas our examples focused on adult cell
types, we did not consider temporal changes. It thus remains to be
investigated whether developmental enhancers with highly dynamic
and complex output functions can be decoded and designed along
the same principles. Studies of the shavenbaby enhancer in Droso-
phila showed that its output is affected by mutations in most of its
nucleotides”. This may be due to a densely packed motif content,
such as our minimal enhancer or to yet-unknown sequence features. It
may beinteresting to investigate such developmental enhancers with
deep learning models®. Also, we observed slight variations in the GFP
output pattern of (genomic and synthetic) enhancers. Incorporating
such high-resolution variations in the training data may yield models
with improved spatial and quantitative resolution. Lastly, the repres-
sor motifs identified by our models recruit TFs that cause a decrease
in chromatin accessibility. However, this is probably not true for all
transcriptional repressors (for example, binding sites of the REST
repressor overlap with accessible chromatin®®). A future challenge will
betotake repressor motifsinto account that donot decrease chromatin
accessibility. To trainsuch models, more enhancer activity data or gene
expression data will be needed.

The successful application of enhancer design on both fly brain
and human cancer cells has shown that simple, yet powerful strat-
egies guided by deep learning models are adaptable to different
organisms or systems. Our proof-of-concept study is an encourag-
ing step forward towards the development of organism-wide deep
learning models. Such models will facilitate the generation of syn-
thetic enhancers during development, disease and homeostasis; and
will further improve our understanding and control of the genomic
cis-regulatory code.
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Methods

Datareporting

No statistical methods were used to predetermine sample size. The
number of synthetic enhancers that were tested using transgenic flies
was determined to be minimally six per cell type and it was bounded
by the feasibility of the transgenic animal generation experiments. In
total, 68 transgenic fly lines were generated. The number of synthetic
enhancers that were used with luciferase assays was determined to be
minimally ten per different category (insilico evolution, motif embed-
ding, GAN, repressors and mutational steps). Intotal, 97 sequences were
tested using luciferase assay. The initial random sequences (used for
sequence evolution and motif implantation) were sampled from the
sequence space that matches the GC content of the genomic sequences.
Flies fitting the sex (equal amount of male flies and female flies) and
age (less than 10 days) criteria were selected randomly for all experi-
ments. Inthis study, we didn’t perform experiments that needed tobe
allocated into different groups. The investigators were blinded when
performing cloning, transfection, antibody staining and luciferase
experiments by using enhancer IDs.

Statistics and reproducibility

Statistics were calculated using Scipy (v.1.6.0; RRID: SCR_008058)°°.
The results here and throughout the manuscript were visualized
using matplotlib (v.3.1.1; RRID: SCR_008624)°". The deep learning
models wereruninacondaenvironment in which python (v.3.7; RRID:
SCR_008394), tensorflow-gpu (v.1.15; RRID: SCR_016345)%, numpy
(v.1.19.5; RRID: SCR_008633), ipykernel (v.5.1.2; RRID: SCR_024813)
and h5py (v.2.10.0; RRID: SCR_024812) packages were installed. The
same results were obtained from different replication experiments.
Several brains (at least ten) were stained and imaged for the fly experi-
ments. Three biological replicates were performed for the main lucif-
erase experiments. Two biological replicates were performed for the
negative control luciferase experiments. No biological replicates were
performed for ATAC-seq or ChIP-seq experiments.

Insilico saturation mutagenesis

To measure the effect of each possible single mutation onagiven DNA
sequence, we performed insilico saturation mutagenesis, as described
earlier®*®%* Wefirst generated the sequences of all single mutations for
agiven 500 bp sequence (three possible mutations for each nucleotide,
making 1,500 sequences in total). We scored these sequences and the
initial sequence with the deep learning models. For a chosen class,
we calculated the delta prediction score by subtracting the score of
the initial sequence from the score of the mutated sequence for each
mutation.

Random sequence generation

We generated random 500 bp sequences to use as a previous set for the
insilico sequence evolution and motifimplantation by using the numpy.
random.choice([“A”“C”,“G"T”]) command. For each position, instead
of using 25% probability for each nucleotide to be chosen, we used the
frequency of the nucleotides from fly or human genomic regions for
each position. In these genomic regions, the GC content was higher
in the centre of the regions on average relative to the flankings. We
used 6,126 KC regions for fly and 3,885 MEL regions for human that we
identified in our previous publications®”.

Insilico sequence evolution

By using the saturation mutagenesis scores mentioned above, we per-
formed in silico sequence evolution. For the in silico evolution from
random sequences, we calculated saturation mutagenesis scores for a
randomsequence. Then, we selected the mutation that had the highest
positive delta prediction score for the selected class (for y-KC, class no.
35in DeepFlyBrain; for PNG, class no.34 in DeepFlyBrain; for MEL, class

no.16 in DeepMEL2). For the selected sequence with one mutation, we
recalculated the saturation mutagenesis scores for each nucleotide and
againselected the mutation withthe highest deltascore and repeated this
procedure until theinitial random sequence accumulated 20 mutations.

Even though we used a simple objective function to direct the
sequence evolution towards asingle cell type, without explicitly penal-
izing off-target cell types, the generated sequences were mostly active
onlyin the targeted cell type. We believe this is because of the type of
enhancer models we are using, which were trained on cell-type-specific
accessible regions. When more general models are used, for example
trained on entire ATAC-seq tracks, adapted objective functions can
be used and are available in our code. The cell-type-specific activity
of our synthetic enhancers suggests that: (1) activator binding sites
were not created for other cell types; and (2) repressor sites, which are
presentinrandom sequences by chance, were not destroyed for other
celltypes. Forexample, in KC we observed that activator binding sites
are usually longer than repressor sites (18 and 10 bp versus 5and 6 bp
for Ey, Mef2, Mamo and CAATTA, respectively). This implies that a
random sequenceismore likely to have several repressor binding sites
by chance compared to activator sites (Extended Data Fig. 1f). Indeed,
the average prediction scores of our initial 6,000 random sequences
were close to zero for all classes. This may at least in part explain why
earlier enhancer design efforts may have failed.

We used 6,000 initial random sequences for KCand PNG and 4,000
for MEL. For the generation of KC enhancers from genomic regions,
we performed six iterative mutations. For the many cell-type code
enhancers, we started from optic lobe enhancersandineachiteration
we manually selected the mutations that increased the y-KC prediction
score while maintaining the optic lobe prediction scores high. For the
pruning experiment of a multiple cell-type code enhancer into only
KC code, we manually selected the mutations that maintain the y-KC
predictionscore highwhile decreasing the optic lobe predictionscores.
The DeepFlyBrain classnumbers used for optic lobe neurons are 23 for
T1,20 for T2and 2 for T4 neurons.

Torescuethe designed enhancers that were weak or negative, we per-
formed five more mutations on both from-scratch and from-genomic
sequences.

Torepress the sequences with the creation of repressor binding sites,
we selected single or double mutations manually, by going overinsilico
saturation mutagenesis plots calculated on the evolved sequences.

Toexplorethealternativeinsilico sequence evolution paths besides
choosing the best mutation (greedy algorithm), we chose the top 20
mutations on each sequence for everyincremental step starting from
arandom sequence. We followed this procedure for five incremental
mutational steps. Starting from therandom sequence used to generate
enhancer KC EFS-4, we obtained 3.2 million paths/sequences at the end.

Nucleotide contribution scores

We used anetwork explaining tool, called DeepExplainer (SHAP pack-
age®>%%;RRID: SCR_021362), to calculate the contribution of each nucle-
otide tothefinal prediction of the deep learning model for the chosen
class. We used randomly selected 250 genomic regions to initialize
the explainer.

DeepFlyBrain model takes a single strand as an input. For a given
500 bp, we multiplied the explainer’s output by the one-hot encoded
DNA sequence and visualized it as the height of the nucleotide letters.
DeepMEL2 model takes forward and reverse strands separately as an
input. Inthis case, the explainer results in contribution scores for each
strand. We first took the average contribution score for each nucleo-
tide and then multiplied it by the one-hot encoded DNA sequence to
visualize.

Motif annotation
Toidentify TF binding sites during the in silico evolution of designed
sequences, we used TF-Modisco (v.0.5.5.4; RRID: SCR_024811)*” and
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Cluster-Buster(RRID: SCR_024810)°, First, we calculated the nucleo-
tide contribution scores on every mutational step, including random
sequences. Then, weran TF-Modisco on each mutational step separately
toidentify which patterns are appearing/disappearing. The TF-Modisco
parameters we used were num_to_samp=5000, sliding_window_size=15,
flank_size=5, target_seqlet_fdr=0.15, trim_to_window_size=15, initial_
flank_to_add=5, final_flank_to_add=5, final_min_cluster_size=60. After
investigating the TF-Modisco patterns that were identified on each
mutational step, we used mutational step 1 for KC and mutational step
4 for MEL to collect the identified patterns, as they contained all the
activator and repressor patterns. (Earlier steps did not have good rep-
resentation of activators because they are close to random sequences.
Later steps did not have good representation of repressors because they
were destroyed during the mutational steps.) We trimmed the patterns
on the basis of information content (threshold = 0.1) and saved them
asa.cbfile tobe used by the Cluster-Buster.

By using the TF-Modisco patterns, we ran Cluster-Buster (with -c
0and-m 3 options) to identify motifs on each mutational step, includ-
ing random sequences. We selected only the motif instances from
Cluster-Buster results and merged (by using BEDTools v.2.30.0; RRID:
SCR_006646; ref. 69) the overlapping hits of the motifs into a single
hit. We calculated mean + s.d. on the hit scores coming from random
sequences for each motif separately and used these thresholds to get
the significant hits.

Identification of TF binding sites similar to TF-Modisco patterns was
performed using Tomtom (RRID: SCR_024809)° using the cisTarget
motif collection (RRID: SCR_024808).

Scoring the fly genome

To identify the regions that have high prediction scores for y-KC
but have less accessibility in y-KC, we scored the whole fly genome.
We used the bedtools makewindows -g dmé.chromsize -w 500 -s 50
command® to create the coordinates of the binned fly genome witha
500 bp window and 50 bp stride. We removed the regions that are not
exactly 500 bp. Thisresulted in 2,750,893 regions to be scored with the
DeepFlyBrainmodel. We used the stats function of deeptools/pyBigWig
package (RRID: SCR_024807)"* to calculate mean y-KC accessibility
values for each bin.

Motifimplanting

Toimplant binding sitesinto 500 bp sequences, we started fromaran-
domsequence. Weimplanted abindingsite into every possible location
on the random sequence one-by-one by replacing the nucleotides on
the random sequences with the binding site. Then, we scored these
sequences with the model. We selected the binding site position that
gives the highest prediction score and implanted the motif on that
position. Then, starting from this sequence with one binding site
implanted, we implanted the next binding sites one-by-one by using
thesame procedure. The sequence of binding sites that maximize the
TF-Modisco pattern score were selected toimplant and they are as fol-
lows: Ey, TGCTCACTCAAGCGTAA; Mef2, CTATTTATAG; Onecut, ATCGAT;
Sr, CCACCC; SOX10, AACAATGGGCCCATTGTT; MITF, GTCACGTGAC;
and TFAP2, GCCTGAGGC. We used 2,000 initial random sequences for
KC and 2,000 for MEL. The weaker binding sites taken from the /RF4
enhancer are as follows: SOX10_1, GTGAATGACAGCTTTGTT; SOX10_2,
TACAAGTATCTCCATTGT; MITF_1, ATCATGTGAA; MITF_2, GCCATAT
GAC; TFAP2_1, TCTTCAGGC; and TFAP2_2, CCCTGTGGT.

When TF motifs are implanted at random positions in a random
sequence, prediction scores are very low, probably because repres-
sor sites remain present. Likewise, to be able to generate a functional
enhancer through random sequence generation, many sequences need
to be generated (thatis, 100 million and 1 billion; refs. 38,73).

To measure if there is a preference for a flanking sequence when
performing motifimplanting, we aggregated all the sequences aligned
by thelocation of theimplanted motif. Then, we calculated the position

probability matrix and visualized it by subtracting 0.25 from each
position.

To measure the effect of different background sequences on the
minimal KC enhancer, we generated 1 million random sequences with
the size of 20 bp. Then, we replaced the 20 bp spanning the position
where Ey, Mef2 and Onecut binding sitesimplanted that occupied the
6 bp flankings on both sides and 8 bp intermotif space. Then, we scored
the sequences with the model and measured the effect of different
backgrounds around the motifimplantation area.

Generative adversarial network

To train a GAN model, we used Wasserstein GAN architecture with
gradient penalty™ similar to earlier work*’. The model consists of two
parts: generator and discriminator. Generator takes noise as input
(size is 128), followed by a dense layer with 64,000 (500 x 128) units
with ELU activation, a reshape layer (500, 128), a convolution tower
of five convolution blocks with skip connections, a one-dimensional
(1D) convolution layer with four filters with kernel width 1 and finally
aSOFTMAX activation layer. The output of the generator isa 500 x 4
matrix, which represents one-hot encoded DNA sequence. Discrimina-
tor takes 500 bp one-hotencoded DNA sequence as input (real or fake),
followed by a 1D convolution layer with 128 filters with kernel width 1,
aconvolution tower of five convolution blocks with skip connections,
aflattenlayer and finally a dense layer with one unit.

Each block in the convolution tower consists of a RELU activation
layer followed by 1D convolution with 128 filters with kernel width 5.
Thenoiseis generated by the numpy.random.normal(0, 1, (batch_size,
128)) command. We used a batch size of 128. For every train_on_batch
iteration of the generator, we performed ten train_on_batchiterations
for the discriminator. We used Adam optimizer with learning_rate of
0.0001, beta_1of0.5and beta_20f 0.9. We trained the models for around
260,000 batch training iteration for KC and around 160,000 batch
training iteration for MEL.

Weused 6,126 KCregions for the fly model and 3,885 MEL regions for
the human model, which we identified in our previous publications,
as real genomic sequences to train the models. After the training, we
sampled 6,144 (48 x batch size) sequences for KC and 3,968 (31 x batch
size) sequences for MEL by using the generator for every 10,000 batch
training iteration. The sampled synthetic sequences were generated
by calculating predictions on noise and then the numpy.argmax()
command was used to convert the predictions into one-hot encoded
representations.

Background model

To compare against the GAN-generated sequences, we generated ran-
dom sequences in different orders by using the CreateBackground-
Model function from the INCLUSive package (RRID: SCR_013488)"
based on the same genomic regions that we used to train GANs.

Training ChromBPNet models

For training ChromBPNet models we used a prereleased version (v.
1.3-pre-release; RRID: SCR_024806) from the ChromBPNet GitHub
repository (https://github.com/kundajelab/chrombpnet/tree/
v1.3-pre-release). We followed all the preprocessing and training steps
asdescribed inthe tutorial: fromthe aligned ATAC reads in the MMO0O01
BAM(file, we made a BigWig of Tn5insertionsites, trained a bias model
that predict Tn5 binding sites in non-peak regions which is then used
in the ChromBPNet model to filter out Tn5 bias. ChromBPNet uses
2,114 bp DNA sequence as input and predicts both the ATAC track and
the natural log count of the aligned reads for the central 1,000 bp. To
be able to score 500 bp DNA sequences (IRF4 enhancer and synthetic
enhancers), we used the flanking sequences of the cloned/integrated
enhancer sequences surrounded by theintegrated cassette. Both scalar
andtrack prediction were plotted. Flanking sequences are providedin
the Supplementary Code.
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Using the Enformer model

We used the Enformer model (RRID: SCR_024805) to do in silico
CRISPR experiments. We took the IRF4 locus (chr. 6: 339010:453698)
centred by the /RF4 enhancer (chr. 6: 396104:396604). We replaced
the endogenous /RF4 enhancer with the random/ evolved/ repressed
designed sequences and calculated the prediction scores for the
related cell types. The prediction scores were plotted as showing
the whole locus. For DNase and ChIP-Histone:H3K27ac tracks, the
mean values were calculated using the middle three bins or one bin
spanning the enhancer location. For CAGE tracks, the mean values
are calculated using one bin spanning the transcriptional start site
of IRF4. The index of the tracks that we used to get the prediction
scores are as follows—4,832: CAGE/melanoma cell line:G-361, 162:
DNase/SK-MEL-5, 2,162: ChIP-Histone:H3K27ac/foreskin melanocyte
male newborn.

To measure the locational effect of the designed enhancers on
gene expression, chromatin accessibility and histone modification,
we moved the synthetic enhancer around the /RF4locus; (1) to 10 kb
upstream, (2) 5 kb upstream (whichis next to the promoter of the /RF4
gene) and (3) 17.5 kb downstream of the original location.

Cloning of synthetic Drosophila enhancers

Synthetic sequences were ordered from Twist Bioscience, precloned
inthe pTwist ENTR vector. The motif-implantation and double-coded
sequences were synthesized with an extra 5 CACC sequence as
double-stranded DNA (gBlocks Gene Fragments) by IDT. The 49 bp
motif-implantation sequence was ordered from IDT as forward and
reverse single-stranded DNA oligos, which were then annealed for
5 min at 95 °C and cooling down to RT over 1 h. The double-stranded
DNA sequences were then cloned into the pENTR/D-TOPO plasmid
(Invitrogen).

All sequences were introduced in a modified pH-Stinger vector’,
containing nuclear GFP, Hsp70 promoter, gypsy insulators and attB site
for phiC31integration, through Gateway LR recombination reaction
(Invitrogen). Atotal of 2 pl of the reaction was transformed into 25 pl of
Stellar chemically competent bacteria (Takara). Plasmid minipreps were
performed using the NucleoSpin Plasmid Transfection-grade Mini kit
(Macherey-Nagel) and sequenced with Sanger sequencing to confirm
the correct insertion of the regions in the destination plasmid. After
confirmation of the sequence, plasmid midipreps were performed
using the NucleoBond Xtra endotoxin-free Midi kit (Macherey-Nagel).
Next, the plasmids were sent to FlyORF (Switzerland) for injectionin
Drosophila embryos (21F site on chromosome 2I) and positive trans-
formants were selected on the basis of eye colour.

Drosophilaflies were raised on ayeast-based mediumat 25 °C under
al2h/12 hday/night light cycle.

Immunohistochemistry analysis of Drosophilabrains

Brains of adult flies (Drosophila melanogaster, less than 10 days old,
equally mixed sex) were dissected in PBS and transferred to a tube for
fixation in 4% formaldehyde in PBS for 20 min. All incubations were
done at room temperature, unless otherwise indicated. Brains were
washed in PBS with 0.3% Triton-X (PBST) three times for 10 min each,
then they were placed in blocking solution (5% normal goat serum
(Abcam) in PBST) for 3 h. We incubated the brains overnight at4 °Cin
primary antibodies diluted in blocking solution (rabbit anti-GFP, IgG
(Invitrogen), 1:1,000 and mouse anti-Dachshund, mAB dacl-1(DSHB),
1:250). The brains were then washed in PBST three times for 10 min
each and incubated with the fluorochrome-conjugated secondary
antibodies diluted inblocking solution for 2 h (Alexa Fluor 488 donkey
anti-rabbitIgG (Invitrogen), 1:500 and Alexa Fluor 647 goat anti-mouse
IgG (Invitrogen), 1:500). Next, brains were washed in PBS three times
for10 min each. Finally, samples were mounted onto microscopeslides
with Prolong Glass Antifade Mountant (Invitrogen).

For image acquisition, a Zeiss LSM900 microscope equipped with
Airyscan2in combination with a x20 objective (Plan Apo 0,80 Air) was
used. The setup was controlled by ZEN blue (v.3.4.91, Carl Zeiss Micros-
copy GmbH). GFP was excited witha blue diode 100 mW at 488 nmand
tiled images were collected with emission filter BP450-490/BS495/
BP500-550.

Cloning of synthetic human enhancers

The 500 bp synthetic sequences were ordered from Twist Bioscience,
precloned in the pTwist ENTR vector. The 500 bp regions were intro-
ducedinthe pGL4.23-GW luciferase reporter vector (Promega) through
Gateway LR recombinationreaction (Invitrogen) and 2 pl of the reaction
was transformed into 25 pl of Stellar chemically competent bacteria
(Takara).

Synthetic sequences shorter than 150 bp were ordered as gBlocks
from IDT (Integrated DNA Technologies) with 5’ (cccgtcgacgaattctgca
gatatcacaagtttgtacaaaaaagcaggct) and 3’ (acccagctttcttgtacaaagtg
gtgataaacccgctgatcag) adaptors. The pGL4.23-GW luciferase reporter
vector was linearized through inverse PCR with primers Lin_pSA335_
short_ME_For (gtggtgataaacccgctgatcag) and Lin_pSA335_short_ ME_
Rev (tctgcagaattcgtcgacggg). The short sequences and the linearized
vector were combined inan NEBuilder reaction (New England Biolabs)
and 2 pl of thereaction was transformed into 25 pl of Stellar chemically
competent bacteria.

For all cloning procedures, plasmid minipreps were performed using
the NucleoSpin Plasmid Transfection-grade Minikit (Macherey-Nagel)
and sequenced with Sanger sequencingto confirmthe correctinsertion
of the regions in the destination plasmid.

To generate stable cell lines with synthetic enhancers, the syn-
thetic sequences were cloned into the pSA351_SCP1_intron_eGFP
vector (Addgene no. 206906). The vector was linearized through
inverse PCR with primers Lin_pSA351_For (ctgagctccctagggtact) and
Lin_pSA351_Rev (cgactcgaggctagtctc). The synthetic sequences were
PCR-amplified from their respective pGL.23-GW vector with their
respective primer pairs: MM_EFS_1_For (gagactagcctcgagtcgctgatt
gtttgaaccattgttacgatttgg) and MM_EFS_1_Rev (agtaccctagggagctcag
caattttgttttttgcgegtgac) for MM-EFS-1 sequences; MM_EFS_4 For
(gagactagcctcgagtcgtgatatgtattcacccatgecctca) and MM_EFS_4_Rev
(agtaccctagggagctcaagggtttgtatatgtatgetcctttatacga) for MM-EFS-4
sequences; MM_EFS_8_For (gagactagcctcgagtcgatacgcacgacaaagect
cat)and MM _EFS_8_Rev (agtaccctagggagctcacactgtacaaggcatccege) for
MM-EFS-8sequences; IRF_4_For (gagactagcctcgagtcggetgecattggtgtg
gattttaag) and IRF_4_Rev (agtaccctagggagctcaactggcatcgagacggg) for
IRF4 sequences. The PCR amplicons and the linearized vector were com-
binedinan NEBuilder reaction and 2 pl of the reaction was transformed
into 25 pl of Stellar chemically competent bacteria. Plasmid minipreps
were performed using the NucleoSpin Plasmid Transfection-grade
Mini kit (Macherey-Nagel) and sequenced with Sanger sequencing to
confirmthe correctinsertion of the regionsin the vector. After confir-
mation of the sequence, plasmid maxipreps were performed using the
NucleoBond Xtra endotoxin-free Maxi kit (Macherey-Nagel).

Transfection and luciferase assay

MMOO01and MMO047 were seeded in 24-well plates and transfected with
400 ng of pGL4.23-enhancer vector + 40 ng of pRL-TK Renilla vector
(Promega) with Lipofectamine 2000 (Thermo Fisher Scientific). As
positive controls, the previously published enhancers MLANA_5-1,
IRF4_4-1and TYR —9-D or ABCC3_11-1 and GPR39_23-1 were used for
MMO0O01 and MMO047, respectively”. One day after transfection, lucif-
erase activity was measured through the Dual-Luciferase Reporter
Assay System (Promega) by following the manufacturer’s protocol.
Briefly, cells were lysed with 100 pl of passive lysis buffer for 15 min
at500 rpm. Atotal 20 pl of the lysate was transferred in duplicateina
well of an OptiPlate-96 HB (PerkinElmer) and 100 pl of luciferase assay
reagentllwas addedineach well. Luciferase-generated luminescence
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was measured ona Victor X luminometer (PerkinElmer). A total of 100 pl
ofthe Stop & Glo Reagent was added to each well and the luminescence
was measured again to record Renilla activity. Luciferase activity was
estimated by calculating the ratio luciferase/Renilla; this value was
normalized by the ratio calculated on blank wells containing only rea-
gents. Threebiological replicates were done per condition for MM0O1
and two biological replicates for MMO047.

Production of lentivirus

The lentivirus plasmids were transfected in HEK 293 T cells by use of
the Lipofectamine 3000 reagent (Thermo Fisher Scientific). A total
of 30 pg of pooled plasmid DNA was combined with 20 pg of a Pax2
plasmid (Addgene no. 12260; RRID: Addgene_12260) and 10 pg of
the MD2.G plasmid (Addgene no. 12259; RRID: Addgene_12259). At
48 h posttransfection, medium was collected and refreshed. At 72 h
posttransfection, mediumwas collected asecond time. Both medium
collections were combined and spun down for 5 min at 1,500 rpm.
Supernatants was carefully collected with ablunt needle and asyringe
and filtered through a 45 pum syringe disc filter (Millex-HV Millipore)
intoan Ultra-15MWCO0100 centrifugal filter (Amicon). The concentra-
tor tube containing the supernatants was spun down at 4,000 rpm for
approximately 45 min until the desired volume of 250 plwas reached.
The virus suspension was aliquoted and stored at —80 °C.

Transduction of melanomacells

The MMOOI cells were seeded into a six-well plate at a density of
250,000 cells per well. Transduction was performed by adding 5-40 pl
of lentivirus and Polybrene at 8 ug ml™. Cells were incubated for 24 h
before washing away the Polybrene with PBS and with growth medium.
After 3 days the cells were split and expanded further.

OmniATAC-seq

Omni-assay for transposase-accessible chromatin using sequencing
(OmniATAC-seq) was performed as described previously’®. Briefly,
50,000 MMOO1 cells transduced with the enhancer pools were resus-
pended in 50 pl of cold ATAC-seq resuspension buffer (RSB; 10 mM
TrisHCI pH 7.4,10 mM NaCl and 3 mM MgCl, in water) containing
0.1% NP40, 0.1% Tween-20 and 0.01% digitonin by pipetting up and
down three times. This cell lysis reaction was incubated on ice for
3 min. After lysis, 1 ml of ATAC-seq RSB containing 0.1% Tween-20
was added and the tubes were inverted to mix. Nuclei were then
centrifuged for 10 min at 500g in a prechilled (4 °C) fixed-angle
centrifuge. Supernatant was removed and nuclei were resuspended
in 50 pl of transposition mix (25 pl of 2x TD buffer, 2.5 pl of trans-
posase (Nextera Tn5 transposase, lllumina), 16.5 pl of PBS, 0.5 pl of
1% digitonin, 0.5 pl of 10% Tween-20 and 5 pl of water) by pipetting up
and down six times. Transposition reactions were incubated at 37 °C
for 30 mininathermoblock. Reactions were cleaned-up by MinElute
(Qiagen). Transposed DNA was amplified (ten cycles) with primers
i5_Indexing_For (aatgatacggcgaccaccgagatctacacnnnnnnnntcgtcg
gcagcgtcagatgtg) and i7_Indexing_Rev (caagcagaagacggcatacgagat
nnnnnngtctcgtgggctcggagatgt). All libraries were sequenced on a
NextSeq2000 instrument (Illumina).

Reads were demultiplexed using bcl2fastq (v.2.20; RRID: SCR_
015058; https://emea.support.illumina.com/sequencing/sequencing_
software/bcl2fastq-conversion-software.html). Adaptorswere trimmed
by trimgalore (v.0.6.7; RRID: SCR_011847; https://github.com/Felix-
Krueger/TrimGalore). Reads were mapped to acustom hg38 genome,
which contains integrated sequences as extra chromosomes, using
bwa-memz2 (v.2.2.1; RRID: SCR_022192)”. By using SAMtools (v.1.16.1;
RRID: SCR_002105)%°, reads were sorted and deduplicated and reads
from the blacklisted regions (https://www.encodeproject.org/files/
ENCFF356LFX/) were cleaned. Bigwig files with RPGC normaliza-
tion were generated by using deepTools (v.3.5.0; RRID: SCR_016366)
bamCoverage”.

ChIP-seq

ChIP-seqwas performed by following the Myers Lab ChIP-seq Proto-
col v.011014 on 2 x 10’ MMOOL1 cells. A total of 5 pg of rabbit anti-ZEB2
(1mg ml™; Bethyl A302-473A; RRID: AB_3076293) was used for ChIP. A
total of 15 ng ofimmunoprecipitated DNA was used to performlibrary
preparation according to the lllumina TruSeq DNA Sample prepara-
tion guide. Briefly, the immunoprecipitated DNA was end-repaired,
A-tailed and ligated to diluted sequencing adaptors (1/100). After PCR
amplification withi5_Indexing_Forandi7_Indexing_rev (18 cycles) and
bead purification (Agencourt AmpureXP, Analis), the libraries with
fragment size of 300-500 bp were sequenced using the NextSeq2000
instrument (Illumina).

Reads were demultiplexed using bcl2fastq (v.2.20; RRID:
SCR_015058). Adaptors were trimmed by trimgalore (v.0.6.7; RRID:
SCR_011847). Reads were mapped to hg38 using bwa-mem2 (v.2.2.1;
RRID: SCR_022192)”°. By using SAMtools (v.1.16.1; RRID: SCR_002105)%,
reads were sorted and deduplicated and reads from the blacklisted
regions (https://www.encodeproject.org/files/ENCFF356LFX/)
were cleaned. Bigwig files with RPGC normalization were gener-
ated by using deepTools (v.3.5.0; RRID: SCR_016366) bamCover-
age”. Peaks were called using MACS2 (v.2.1.2.1; RRID: SCR_013291)
callpeak®.

Celllines

MMO001, MM047 and MM099 were obtained from G. Ghanem and
were cultured in Ham’s F-10 Nutrient Mix (Invitrogen) +10% FBS (Inv-
itrogen). We authenticated the cell lines by checking their genomic,
transcriptomic and epigenomic profiles®%, HEK293T used for
lentivirus production was obtained from ATCC (catalogue no. CRL-
3216; RRID: CVCL_0063) and were cultured in DMEM (Invitrogen) + 10%
FBS (Invitrogen). Cell lines were tested for mycoplasma contamination
before experiments and were found to be negative.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Cloned Drosophila and human sequences were provided as Supple-
mentary Tables. DeepMEL, DeepMEL2 and DeepFlyBrain deep learn-
ing model files were obtained from Kipoi®* (http://kipoi.org/models/
DeepMEL; https://kipoi.org/models/DeepFlyBrain) with Zenodo
record ids 3592129, 4590308 and 5153337. The fasta files used to train
GAN models and the trained GAN models are available on Zenodo at
https://doi.org/10.5281/zenodo0.6701504. Custom genomes (hg38
and dmé) generated in this study are available on Zenodo at https://
doi.org/10.5281/zenod0.10184648. Chromatin accessibility valuesin
KCinadult Drosophilabrains were obtained from GSE163697 (ref. 39).
Invitro saturation mutagenesis on /RF4 datawere obtained from https://
kircherlab.bihealth.org/satMutMPRA/%. Chromatin accessibility of
Drosophila and transduced melanoma lines and ZEB2 ChIP-seq data
generated for this study have been submitted to the NCBI Gene Expres-
sion Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE240003.

Code availability

Code used to load deep learning models, create random sequences,
perform sequence evolution, perform motif implantation and train
GAN modelstogether with the IPython Notebooks that reproduces all
the figures were provided as Supplementary Code. The datatorunthe
scripts, the models and the intermediate files can be found together
with the code at https://doi.org/10.5281/zenodo.10184648.
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Extended DataFig.1|Insilicosequence evolution fromrandomsequences.
a, Distribution of GC contentin GC-adjusted random sequences (green) and fly
genomicregions (red). b, Prediction score distribution of the sequences
(n=6,000sequences) for all classes after 10 mutations. The KC-specific classes
and their class number areindicated. Inb,c, the box plots show the median
(centreline), interquartile range (box limits) and 5th and 95th percentile range
(whiskers). ¢, Predictionscore distribution of the sequences that do not reach
0.5predictionscore threshold after 15 mutations for the y-KC class (n =180
sequences) after each mutation. d, Distribution of distances (n=6,000)
between farthest mutations on each sequence after 10 iterative mutations.
The orangeline shows the median. e, Location of the generated mutations
acrosstherandomsequences (n=6,000 sequences). f, Average number of
motif hits at each mutational step compared to genomic enhancers. g, Delta
number of motifs in each mutational step. The TF-Modisco patterns and the
most similar position weight matrices fromthe cisTarget motif database are
shown atthe top of each plot. The patterns that are upside-down are the ones
contributing negatively to the model’s prediction and they are destroyed by

the model oneachstep. h, Top: Dachshund staining (red) highlights KClocation
inthe fly brain. Bottom: colocation of the Dachshund (red) and GFP (green)
staining from enhancer EFS-13.1i, In vivo enhancer activity of the cloned
sequences with no or weak enhanceractivity. j, Prediction scores, at each
mutational step, of 4 sequences with no enhancer activity after 10 mutations.
Theselected iterations (10" and 15" mutations) are indicated with adashed
line. k, Dachshund (red) and GFP (green) staining for three negative enhancers.
1, Drosophila adult brain bulk-ATAC-seq profile of 6 transgenic flies that have
thedesigned enhancersintegrated. The chromatin accessibility profile of the
integrated enhancers (left) and two control regions gish enhancer (middle) and
Applenhancer (right) are shown. m, Prediction scores, at each mutational step,
of 3EFSsequences. The selected iterations to study intermediate mutational
steps (0, 2,4, 6,8,10 mutations) are indicated with adashed line.n, Invivo
enhancer activity of fly lines with subsequent mutational steps. After 8
mutations of arandom sequence, theenhancerbecomesactiveinall threelines
(EFS-3,4 and 7) marked by GFP expression. In panels h,i k,n, the expected
location of y-KC is shown with dashed circles. Scale bars, 100 pm.



Article

a Prediction score dist. b Prediction score dist. ¢ d EFS-4: 150G, 221C, 253T, 234A, 231G
T - 0.0004
200000 —— EFS-4 prediction (Step-5) | 700 —— EFS-4 prediction (Step-5) 1.0 o6d02 Repressor Mamo (s) AAGA (s)
A
0.0000 BN S S Csu,rﬁ A |
175000 600 e /1 S T e a1 o Y RO Y 1T Y <
08 00002 ‘WY‘)W W ! Yﬁ: M( f \ ‘Wm K
150000 500 ® -0.0004 \
o
o

125000 00 g 0.6 0.008 |
100000 ke o| 0004 M\] M

300 g 04 0.000 wrkicche A an G101 S0 L i e Y,:”K: Gt ,ATA. ;- Mm,mf T i
75000 | | 0004 ] Ey (

200 o ;
50000 ]

0.2
25000 oo .
L ]
0 0 0.0 —o-0-%
00 01 02 03 04 05 030 035 040 045 050 0123456 ~

Prediction score Prediction score

® EFs4

Number of mutations

.1530 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

Top scoring: 254T, 250A, 221C, 230C, 242C

Top scoring after 5 iteration 0.0004 Repressor Mamo (s) AAGA (s)
0.0002
e - s f . ol
PNG Directed PNG Directed 0.0000 L V}m i M Lﬂl,, v e V.AM,YVK At
10 costéoocyt 1.0 ® PNG-1 PNG-3 010002 ( l l\ L> ( ( {
—~ s o PNQ:2 -0.0004 \
) o "o o8 5 ® PNG-3 . \
Zos o gt gos ® PNG-4 0.0150
e . . Y ® PNG5
2 s 4 A 5 o PNG-6 0.0100
g os ¢ g06 00050 fold f
7 5 i,
§ LI S 0.0000 by gy - G Ml cr ittt o ol ud A e AT et
B o4 ? g Loas (
3 ¢/ 4 3 -0.0050 E 4
o LA g § & 0.2
o .
02 0.2 00
.
02
00| 63o88° 00
02 4 6 8 1012 14 16 18 20 02 4 6 8 1012 14 16 18 20 —
Number of mutations Number of mutations Neg 130
g h i
chr3L:8670850-8671350 10 o-o0-g g-° oo
14 2 I A e ®
FP1 i P
0 . SRR Y — o $ .
~ 12 0.8 |
o chrX:15547650-15548150
<} ® o/ [ ]
= 10 20 H 5
> FP2 i u 8
2 i ? o064 ®
§08 okt _ 4B . u ST mss gk s H
8 chrX:4010500-4011000 g .
8 o6 20 ] 204
< FP3 1 ¥ o 2
2 ., o= — " s -
o FPI chrX:9786300-9786800 0pl ® FPlrepress
02 FP2 20 i FP2-repress °
L4 o o FP3 | FP4 ‘L i E ® FP3-rescue
00 < o FP4 ot ) Sp— Y e TR— ® FP4-repress
-15000 -10000 -5000 0 5000 10000 15000 0.0 T T

0.4 05 0.6 0.7 08 09

Prediction score

0 2 4 6 8 10 12 14
Number of mutations

Extended DataFig.2|State space optimization, design of perineurial glia
enhancers and modification of genomic sequences toward KCenhancers.
a, Prediction score distribution for 3 million sequences generated by selecting
thetop 20 best mutations for 5incremental mutational steps. Blue line, score
of EFS-4 from the greedy algorithm. b, Zoomed-in version of panel ato the
sequences that have higher prediction score than 0.25. ¢, Prediction score
ofevolved sequences by greedy algorithm (EFS-4) vs the best of 3 million
sequences on each mutational step.d, Nucleotide contributionscore of the
original and evolved sequences as well as delta prediction score of in silico
saturation mutagenesis for EFS-4 (top) and the top scoring sequence (bottom)
e, Predictionscores of 6 selected PNG sequences at each mutational step for
PNG model (left) and KC model (right). The selected iteration (15" mutation)
isindicated with adashed line.f, Invivo enhanceractivity of the cloned PNG

sequences withnoenhanceractivity. g, Comparison between y-KC prediction
score and mean y-KC accessibility for the binned fly genome regions. The
selected regions with high prediction and low accessibility are highlighted with
blue, orange, green andred dots. h, y-KC ATAC-seq profile of the four selected
regions. The exactlocation of theregionsisindicated with dashed lines.

i, Predictionscores of 4 selected KC near-enhancer sequences at each mutational
step for KCmodel. The selected iteration (6" mutation) isindicated witha
dashed line. After the 6th mutation, 4 more mutations are performedin FP3
toimprove predictionscore while 7 or 8 mutations are performedin the three
other sequencesto generaterepressor sites. j, Invivo enhancer activity of the
cloned WT genomic “near-enhancer” sequences withno enhancer activity.

The expectedlocation of KCis shown with dashed circles. Scale bars, 100 pm.
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Extended DataFig. 3 |Enhancer design toward multiple celltype codes.

a, Chromatinaccessibility profile near CG15117 gene.b, Invivo enhancer activity
ofthewild-type (WT) CG15117 enhancer. ¢, CG15117 enhancer prediction scores
foreachcelltype (top) and prediction scores for the y-KC and T1classes after
each mutationalstep.d, Nucleotide contributionscores of WT CG15117 enhancer
sequence and after 14 mutations for T1 (top) and y-KC (bottom). e, Nucleotide
contributionscores of WT amon enhancer sequence and after 13 mutations

for T4 (top) and y-KC (bottom). f, In vivo enhancer activity of the WT CG15117

enhancer and after 14 mutations. The CG15117 enhancer showed a slightly
altered T1patternfollowingincorporation of the KC code. g, Nucleotide
contributionscores of WT Pkc53e enhancer sequence and after 9 mutations for
T2 (top), T1(middle) and y-KC (bottom).Inb, e, the expected location of KCis
shownwith dashed circles. Scale bars,100 pm. Ind,f,g, the position of the
mutationsis shownwith dashed lines, the mutational orderis writteninbetween
top and bottom plots and motifannotationisindicated with strong (s) or weak
(w) motifinstances.
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sites.ZEB2 motif annotation is indicated with strong (s) or weak (w) motif
instances. Theerrorbarsinc-e,show thestandard error ofthemean(n=3
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a,Prediction scores for each mutational step and after the addition of repressor
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signal (log, FC over Renilla) versus prediction score for the MEL class of the
wild-type and enhanced enhancers. d, Nucleotide contribution scores of the
wild-type (middle) and enhanced (top) enhancersand insilico saturation
mutagenesis assay of wild-type enhancer (bottom).In a, ¢, the error bars show
the standard error of the mean (n =3 biological replicates). S, SOX10; M, MITF;
T, TFAP2.Inb,d, each dot on the saturation mutagenesis plot represents a
single mutation and its effect on the prediction score (y axis). The position of
the mutationsis shown with dashed lines and circles.



Article

@ sOX10, MITF, TFAP2 SOX10, MITF, TFAP2 SOX10, MITF, TFAP2 SOX10, MITF, TFAP2 SOX10, MITF, TFAP2 b SOX10, MITF, TFAP2 SOX10, MITF, TFAP2 SOX10, MITF, TFAP2 SOX10, MITF, TFAP2  SOX10, MITF, TFAP2
. addedonce weaker instances added once (cut) added once (shortened) added once added twice weaker instances  added once (cu)  added once (shortened)
: oors i i
2 [ Motif Implanting ~~ *
g° i l l ¥ & | = Genomic
24 i O | i Joso N N
= f >
H | l I H
i ) i g I 1 Bozs A - A
8 i i i 3 . - .
g 1 8 P . .
RIS 1 Booo| = = . B w1 01 . -+ B R,
El bk & E] ° - N . "
30 1 1 3 -
MAMIZMI3MI4 M Mi2ME3MI4 M MIZMESMI4 M MI2MESMI4  Mi-1 MI-2 Mi-3 Mi-4 MAM2ZMIBM4 § 3 M ME2MI3Mi4 M4 ME2MES M4 M- M2 M3 M4 MI MI-2 MI-3 Mi-4
c g g
MI-1 5-MITF 2-MITF 1-SOX10 3-TFAP2 6-TFAP2 4-50X10 © =
0.00005 . -
0,000~~~ — vt —eb b e | T LR T [T o upEmgT e e FrpSierremprri s
P PR T T | e e Random sequance
-0.00010 \
0010
um Am SOX10, MITF, TFAP2 added once
0.000 7. 7 s Jilbh, eonflai - —————— —— —
0002
0010,
m m m j' SOX10, MITF, TFAP2 added twice
0.000 - i AT SiC11, PRNSURN: 5 SN 7 MU————— (¥ ll,,ﬂ_ S I - _— S
0004
00015
1 IHL, ]i A Jﬂ Weak binding sites
o adeille o R b —r l,,m Py 3 S Py P
99000 ARSI R——— | - g al - e N
0 6 8 100 120 140 160 180 200 220 240 280 800 320 840 380 380 400 420 440 460 480 500
0010 T 0.008 T
i 44
0,000 H1Ke il nieaid g 000 ke M e
-0.002 -0.002
; 116bp | p——>51bp——
Cut version Minimal version
mi-2 2-MITF 1-SOX10 3-TFAP2 6-TFAP2 4-50X10 S-MITF
000010
P . e
0.00000 e e “nrfhﬂvlL‘m*urwmﬂ F T wr:r“;uwmq e n‘C"wT‘i-ﬁ"ﬂv:rv"‘u — S P
-0.00015
0012
0.000 = ,“,'ukm,‘_,.,.”,ylmlﬁnk e eianc alflelile S A — S P S— S — — -
-0.002 -
0010
I N 7V R AH[L R A B
~0.004
0.002
0000 ————— LJML WPV IS 10V o
-0.001 . i
20 40 60 8 100 120 140 160 180 200 220 ~ 240 260 280 800 320 340 360 380 400 420 440 460 480 500
0012 0012
- ﬂ 1 WL e iane salftile, 0,000 Lear ‘,,,ﬂn AM e
1 1 -0.002 1
t 119bp { b——— 64bp —
MI-3 5-MITF 4-s0X10 6-TFAP2 3-TFAP2 _ 1-SOX10 2-MITF
000010 I K
000000/~ -~ ‘C"Ag“v“ ik.l»Av—wﬂLA’wwwr..,,l e n,~,Lﬁpﬁrlmugr,mermw: e lrr-f‘;_.m.“w,.,,-& Lo beqperrrt- e
-0.00015 i
00125
0.0000 - — _— et et - ~
-0.0050
0010
Y R 5 ﬁlx A IS ¥ B
0002 I'"
0.003
0.000) sy YY1 VES - -
0001 ] 1 : T
20 40 60 8 100 120 240 260 280 300 320 340 360 380 400 420 440 460 480 500
o1
00125 [
~0.0050, 1
I 126bp i |— 61bp ——
Mi-4 5-MITF 4-50X10 6-TFAP2 3-TFAP2 1-SOX10 2-MITF
0.0004
0.0000! - B e T L ey e ko “"TTAMVWP;FIWV A L N NEPIDS SICRPEIS S
0.0004 i i
0010
0.000 - —— e s SRS S O PR - Y- SO um:jL SO < S
-0002 L { o
0010
j 1
0000 e USSR | ;‘.!M,.u SUUSUN 97 U 3 S ,,,,lm Al L,,,,; bt
-0.002 1
0.003
01000 - AT i e B e LL.J SN — .,.A,_w‘_,)lm,._. e PO IS S~ ;u..(i..v‘:v,.,, - WP SRS . S
~0.001
o 20 4 120 140 160 |ao 240 260 280 300 320 340 360 380 400 420 440 460 480 500
0010
B lm .Ml EE—— 1 0000 xﬂhﬂ SIan
164bp 1 p_51bp_|

Extended DataFig.10 | Human enhancer design by motifimplantation.
a-b, Bar plots show the mean luciferase signal (log, fold-change over Renilla) of
the synthetic sequences, which were generated by motifimplantation, tested
inMMOO01 (a, MEL melanoma cell line, n = 3 biological replicates) and MM047
(b, MES melanomacellline, n =2 biological replicates). Values of 2 previously
validated MES regions are displayed for MMO047. The error barsin a, show the
standard error of the mean. ¢, Nucleotide contribution scores of the selected
synthetic sequencesintheir initial form (first row), after adding SOX10, MITF

and TFAP2 motifs once (second row), after adding SOX10, MITF and TFAP2
motifs twice (third row), weaker-motif version of the third row after replacing
implanted motifs with weaker sites (fourth row), cut version of the second row
whereonly the part with the binding sites were taken (fifth row, left) and minimal
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to SOX10 (fifth row, right). The names of the motifs and theirimplantation order
areindicated at the top. The position of the motifs is shown with dashed lines.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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0 XX X X[ 5

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Confocal images: ZEN blue 3.4.91

Data analysis Custom codes: https://doi.org/10.5281/zenodo.10184648

DL Python environment to use DeepMEL 1.0, DeepMEL2 1.0, and DeepFlyBrain 1.0:
python=3.7 tensorflow-gpu=1.15 numpy=1.19.5 matplotlib=3.1.1 shap=0.29.3 ipykernel=5.1.2 h5py=2.10.0

DL Python environment to train GAN models:
python=3.6 tensorflow-gpu=1.14.0 keras-gpu=2.2.4 numpy=1.16.2 matplotlib=3.1.1 shap=0.29.3 ipykernel=5.1.2

To perform motif analysis: TF-Modisco 0.5.5.4, Tomtom (MEME 5.5.1), ClusterBuster 2022-04-21, BEDTools 2.30.0
To create higher-order background sequences: INCLUSive 3.2

To calculate statics: Scipy 1.6.0

To train ChromBPNet model: ChromBPNet 1.3-pre-release
ATAC-seq and ChIP-seq data analysis:

Demultiplexing with bcl2fastq 2.20

Adapter trimming with trimgalore 0.6.7
Mapping with bwa-mem?2 2.2.1




Sorting with SAMtools 1.16.1

Deduplicating with SAMtools 1.16.1

Removing blacklist regions with SAMtools 1.16.1
Generating bigwig with deepTools 3.5.0

Peak calling with MACS2 2.1.2.1

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Cloned Drosophila and human sequences were provided as Supplementary Tables. DeepMEL, DeepMEL2, and DeepFlyBrain deep learning model files were
obtained from Kipoi (http://kipoi.org/models/DeepMEL, https://kipoi.org/models/DeepFlyBrain) with Zenodo record ids 3592129, 4590308, and 5153337. The fasta
files used to train GAN models and the trained GAN models are available on Zenodo at https://doi.org/10.5281/zenodo.6701504. Custom genomes (hg38 and dm6)
generated in this study are available on Zenodo at https://doi.org/10.5281/zenodo.10184648. Chromatin accessibility values in Kenyon Cells in adult Drosophila
brains were obtained from GSE16369739. In vitro saturation mutagenesis on IRF4 data was obtained from https://kircherlab.bihealth.org/satMutMPRA/. Chromatin
accessibility of Drosophila and transduced melanoma lines and ZEB2 ChIP-seq data generated for this study have been submitted to the NCBI Gene Expression
Omnibus (GEO, https://www.ncbi.nIm.nih.gov/geo/) under accession number GSE240003.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No human research participants involved

Reporting on race, ethnicity, or  No human research participants involved
other socially relevant

groupings

Population characteristics No human research participants involved
Recruitment No human research participants involved
Ethics oversight No human research participants involved

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The number of synthetic enhancers that were tested using transgenic flies was determined to be minimally 6 per cell type and it was bounded
by the feasibility of the transgenic animal generation experiments. In total, 68 transgenic flies were generated.
The number of synthetic enhancers that were used with luciferase assays is determined to be minimally 10 per different category (in silico
evolution, motif embedding, GAN, repressors, mutational steps). In total, 97 sequences were tested using luciferase assay.

Data exclusions  No data was excluded.

Replication The same results were obtained from different replication experiments.
Multiple brains (at least 10) were stained and imaged for the fly experiments.
3 biological replicates were performed for the main luciferase experiments.
2 biological replicates were performed for the negative control luciferase experiments.
No biological replicates perfomed on ATAC-seq or ChIP-seq experiments.

Randomization  The initial random sequences (used for sequence evolution and motif implantation) were sampled from the sequence space that matches the
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Randomization  GC content of the genomic sequences.
Flies fitting the gender(equal amount of male and female) and age (<10days) criteria were selected randomly for all experiments.
In this study, we didn't perform experiments that needed to be allocated into different groups.

Blinding The investigators were blinded when performing cloning, transfection, antibody staining, and luciferase experiments by using enhancer IDs.
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Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
[ 1IX Antibodies ] ChiP-seq
|:| Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging
|:| Animals and other organisms
|:| Clinical data
X |:| Dual use research of concern
g |:| Plants
Antibodies
Antibodies used 1 - Rabbit polyclonal anti-GFP (1:1000 dilution); Life Technologies CAT# A-6455; RRID: AB_221570
2 - Donkey polyclonal anti-rabbit Alexa Fluor 488 (1:500 dilution); Life Technologies CAT# A-21206; RRID: AB_2535792
3 - Rabbit anti-ZEB2; Bethyl CAT# A302-473A (1mg/ml and we used 5 micrograms for ChIP)
4 - Mouse anti-Dachshund (1:250 dilution); DSHB; CAT# dac1-1
5 - Alexa Fluor 647 goat anti-mouse 1gG (1:500 dilution); Invitrogen, CAT# A-21235
Validation 1- References provided, statement on manufacturer's website: "This Antibody was verified by Relative expression to ensure that the

antibody binds to the antigen stated.". Selected references out of 238: PMID 36067320, 35142344, 34908527, 34644579, 33932333,
33846330, 33463521, 33174166, 33112231, 32640222.

2- References provided, no statement on manufacturer's website. Selected references out of 6277: PMID 36067320, 35142344,
34908527, 34644579, 33932333, 33846330, 33463521, 33174166, 33112231, 32640222.

3- Testing and references provided, we performed ChIP-seq using ZEB2 antibody and the most enriched motif was the ZEB2 motif. No
statement on the manufacturer's website. References: PMID 33614228, 20515682

4- References provided, statement on manufacturer's website: "The antibody reproduces the pattern observed by in situ
hybridization with a dac cDNA probe (unpublished observations) and an enhancer trap insert in dac.". References: PMID 7821215,
17868668, 32781577, 18430931, 25670791, 8756723, 9845371, 24142104, 22874913, 34409041, 34322481, 33982759, 32738261,
32781577, 32184260, 31453329.

5- References provided, statement on the manufacturer's website: "The antibody "was used with a concentration of 2ug/mL.".
Selected references out of 1448: PMID 35297981, 35017509, 33570489, 32878938, 32649914, 33659324, 32579612, 32317641,
37332603, 36879821, 36355348, 36649336, 34459871, 34605405, 33689682.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) MMO001, MM047, and MMO099 were obtained from Prof. Dr. Ghanem Ghanem with a Material Transfer Agreement.
HEK293T was obtained from ATCC (CAT# CRL-3216).

Authentication We have used MM001, MMO047, and MMO099 in previous studies (Verfaillie et al., Nature Communications, 2015; Wouters et
al., Nature Cell Biology 2020; Minnoye et al., Genome Research, 2020; Kalender-Atak et al., Genome Research 2021). We
authenticated the cell lines by tracking their morphology overtime and by checking their genomic profile and mutations
(Verfaillie et al., Kalender-Atak et al.), transcriptomic profile (Wouters et al.), and epigenomic profile (Verfaillie et al., Wouters
et al., Kalender-Atak et al.).

HEK293T cells were only used for lentivirus production in this study, and the final products were tested and confirmed by
sequencing. No authentication was needed for this cell line.

Mycoplasma contamination Cell lines were tested for mycoplasma contamination, and were found negative.

Commonly misidentified lines  No commonly misidentified cell lines were used in this study.
(See ICLAC register)




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Transgenic Drosophila melanogaster strains were used in this study. Young adult flies (<10-days-old) were used when performing
antibody stainings.

Wild animals No wild animals were used.
Reporting on sex Sexes were equally mixed when performing antibody staining on adult Drosophila melanogaster brains.
Field-collected samples  No field-collected samples were used.

Ethics oversight No approval required.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks No plants were used.

Novel plant genotypes  No plants were used.

Authentication No plants were used.

ChlP-seq

Data deposition

|Z| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|Z| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links GSE240003
May remain private before publication.

Files in database submission MMO001_ZEB2_ChIP-seq
MMOO01_input_ChIP-seq

Genome browser session no longer applicable
(e.g. UCSC)
Methodology
Replicates n=1
Sequencing depth ZEB2_ChIP-seq: 83410868

input_ChlIP-seq: 168512695

Antibodies Rabbit anti-ZEB2; Bethyl CAT# A302-473A

Peak calling parameters  macs2 callpeak default parameters
Data quality 31866 peaks are called with 5% FDR

Software Demultiplexing with bcl2fastq 2.20
adapter trimming with trimgalore 0.6.7
mapping with bwa-mem?2 2.2.1
sorting with SAMtools 1.16.1
deduplicating with SAMtools 1.16.1
removing blacklist regions with SAMtools 1.16.1
generating bigwig with deepTools 3.5.0
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peak calling with MACS2 2.1.2.1
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