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The female reproductive system is strongly influenced by nutrition and energy balance. It is
well known that food restriction or energy depletion can induce suppression of reproductive
processes, while overnutrition is associated with reproductive dysfunction. However, the
intricate mechanisms through which nutritional inputs and metabolic health are integrated
into the coordination of reproduction are still being defined. In this review, we describe ev-
idence for essential contributions by hormones that are responsive to food intake or fuel
stores. Key metabolic hormones—including insulin, the incretins (glucose-dependent in-
sulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and
adiponectin—signal throughout the hypothalamic–pituitary–gonadal axis to support or sup-
press reproduction. We synthesize current knowledge on how these multifaceted hormones
interact with the brain, pituitary, and ovaries to regulate functioning of the female repro-
ductive system, incorporating in vitro and in vivo data from animal models and humans.
Metabolic hormones are involved in orchestrating reproductive processes in healthy states,
but some also play a significant role in the pathophysiology or treatment strategies of female
reproductive disorders. Further understanding of the complex interrelationships between
metabolic health and female reproductive function has important implications for improving
women’s health overall.

Close ties between nutritional status and female
reproductive function
Reproduction is an energetically expensive process, and the energetic costs are largely borne by the fe-
males of many species. The mammalian female reproductive system is responsible for producing female
gametes, facilitating their fertilization with sperm, supporting embryonic-fetal growth and development,
and enabling the birth and nourishment of the offspring. These complex processes require a high level of
communication between various organ systems, and so reproduction is under tight control of centrally
produced hormones released by the hypothalamus and pituitary, as well as signaling factors produced
by the placenta, developing embryo, and tissues of the reproductive system. Considering the high ener-
getic requirements of gamete production, gestation, and lactation, it is clear that levels of food and energy
stores are additional pieces of information that must be incorporated into the control of reproductive
processes. Therefore, hormones that are classically defined by their metabolic roles are also critically im-
portant for regulating reproduction, including those which relay acute changes in ingestion and nutrient
levels (e.g., insulin, the incretins, growth hormone, and ghrelin), as well as hormones that communicate
stored metabolic fuel levels (e.g., leptin and adiponectin).

Strong links between nutritional status and female reproductive function are evident throughout the
animal kingdom. Vertebrate orexigenic and anorectic neuropeptides that are classified based on their ef-
fects on appetite also modify levels of gonadotropin hormones in the reproductive axis [1]. Many bird
species breed seasonally, which restricts reproductive activity to periods when local food supply is opti-
mal for supporting increased metabolic demands [2,3]. Food availability affects fecundity and the timing
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of sexual maturity in fishes, and female iteroparous fishes may skip a spawning season if nutrient levels are insufficient
[4,5]. There are also insect and nematode species that can enter diapause states to reversibly suspend development and
reproduction under unfavourable conditions. Entry into or recovery from diapause in these invertebrate organisms is
orchestrated in part by evolutionarily conserved signaling systems that communicate nutritional status [6,7]. Mam-
mals exhibit patterns of sexual dimorphism that are consistent with the concept that females are better suited for with-
standing periods of food scarcity, which would increase chances of reproductive success in nutritionally-fluctuating
environments [1]. For instance, in contrast with males, female mammals tend to favor energy storage over the capacity
for rapid fuel mobilization, and are more prone to accumulate adipose mass in subcutaneous depots [8–10].

In humans, the relationship between nutrient levels and female reproductive health is most obvious when an im-
balance in nutrient and energy levels pushes functioning of the reproductive system off-kilter. This is exemplified
by physiological responses to food restriction and excessive energy expenditure, or conversely by the reproductive
system disorders that are linked to overnutrition.

Inadequate energy and reproductive dysfunction
Energy deficiency caused by stress, low food intake, or strenuous exercise can result in a suppression of neuroen-
docrine signals that allow normal menstruation and ovulation. This deregulation is signified by a loss or alteration
of gonadotropin hormone pulsatility, and leads to ovarian responses such as decreased estradiol production [11–13].
Low energy availability can thereby cause primary amenorrhea, a delay in menarche, or secondary amenorrhea, a tem-
porary halt in natural menstrual cycling [14]. Studies in human populations exemplary of a negative energy balance
have shed light on aberrant menstrual patterns. Ballet dancers [15,16] and athletes [17,18] engaged in high physi-
cal activity may have a delayed pubertal onset. Additionally, disordered eating, excessive exercise, or lifestyle stressors
can cause menses loss in erstwhile normal-ovulatory women [19–22]. Temporary food deprivation or fasting can also
induce a drop in gonadotropin levels and rise in cortisol [23–27]. Furthermore, women in poverty-stricken and/or
strenuous labor-demanding societies experience increased risks of adult amenorrhea and lower birth rates [28–32].

Importantly, the ready availability of energy or metabolic fuels is more critical to reproductive fitness than adiposity
per se. Food-deprived or over-exercised females can adjust food intake or activity to restore normal ovarian cyclicity
and gonadotropin pulsatility before changes in adiposity or weight are evident [33–36]. Similarly, short fasting inter-
vals halt ovarian cycles in Syrian hamsters without affecting adiposity, by reducing free fatty acid oxidation [37,38].
Maintaining glucose availability also preserves reproductive function in rodents and primates [39–43].

Amenorrhea and subfertility are not merely disorders of the reproductive system, but instead have broad physi-
ological impacts. Just as a reduction in estrogen levels in postmenopausal women increases risks of cardiovascular
disease [44], bone frailty [45], and neuropsychiatric disorders [46], a premenopausal estrogen deficiency caused by
amenorrhea leads to compromised cardiovascular, skeletal, and mental health [47–51]. Thus, reproductive system
responses to nutritional cues have far-reaching effects.

Excess energy and reproductive dysfunction
Undernutrition can suppress signals that allow reproduction, but chronic overnutrition is also associated with repro-
ductive dysfunction. The recent prevalence of ultra-processed and low-satiating foods, combined with a more seden-
tary lifestyle, has led to a surplus of calories in everyday life [52–56]. Animal studies have shown that high-energy,
high-fat diets interfere with reproductive function independent of obesity [57–60]. Additionally, obesity and a high
body mass index are themselves associated with precocious menarche [61–65], menstrual cycle irregularities [66–69],
infertility [70–73], miscarriage [74–76], and fetal abnormalities [77–82]. Diets that are high in refined carbohydrate
also predict an earlier age of menopause [83,84].

Energy overload and reproductive dysfunction are also closely associated in the context of polycystic ovary syn-
drome (PCOS), the most prevalent female reproductive disorder [85,86]. The diagnostic features of PCOS include
hyperandrogenism, menstrual cycle irregularities, and an accumulation of fluid-filled cysts in the ovaries [87,88].
However, PCOS has heterogeneous symptoms that often include obesity, elevated insulin, and/or a diminished ca-
pacity for glucose disposal [89,90]. These metabolic characteristics exacerbate the reproductive features of PCOS
through such means as heightening testosterone levels [91–95]. Hypercaloric, high-fat diets also potentiate the traits
of PCOS [96–98]. Women with PCOS tend to have difficulty conceiving, as well as a greater risk of pregnancy com-
plications such as gestational diabetes, preeclampsia, or miscarriage [99–109]. PCOS is also associated with increased
incidence of Type 2 diabetes [110–112], hypertension [110,113–117], high cholesterol [118–120], stroke [121,122],
and cancer [123–126].
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Figure 1. Metabolic hormones act as key intermediaries in linking nutrient and energy status to female reproductive function

Energetic deficits generally decrease levels of insulin, the incretin hormones (GIP and GLP-1), and leptin while also raising growth

hormone, ghrelin, and adiponectin. Conversely, food ingestion and/or a chronic energy surplus causes the opposite shift in cir-

culating levels of these hormones. Metabolic hormones act directly within the hypothalamus, pituitary, and ovaries to modulate

reproductive processes. Their effects are thereby integrated into the reproductive axis, in which the hypothalamus and anterior

pituitary communicate with the female reproductive system through the gonadotropins follicle-stimulating hormone (FSH) and

luteinizing hormone (LH), while the ovaries in turn provide feedback via steroid hormones and other signaling factors.

Weight loss [127–129], exercise [129–134], and bariatric surgery to limit food intake [135–140] are useful clinical
tools for treating some aspects of the reproductive dysfunction associated with energy surplus. Lifestyle approaches
such as balanced diet selections favoring whole grains, vegetables, fish, and unsaturated fats rather than saturated or
trans fats are associated with increased fertility, improvements to PCOS symptoms, and beneficial impacts on other
aspects of gynecologic health [141–144]. However, there is a lack of widespread awareness that diet has important
implications for reproductive health (beyond effects on weight loss or perinatal health), and this is compounded by
barriers preventing equal access to healthy diet options [143].

Effective management of nutritional and energy inputs is imperative for maintaining reproductive health. Nutrition
and energy balance affect many aspects of reproductive health, including the menstrual cycle, fertility, pregnancy,
fetal health, and age-related reproductive decline. This is due in part to the hormones that interpret food intake
and fuel stores, which cooperate with cellular nutrient sensors to trigger the appropriate physiological responses for
systemic energy homeostasis. These metabolic hormones engender changes across the reproductive axis, from the
hypothalamus and pituitary to peripheral tissues of the female reproductive system (Figure 1).

Basic regulation of female reproduction
The hypothalamus and anterior pituitary
The hypothalamic–pituitary–gonadal (HPG) axis comprises a system wherein the hypothalamus and anterior pitu-
itary cooperate to centrally control gonadal maturity and function. Gonadotropin-releasing hormone (GnRH) is a
tropic hormone secreted by a small subset of hypothalamic neurons in response to a suite of peripheral signals and
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neuronal messengers, including inputs from kisspeptin (Kiss1) neurons, astrocytes, γ-aminobutyric acid (GABA)
neurons and pro-opiomelanocortin (POMC) neurons [145,146]. Pulses of GnRH released into portal circulation
range in frequency from pulsatile to surge mode, depending on sex, age, and menstrual cycle phase [147–150]. Al-
though the HPG axis is first established in utero, it is largely silenced until the initiation of nocturnal GnRH pulses
during the onset of puberty [151,152]. Kisspeptin signaling is a key player in reactivating the HPG axis and initiat-
ing the pulsatile hypothalamic GnRH secretion required for sexual maturity and reproductive function [153–157].
Thereafter, rhythmic changes in frequency and amplitude of GnRH pulses are integral for controlling the differential
secretion pattern of the two gonadotropin hormones, together with regulatory input by other systemic and paracrine
factors.

Gonadotroph cells of the anterior pituitary produce the gonadotropins, luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) [158,159]. GnRH signaling induces differential expression of genes encoding
LHβ and FSHβ subunits, in addition to regulating LH and FSH exocytosis [160]. In turn, FSH and LH exert controls
over ovarian function, including steroidogenesis, follicular development, and ovulation. Together, forward-acting and
feed-back regulatory loops facilitate a dynamic, nuanced reproductive axis that can be adjusted at multiple levels in
response to internal and external conditions [161]. For instance, crucial information related to nutritional status and
energy balance is incorporated into the reproductive axis via metabolic hormones exerting effects on GnRH produc-
tion and release, gonadotropin secretion, and ovarian functions.

The ovaries
Oogenesis, folliculogenesis, and the production of steroid hormones and other signaling factors are tightly regulated
ovarian processes that are responsive to inputs such as metabolic hormone signaling. Oogenesis begins early in em-
bryonic development with primordial germ cells that divide by mitosis to form oogonia, which may continue to mi-
totically divide, undergo programmed cell death, or enter into meiosis as primary oocytes [162]. Primary oocytes do
not complete meiosis, but are instead arrested and individually surrounded by a sheath of granulosa cells in structures
called primordial follicles [163,164]. Female humans are born with approximately one million non-atretic primordial
follicles, which constitute the initial ‘ovarian reserve’ [165].

After birth, primordial follicles are continuously recruited into a pool of growing follicles that routinely undergo
atresia, or apoptosis-mediated degeneration [166–169]. Since primordial follicles lack an independent blood supply,
the early stages of folliculogenesis are under limited endocrine regulation; the transition from primordial to primary
follicle is largely controlled by intra-ovarian paracrine signaling [170]. Granulosa cells of a primary follicle begin to
express FSH receptors, and FSH is involved in stimulating the progression into a secondary follicle [171–173]. Theca
cells enveloping the follicle develop LH receptors late in the secondary follicle stage [174], and the thecal layer be-
comes increasingly vascularized as the antral follicle develops [175]. Preantral stages of folliculogenesis continuously
generate a pool of developing follicles which almost all default to atresia [170,176]. However, with the stimulation by
gonadotropins that occurs after puberty, a very small cohort of ∼10 antral follicles is recruited each month for further
maturation [176].

In response to FSH and LH, granulosa cells and theca cells cooperatively participate in steroidogenesis to pro-
duce androgens, estrogens, and progesterone [177,178]. The dominant follicle heightens production of estradiol and
other signaling factors that act locally as well as centrally suppressing FSH production; this ultimately pushes the
non-dominant follicles to atresia, since they have fewer FSH receptors and are outcompeted for FSH, a survival fac-
tor that inhibits follicular atresia [179,180]. The oocyte resumes meiosis as the dominant antral follicle continues to
mature. Eventually, sustained high estradiol levels triggers a surge in centrally produced LH and FSH, driving fol-
licle rupture and ovulation of the oocyte surrounded by supporting granulosa cells called cumulus cells [181,182].
Meanwhile, the residual follicle somatic cells differentiate into a temporary endocrine gland called the corpus luteum
[183,184]. Ovulation occurs monthly in healthy females until approximately 50–55 years of age, when the ovarian re-
serve is exhausted [185–188]. The resultant drop in levels of follicle-produced hormones and signaling factors ripples
through the HPG feedback system, leading to fluctuations in GnRH pulses and high circulating LH and FSH before
gonadotropin levels eventually decline after menopause [189,190].

Cellular nutrient sensors
Cellular nutrient sensors are expressed in the hypothalamus, pituitary and ovaries, where they interpret local quanti-
ties of metabolites or energy-carrying molecules and interact with different cellular players to govern functioning of
the female reproductive system. As comprehensively described in recent review articles [191–195], these nutrient sen-
sors exert direct and indirect effects on female reproductive function. For instance, mechanistic target of rapamycin
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(mTOR), a protein kinase that promotes anabolic processes in response to increased amino acids and growth signals,
is involved in regulating primordial follicle activation and granulosa cell proliferation, among other metabolically im-
portant functions. Similarly, AMP-activated protein kinase (AMPK), a nutrient sensor activated by a drop in cellular
energy, plays a role in maintaining organismal energy homeostasis that extends to influencing pubertal timing and
oocyte maturation.

Along with their own nutrient-sensing functions, cellular nutrient sensors are integral signaling intermediaries
by which metabolic hormones probably direct some of their effects on reproductive physiology. For example,
adiponectin can induce mTOR inhibition and AMPK activation [196], whereas the insulin signaling cascade is ca-
pable of promoting mTOR activity and inhibiting AMPK [197,198]. However, delineating these relationships in the
context of reproductive functions is complicated by tissue-specific and context-dependent interactions. For instance,
the adiposity signal leptin inhibits hypothalamic AMPK but activates skeletal muscle AMPK, whereas fasting-induced
ghrelin activates AMPK in the hypothalamus while inhibiting AMPK in adipose tissue and liver [199]; it is unclear
how these signaling hubs interact elsewhere, such as in ovarian cells. Intricate, bidirectional cross-talk between sig-
naling pathways of cellular nutrient sensors and metabolic hormones further exacerbates the difficulties of defining
their individual roles in regulating reproductive processes.

Insulin
Insulin is best known for maintaining blood glucose levels, but it also regulates carbohydrate, lipid and protein
metabolism, appetite, cell division, cell growth, and lifespan. A peptide hormone predominantly produced by β cells
of the pancreatic Islets of Langerhans, insulin is secreted in response to the glucose, fatty acids, and amino acids that
become elevated in circulation due to food intake. However, insulin levels are under multifactorial control, and au-
tonomic nervous system innervation as well as other hormones (such as growth hormone and glucagon-like peptide
1) also affect insulin production and secretion; circulating levels are further controlled at the level of its clearance
[200–203]. Insulin was discovered in 1921-22 with the extraction and purification of a pancreatic substance that
could effectively lower blood glucose levels in patients with Type 1 diabetes [204,205]. It had a transformative impact
on the treatment of diabetes, establishing its fundamental metabolic role.

Although insulin was discovered in mammals, it is now well known that insulin-like peptides and their highly
conserved signaling cascades regulate metabolism, development, and aging across the animal kingdom. Ligand bind-
ing to insulin/insulin-like growth factor 1 (IGF-1) tyrosine kinase receptors leads to the activation of downstream
signaling effectors, including phosphatidylinositol 3-kinase (PI3K, whose activities are counteracted by phospho-
lipid phosphatases like PTEN) and the serine/threonine kinase AKT. The PI3K/AKT signaling pathway is associated
with promoting glucose uptake and storage, suppressing hepatic glucose release, stimulating lipogenesis, and inhibit-
ing mobilization of stored lipids [197,206]. Another major branch of insulin/IGF-1 signaling is transduced via the
mitogen-activated protein kinase (MAPK)/ERK cascade, which is primarily involved in regulating growth and cell
proliferation [197,206]. These signaling cascades also interact with other nutrient sensor mechanisms, through such
means as activating mTOR and inactivating AMPK [197].

Lowering insulin below a critical threshold causes diabetes, but elevated insulin is also associated with detrimental
changes. Insulin hypersecretion is a driving factor for insulin resistance, obesity, and other aspects of metabolic dys-
function [207]. Notably, in the ‘insulin resistant’ state that is defined by impaired insulin-induced glucose disposal,
only a subset of insulin-regulated processes have diminished responses to insulin; tissues such as ovaries and the pitu-
itary might remain mostly insulin-responsive [207–209]. The elevation in circulating insulin that often accompanies
insulin resistance could thereby exacerbate insulin signaling responses in the female reproductive system.

Insulin and the female reproductive system
Insulin and the insulin signaling pathway are important regulators of reproduction, and there can be detrimental
outcomes of either insufficient or excess levels. Manipulations such as brain-wide deletion of insulin receptors (InsR)
suppress GnRH release in mice, leading to impaired follicle maturation and reduced fertility [210]. On the other hand,
high insulin levels induced by high-fat feeding are accompanied by fewer estrous cycles, fewer preantral and antral fol-
licles, and smaller litters; exogenous insulin also causes a reduction in murine oocyte yield and quality [198,211,212].
In humans, an infusion of insulin and lipids acutely suppresses FSH and LH levels [213]. Elevated insulin at birth and
during childhood is associated with earlier puberty [214], and insulin levels in reproductive-aged women are nega-
tively correlated with levels of anti-müllerian hormone (AMH), an ovary-produced hormone that signifies ovarian
reserve [215].
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Insulin receptors are expressed widely in the brain [216,217], including in GnRH neurons, astrocytes, and Kiss1
neurons [218–221]. Astrocytes are implicated in the insulin-mediated regulation of GnRH release [222], and InsR
ablation in astrocytes results in altered ovarian cycling, impaired oocyte maturation, hypogonadism, and subfertility
[223]. Cultured GnRH cell-lines also contain InsRs [224], and insulin stimulates GnRH expression and promotes
its effects on gonadotropin secretion in vitro [225–227]. GnRH-specific InsR knockout mice are protected from
obesity-associated infertility, with GnRH pulses that are comparable to lean control mice [228]. InsR knockout in
the pituitary [211] or ovarian theca cells [229] also protects female mice from high-fat diet-induced infertility, show-
ing that elevated insulin acts across multiple systems to impair reproductive function under conditions of nutrient
surplus.

Insulin has direct ovarian effects on metabolism, steroidogenesis, and folliculogenesis. The InsR is expressed in
oocytes, granulosa cells, and theca cells of rodent, bovine, and human ovaries [230–234]. Insulin signaling is crucial
for supporting glucose uptake and glycolysis in the ovary, to provide energy for folliculogenesis [235,236]. Insulin also
plays an important role in steroidogenesis, by cooperating with LH to stimulate androgen production in theca cells
[91,237,238]. It promotes the primordial to primary follicle transition in a rat ovarian organ culture system [239], and
supra-physiological levels of insulin stimulate bovine oocyte cleavage, maturation and meiotic progression in vitro
[240,241]. In vivo, oocyte-specific InsR deletion appears to have minimal impacts on fertility in mice [242]. Simi-
larly, InsR ablation in murine granulosa or theca cells can lead to altered steroidogenesis and gene expression changes
without overt effects on gross ovarian morphology or fertility under standard dietary conditions [229,243]. However,
insulin and IGF-1 are closely related and can bind to each other’s receptors or hybrid insulin-IGF-1 receptors with
varying affinities [244]. Notably, double knockout of InsR and IGF-1 receptors in granulosa cells causes significant
infertility, by impairing oocyte development and ovulation to a greater degree than knockout of either receptor alone
[243]. IGF peptides, binding proteins, and receptors are expressed in human follicles [245], and IGF-1 is itself im-
portant for regulating follicular growth and survival as well as FSH-induced processes such as estradiol production,
granulosa cell differentiation, and ovulation [246–252].

Downstream insulin/IGF-1 signaling components are established players in maintaining ovarian function and bal-
ance in folliculogenesis. For instance, overexpression of PI3K in the oocytes of neonatal mice increases follicular
numbers, reduces apoptosis, and triggers an anovulatory state due to an excess of overgrown follicles [253]. Similarly,
oocyte-specific removal of the counter-regulatory PTEN causes premature activation and exhaustion of the quiescent
follicular pool [254]. Akt is widely expressed in ovarian stromal and germ cells in humans [255] and rodents [256],
and Akt-deficient mice have delayed puberty onset, reduced fertility, altered steroid hormone levels, and a predis-
position for PCOS-like phenotypes [257,258]. PI3K/AKT signaling maintains the primordial follicle pool in part by
phosphorylating and inactivating the FOXO3 transcription factor, which otherwise suppresses primordial follicle ac-
tivation when active [259]. Mice with constitutively activated oocyte FOXO3 maintain follicle numbers, gonadotropin
levels, and youthful gene expression profiles with advancing age [260].

Abnormal insulin levels—relatively common with metabolic disorders—are linked to impaired reproductive
health. For instance, women with Type 1 diabetes (typically treated with exogenous insulin) are more likely to exhibit
ovarian dysfunction, and those taking a higher daily dose of insulin have an increased chance of earlier menopause
[261,262]. An early diagnosis of Type 2 diabetes, which is closely tied to obesity and high endogenous insulin, is
also predictive of earlier menopause [261,263–265]. Elevated insulin is a cardinal feature of PCOS that aggravates its
reproductive pathophysiology, by augmenting testosterone production and bioavailability as well as inhibiting fol-
licular growth and maturation [88,89]. Therefore, while insulin signaling is essential for metabolic and reproductive
functions, preventing insulin excess could have promising therapeutic potential [207].

Glucose-dependent insulinotropic polypeptide (GIP) and
glucagon-like peptide 1 (GLP-1)
Incretins are metabolically active gut hormones released promptly after food consumption. Seminal work in the 1960’s
pointed to the existence of factors that heighten insulin levels in response to ingestion [266–268]. Glucose-dependent
insulinotropic polypeptide (GIP) was isolated in 1971 [269] and shown to potentiate insulin levels in response to in-
testinal absorption of nutrients such as glucose [270]. Glucagon-like peptide 1 (GLP-1) was later identified as another
potent insulinotropic hormone [271]. GLP-1 also promotes the proliferation of β-cells [272,273] and prevents their
apoptosis [274]. In addition, GLP-1 contributes towards maintaining glucose homeostasis by lowering food intake,
glucagon secretion, and endogenous glucose production [275–277].

GIP and GLP-1 are produced by intestinal enteroendocrine cells. GIP is secreted by the K-cells of the small intestine
in response to the ingestion and absorption of glucose, lipids, and high levels of amino acids [270,278–281]. GLP-1 is
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secreted by the large intestine and the L-cells of the small intestine [282,283]. GLP-1 is the post-translational cleavage
product of the proglucagon gene, and is stimulated by monosaccharides such as glucose, fructose, and galactose
[284,285], as well as dietary lipids [286,287] and amino acids [288–291]. Upon their release into circulation, the
incretins bind to their respective G-coupled receptors (GIPR and GLP-1R), which in pancreatic β cells stimulate
insulin exocytosis by inducing a rise in intracellular cAMP and calcium levels [292,293]. The insulinotropic effects
of incretins are largely mediated by β cells, but incretin receptors have a broad distribution across many tissues,
including in the hypothalamus [292–294]. GLP-1 produced within the brain also appears to contribute to its central
effects [292,295].

Despite higher circulating levels, the insulinotropic effects of GIP dwarf in comparison to GLP-1, which is widely
popularized as a therapeutic target. GLP-1 can normalize blood glucose levels in Type 2 diabetes patients [296] and
promote weight loss [297]. However, GIP and GLP-1 are enzymatically inactivated after secretion, and the rapid
degradation of GLP-1 limits its therapeutic potential [298]. Efforts have now shifted to using GLP-1 receptor agonists
[299–301] or dual GIP- and GlP-1- receptor agonists [300,302,303]. Incretin-based therapy has expanded to target
fatty liver disease [304,305], kidney disease [306], neurodegenerative diseases [307,308] and reproductive disorders
such as PCOS [309,310].

Incretin hormones and the female reproductive system
The incretin hormones might elicit indirect, insulin-mediated impacts on female reproductive function due to their
insulinotropic nature, but they also directly affect reproduction. Mice deficient in either GLP-1R or GIPR exhibit
disrupted estrous cycling, reduced fertility, and smaller litter sizes [311], and GLP-1R knockout additionally leads to
delayed puberty in female mice [312]. GLP-1 may exert many of these reproductive effects through central actions.
Both hypothalamic GLP-1r expression and plasma GLP-1 concentrations vary across estrous phases in rats, and either
central or peripheral administration of GLP-1 increases the preovulatory LH surge [313,314]. Intracerebral GLP-1
also synchronizes the onset of puberty, and improves implantation rates, birthing rates, and mature follicle numbers
[314]. Changes in gonadotropin secretion appear to be due in part to GLP-1 positively regulating GnRH release. Early
evidence in a rat hypothalamic cell-line pointed to GLP-1 promoting GnRH release via intracellular cAMP signaling
[315], and subsequent work implicated the involvement of Kiss1 neurons [314,316,317] and GABAergic signals [318]
in bolstering the direct effects of GLP-1 on GnRH neurons. While there is less known about the role of GIP, GIPR
is expressed in the murine hypothalamus [319] and pituitary [311], and intracerebroventricular GIP administration
decreases plasma FSH levels in rats [320]. Receptors for both GLP-1 and GIP are also expressed in the rodent ovary
[311,321], and both of these incretins suppress progesterone synthesis in the presence of FSH [321]. Incretins have
also been detected in human follicular fluid, and tend to be higher in the follicular fluid of obese women (particularly
GLP-1) [322].

There has been some investigation into the therapeutic effects of incretin receptor agonists for female reproductive
disorders. For instance, GLP-1 receptor analogues can mitigate the ovarian inflammation, fibrosis, oxidative stress,
and AMH reduction that is induced in a rat model of diabetes [323]. In animal models of PCOS, incretin receptor
agonists improve ovarian morphology and gonadotropin levels [324,325]. Incretin analogues are also being applied
in clinical practice with PCOS patients. They can effectively alter steroid hormone levels [326–329], decrease body
weight and enhance metabolic health [330–333], regularize menstrual cycling [329,331,334], and improve pregnancy
rates and outcomes [331,333]. However, in general there is a paucity of information on the details and mechanisms by
which anti-obesity pharmaceuticals such as incretin receptor agonists affect the female reproductive system [309,335].

Growth hormone (GH)
First isolated in the 1940s, growth hormone (GH) was defined by impacts on longitudinal growth largely driven
by a promotion of bone growth in children and adolescents [336,337]. However, it is now known that GH also has
a broader reach in regulating energy balance, including effects on puberty timing, reproductive function, insulin
resistance, metabolic fuel selection, lipolysis, hepatic glucose production, protein synthesis, muscle building, and
immune function [337–339]. In general, GH is anabolic in nature. It stimulates an increase in lean body mass un-
der energy-replete conditions, and preserves lean body mass and carbohydrate stores during fasting by promoting
lipid usage [337]. GH elicits its physiological outcomes through a combination of indirect, IGF-1-mediated effects
and direct intracellular signaling via the widely expressed GH receptor, which activates Janus kinase 2 (JAK2)-signal
transducers and activators of transcription (STAT) as well as other signaling cascades [339]. Since GH promotes a rise
in circulating and locally produced levels of the insulin-like growth factor IGF-1, it can be difficult to mechanistically
distinguish between direct GH effects and ancillary effects carried out through IGF-1 signaling [337].
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GH is secreted in a pulsatile manner by somatotroph cells in the anterior pituitary gland, with levels and patterns
that depend on age, sex, and energy balance [340–342]. Hypothalamic-produced GH-releasing hormone stimulates
its secretion while somatostatin inhibits it [340,343]. Additionally, ghrelin potently stimulates GH secretion, and
both estrogens and androgens promote GH release [340,343–348]. Outside of the brain, GH mRNA is also expressed
in peripheral tissues, including in the uterus, mammary glands, and ovaries; locally produced GH likely has local
autocrine and/or paracrine effects, rather than traveling through circulation [349]. In general, circulating GH is higher
in females than males, and levels rise in response to puberty, sleep, exercise, and fasting, whereas GH is decreased in
response to elevated blood glucose, glucocorticoids, and aging [340,348]. Circulating GH levels peak at puberty and
decline steadily afterwards, with only residual levels detectable at age 50 [350–354].

Growth hormone and the female reproductive system
Having sufficient GH is important for multiple facets of female reproductive competency. Women with GH deficiency
have delayed menarche, fewer children, reduced uterine volume, low prolactin levels, and higher FSH [355,356].
Similarly, GH-deficient rodents have a later onset of puberty, smaller litter sizes, delayed parturition, irregular es-
trous cycles, and fewer corpora lutea and follicles [357–360]. GH replacement therapy has therapeutic potential in
GH-deficient infertile women [361], and also improves ovulation rates and embryo implantation rates in women un-
dergoing IVF when combined with gonadotropin treatment [362,363]. Genetically engineered GH-overexpressing
animals have increased ovarian weights as well as higher ovulation rates and implantation sites, but also exhibit lower
mating rates and reduced offspring survival [364,365].

In addition to regulating pubertal growth, GH is implicated in controlling the timing of puberty. Puberty is delayed
in mammals with GH deficiency, although the fact that they can reach sexual maturation indicates that GH is not a
requirement [366,367]. GH transgene expression expedites puberty in mice [365], and GH treatment in GH-deficient
children stimulates an earlier age of puberty [368]. GH affects GnRH release [369,370], and GH and/or IGF-1 signal-
ing in GnRH neurons or Kiss1 neurons could play a role in the activation of pulsatile hypothalamic GnRH secretion
linked to the onset of puberty (reviewed in [366]). However, the start of ovarian steroidogenesis and consequential
rise in steroid hormones is instrumental in promoting the steep elevation in GH levels during puberty, making it dif-
ficult to tease apart these causal relationships [366,367]. Ultimately, it is most likely that interactions between GH and
the HPG axis are bidirectional during the complex endocrine shifts of puberty, and GH may be one of the integrated
endocrine signals that conveys whether nutrient levels are sufficient for puberty to proceed [366,367].

At the level of the anterior pituitary, it is noteworthy that there are interactions between GH-producing soma-
totroph cells and gonadotropin-producing gonadotroph cells (reviewed in [367]). Therefore, GH likely exerts some
of its reproductive effects within the pituitary itself, through such means as influencing the secretion of LH and FSH
[367]. However, GH plays a more apparent role in regulating reproductive function through its ovarian actions.

In the ovary, GH is involved in governing gametogenesis, gonadotropin sensitivity, follicle survival, and the preser-
vation of tissue health [371]. GH receptors are present in the oocytes and granulosa cells of antral follicles [372],
and levels are significantly decreased in lower-quality oocytes of aging women [373]. In vitro studies of goat oocytes
reveal that GH treatment stimulates early antral follicle development, promotes fertilization, development of healthy
oocyte-cumulus complexes and growth of a healthy embryo [374]. Similarly, in canine oocytes GH acts alongside
FSH to promote antrum formation, resulting in improved follicular viability [375]. Other studies have suggested that
GH prevents follicular apoptosis via IGF-1 and the PI3K/AKT signaling pathway [376,377]. In vivo work has shown
that GH may improve ovulation rates by increasing the number of superovulated oocytes reaching meiosis II [378].
In vitro studies point to a similar trend of GH supplementation leading to increased meiotic progression rates [374],
and improved nuclear maturation in rodent [379], dog [380], sheep [381], bovine [382], equine [383], and human
[384] oocytes. These effects may be partially mediated by cumulus cells. GH stimulates proliferation and inhibits
apoptosis of cumulus cells [385,386], and regulates the expression of the gap junction proteins that allow oocytes to
exchange nutrients with surrounding cumulus cells [385,387]. Murine oocytes cultured with GH form thecal layers
that are rich in mitochondria and rough ER, implicating an additional role in theca cell proliferation [388].

The clinical potential for GH also stems from its role in improving uterine receptivity to incoming embryos.
GH-stimulated upregulation of IGF-1 mediates estrogen-related improvements in endometrial receptivity and in-
crease uterine thickness across several species [389–393]. Although more contentious, human studies also suggest
benefits of GH therapy among female IVF and embryo transfer patients, especially if they have endocrine disor-
ders or are overweight/obese [394,395]. GH concentrations are higher in the follicular fluid of oocytes that result in
successful pregnancy [396,397], and GH supplementation increases oocyte yield as well as rates of pregnancies and
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live births with IVF [398,399]. Thus, GH is becoming an increasingly important compound-of-interest in assisted
reproductive technologies [363,400–405].

Ghrelin
Identified in 1999 as the endogenous ligand of the growth hormone secretagogue receptor (GHSR) [406], acety-
lated ghrelin is a gastric hormone involved in sensing nutrient availability and coordinating meal anticipation, which
complements its stimulation of growth hormone secretion and other metabolic effects [407]. Dubbed the ‘hunger
hormone’ for its appetite-boosting effects [408], acetylated ghrelin is in fact a multi-faceted hormone that also stimu-
lates gastric acid secretion and gut motility, promotes adiposity, decreases insulin sensitivity, and modulates glucose
and lipid metabolism [407,409]. Ghrelin and its receptor are both widely expressed in human tissues, including in
reproductive and endocrine organs [410], but most circulating ghrelin originates from enteroendocrine cells of the
stomach [411]. Levels rise before meals and during fasting, largely due to neural regulation of gastric ghrelin secretion;
conversely, there is a postprandial drop in ghrelin in response to nutrients and bitter compounds in the gastrointesti-
nal system as well as input by hormones such as insulin and leptin [408,409,411,412]. Circulating ghrelin exists in
two distinct forms due to its enzyme-catalyzed acetylation. Less than 10% is acetylated and capable of binding to the
GHSR, while des-acylated ghrelin functionally antagonizes acetylated ghrelin and may also have independent effects
[407,409].

Ghrelin and the female reproductive system
As an orexigenic hormone that signals nutrient insufficiency, ghrelin is generally a negative modifier of female re-
production. Women with amenorrhea associated with intense exercise or anorexia have higher levels of ghrelin
[413–415]. Ghrelin levels decline during childhood and into puberty [416], and pubertal onset in female rats is delayed
by high doses of ghrelin [417–419]. High ghrelin or ghrelin analog treatment reduces rates of ovulation, pregnancy,
fertilization, and embryo implantation in mice, and suppresses ovine embryo development [420–423]. Interestingly,
ghrelin levels increase with age and over the menopausal transition [412,424,425], which may contribute to post-
menopausal shift in metabolic health [426].

Central in vivo effects of ghrelin include decreasing GnRH secretion and pulsatility, as well as lowering LH and/or
FSH [415,418,427–431]. The GHSR is expressed in regions of the hypothalamus [432,433], Kiss1 neurons [434], and
pituitary gonadotrophs [435]. Although GnRH neurons themselves do not express this receptor, ghrelin might act
via upstream neuronal regulators to suppress GnRH release [221]. In contrast, ghrelin can stimulate LH secretion by
pituitary tissue in vitro, pointing to an opposing, tissue-specific mode of action that might depend on such factors as
age, sex, and interacting gonadal inputs [417,418,436].

Ghrelin also exerts direct ovarian effects. Ghrelin expression has been documented in the ovaries of species rang-
ing from chicken to human [437–443], including in oocytes, corpus lutea, and stromal cells [437,439,440]. Ghrelin
injections lower estrogen and progesterone levels in female rats [444], and it acts directly through GHSR of corpus
luteal cells to reduce progesterone secretion [445,446], pointing to a role in regulating steroidogenesis. Ghrelin may
also contribute toward repressing follicle maturation: ghrelin administration leads to greater numbers of small folli-
cles coupled with fewer corpus lutea in rat ovaries [447], whereas mice lacking endogenous acetylated ghrelin have a
decrease in small follicles [448]. Generally, elevated ghrelin suppresses female reproductive functions both centrally
and peripherally, which is consistent with a message of energy depletion.

Leptin
Leptin, an indicator of stored fuel levels in adipose tissue, is involved in regulating long-term energy balance by
influencing parameters such as energy expenditure, appetite, and reproductive function. Leptin is a peptide hormone
principally secreted by adipocytes in white adipose tissue, though it can also be produced by other tissues such as the
placenta, stomach, and skeletal muscle [449–453]. Serum leptin and adipocyte expression of the leptin gene (LEP or
OB) are proportional to adipose tissue mass, with levels that generally rise with obesity and fall with weight loss [454].
LEP expression and circulating leptin are also affected by short-term energy imbalances, cytokines, the sympathetic
nervous system, and other hormones such as insulin, glucocorticoids, and gonadal steroids [455]. In both humans and
rodents, leptin levels are higher in females than in adiposity-matched males (particularly for premenopausal women);
this is likely due to the regulation of leptin production by estrogens and testosterone, as well as sexual dimorphism
in adipose tissue distribution [456–460]. Although leptin is not alone in controlling energy balance, its crucial role
is evidenced by the excessive obesity, hyperphagia, and infertility of the leptin-deficient ob/ob mouse [461–463].
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Similarly, rare mutations causing congenital leptin deficiency or leptin resistance in humans are associated with rapid
weight gain, severe obesity, low gonadotropin levels, and delayed or absent puberty [464–467].

In response to elevated leptin—which indicates that energy balance has tipped towards abundant metabolic fuel
stores—the hypothalamus induces a series of physiological processes that boost satiety and energy expenditure
[467,468]. However, obesity is often coupled with both increased leptin levels and leptin resistance, which dimin-
ishes its effectiveness in promoting weight loss [467]. Low leptin levels correlate with reduced adiposity, which is
interpreted by the hypothalamus as an energy deficit that requires neurological and physiological changes to pro-
mote food intake while reducing energy expenditure to restore energy balance [467].

The canonical leptin signaling pathway involves activation of JAK2 and phosphorylation of the transcription fac-
tor STAT3. However, due to pathway cross-talk leptin also activates other signal transduction cascades, such as the
PI3K and MAPK pathways [468]. Only the full-length, long-form isoform of the leptin receptor has the intracellular
domains required for signal transduction [469,470]. Although particularly abundant in the hypothalamus, there is
nearly universal tissue distribution of leptin receptors, including expression of the long-form receptor in many brain
regions and in the uterus and ovaries [469–472]. This highlights the fact that leptin signaling has a wide breadth of
effects. In addition to its trademark impacts on appetite and energy expenditure, leptin is also involved in controlling
lipolysis, immune function, angiogenesis, bone formation, and reproduction [468].

Leptin and the female reproductive system
Leptin is a fundamental regulator of female reproductive function that affects processes ranging from steroidogenesis
and ovulation to puberty and pregnancy. Negative energy balance leads to decreased leptin, amenorrhea, and sub-
fertility [473,474], and leptin administration in women with hypothalamic amenorrhea is sufficient to restore their
menses and fertility, raise serum estradiol, and increase the number of dominant follicles [475–477]. Exogenous lep-
tin also restores the fertility of ob/ob mice independent of body weight effects, by restoring HPG axis functioning
[478,479]. Similarly, daily leptin injections in leptin-deficient children correct pubertal timing and gonadotropin pul-
satility [480]. In rodents, leptin aids in pubertal activation of the HPG axis [481,482], although it alone cannot trigger
puberty alone [478,483–486]. Low doses of leptin increase LH and FSH levels in mice [487], induce ovulation in an
LH-dependent manner [488], and stimulate meiotic progression of bovine oocytes [489].

Leptin exerts some of these effects through indirect modulation of GnRH neurons and the pituitary. Leptin recep-
tors are undetectable in murine GnRH neurons, and GnRH neuron-specific leptin receptor deletion does not affect
fertility or puberty onset. However, mice lacking leptin receptors in all forebrain neurons have delayed puberty, severe
infertility, and a suppressed estradiol-stimulated LH surge [490]. Leptin likely impacts GnRH release via upstream
neuronal inputs [221], such as Kiss1 neurons [490–493]. It may also elicit direct effects on the pituitary [494], since
cultured pituitary tissue dose-dependently releases LH, FSH and prolactin in response to leptin exposure [495].

There is also a relationship between leptin and the ovarian steroid hormones. LEP is expressed by granulosa, cu-
mulus, and oocyte cells, with leptin protein detectable in mature follicles and follicular fluid [496,497]. Human and
rat ovaries express leptin receptors on their theca, granulosa and interstitial cells [471,496–499], thus acting as target
sites for leptin to regulate steroidogenesis. In vitro studies of human [499,500], bovine [501], and rat [502–504] cells
or tissues have demonstrated that leptin attenuates steroid hormone production. Interestingly, there are reports of
circulating leptin changing across the menstrual cycle, with a rise from menses into the luteal phase and a mid-cycle
peak corresponding with the LH surge; leptin therefore shows some synchronicity with estradiol, progesterone, testos-
terone, and LH [475,505–507]. Some of these rhythmic changes may be due to leptin production by ovarian structures
such as the corpus luteum [508,509]. However, leptin cyclicity during the menstrual cycle is controversial, with other
studies reporting no differences [510–512].

During pregnancy, there is a two-fold increase in circulating leptin levels [513,514], due to both increased mater-
nal adiposity and leptin secretion by the placenta [452]. As pregnancy progresses, the rise in leptin induces central
resistance to its appetite-suppressing effects, and leptin takes on modified roles that include support of blastocyst for-
mation, implantation, placentation, and human chorionic gonadotropin production [515–518]. Supraphysiological
levels of leptin are associated with pregnancy disorders such as preeclampsia [519–524] and gestational diabetes [525].
Thus, leptin is involved in optimising and maintaining many aspects of female reproductive health and function.

Adiponectin
In addition to leptin, adipocytes also secrete another signaling molecule in large quantities: adiponectin.
First discovered and characterized in 1995–1996, adiponectin is a 244-amino acid protein [526–529] with
insulin-sensitizing [530,531], anti-inflammatory [532], anti-atherogenic [532–535], and cardioprotective [536,537]
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properties. Adiponectin is primarily secreted by adipocytes, but has been detected in other tissues, including the
brain [538,539], gonads [540,541], and placenta [542]. In contrast with leptin, adiponectin levels are inverse to adi-
posity; adiponectin is lower among obese individuals [543–545], and restricting caloric intake can increase circulating
adiponectin [546]. Testosterone also reduces adiponectin secretion [547], which may contribute toward the lower lev-
els in men compared with women [543,544]. There are no apparent repercussions of menopause, estrogen therapy or
ovary removal for adiponectin levels [548–550].

Adiponectin signals through binding to adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2), which are found
abundantly among several tissues, but especially in the skeletal muscle and liver [551,552]. Ligand binding leads
to a number of downstream signaling responses, including AMPK activation, mTOR inhibition, stimulation and
cross-talk with the insulin/IGF-1 signaling pathways, and interactions with other signal transduction adaptor proteins
[196]. These adiponectin-induced signaling cascades in central and peripheral tissues induce metabolically important
responses. Exogenous adiponectin administration increases blood insulin levels in vivo [553], and promotes insulin
gene expression and secretion in vitro [554]. Adiponectin-deficient mice develop hepatic insulin resistance and hy-
perglycemia, and are more sensitive to diet-induced metabolic dysfunction [530]. In addition, adiponectin-deficient
female mice are subfertile, with altered menstrual cycles, altered gonadotropin profiles, reduced ovulation and a
greater number of atretic follicles [555]. This points to a role in reproductive regulation.

Adiponectin and the female reproductive system
Adiponectin elicits both central and peripheral reproductive effects. Adiponectin receptors are found throughout
the hypothalamus in a variety of species [556–558], and adiponectin is present in cerebrospinal fluid [557,559–562],
which suggests a potential route of entry into the brain. Consistent with a function in promoting energy preservation,
adiponectin suppresses GnRH secretion and inhibits Kiss1 gene expression by activating AMPK in a hypothalamic
cell line [563,564], and it attenuates activity of a subpopulation of mouse GnRH neurons via AMPK activation [565].
Humans also express adiponectin and its receptors on pituitary cells, including gonadotrophs [566]. Adiponectin
can reduce basal and GnRH-stimulated LH levels and GnRH receptor expression in cultured rodent pituitary cells
[538,567], but reported effects are not consistent for pigs [568] or non-human primates [569].

In the ovary, adiponectin signaling influences oocyte maturation as well as the production and release
of steroid hormones. Adiponectin and adiponectin receptors are expressed in ovarian theca cells, granu-
losa cells, oocytes, and corpus lutea [541,570–572], and levels appear somewhat responsive to gonadotropins
[573–575]. Adiponectin regulates the expression of genes encoding steroidogenic enzymes and gonadotropin
receptors, augments the IGF-1-stimulated release of progesterone and estradiol, and decreases androgen levels
[541,570,576–579]. Adiponectin is also implicated in promoting oocyte meiotic maturation and early embryo de-
velopment [572,580–583]. The mechanisms by which adiponectin exerts these ovarian effects have not been fully de-
fined, but may involve interactions with the insulin/IGF-1 MAPK/ERK signaling pathway [541,570,576,579,581,582].

Low adiponectin (which can signify overabundant energy stores) is linked to reduced female reproductive health.
Adiponectin levels are positively correlated with levels of the ovarian reserve biomarker AMH [215,584], and obesity
corresponds with both low adiponectin and low AMH, among other endocrine changes [585]. Women with PCOS
also have significantly lower adiponectin levels that correlate with lower metabolic health, compared with individuals
matched for body mass index [586,587]. In addition, a decreased proportion of theca cells express adiponectin recep-
tors in polycystic ovaries [588]. Low serum adiponectin or a low ratio of follicular fluid:serum adiponectin has been
associated with unsuccessful IVF outcomes [589], higher rates of implantation failures [590], and low oocyte retrieval
[591]. Therefore, adiponectin is yet another metabolic hormone at the nexus of metabolic health and reproductive
function.

Conclusions and future perspectives
Research related to female reproductive health is disproportionately underfunded [592–595], with consequential im-
pacts on the well-being of half the global population. Moreover, despite the existence of sex differences in the preva-
lence, pathophysiology, and responses to treatment of metabolic disorders such as Type 2 diabetes [9,10,596–598], a
significant underrepresentation of female participants and female animals in metabolic health studies has persisted
in recent decades [599–604]. As a result, each of these fields alone holds substantial knowledge gaps—to say nothing
of the gaps in knowledge that exist at the interface of metabolic health and female reproductive health.

We believe that there are many critical questions at the junction of metabolism and reproduction. For instance:

• While this review highlights effects of metabolic hormones on reproductive function, lines of communication
between metabolic tissues and the reproductive system are bidirectional, and merit further study. For example,
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FSH was recently shown to regulate insulin secretion via FSH receptors expressed in pancreatic islets [605], and
gonadal steroid hormones contribute towards sexual dimorphism in energy partitioning and metabolic home-
ostasis [8–10,606].

• Exogenous hormonal contraceptives cause metabolic changes [607–609], and conversely, the presence of dia-
betes, obesity, and/or other metabolic disorders has implications for the systemic impacts of hormonal contra-
ceptives [610,611]. Research into these intertwining effects is complicated by the heterogeneous nature of disor-
ders such as Type 2 diabetes or polycystic ovary syndrome, in addition to wide variety in hormonal contraceptive
formulations, and interplay of factors such as age, ethnicity, genetics, environment, and duration of contraceptive
use [608,612].

• Similar complications affect investigations of interactions between metabolic health and hormone replacement
therapy, or between metabolic health and menstrual cycle characteristics, but these challenges should not pre-
clude exploring such fundamental biomedical and biological topics.

• Puberty, pregnancy, and perimenopause are defined by changes to the female reproductive system, and all three
life stages also feature marked metabolic changes. For instance, insulin resistance and β-cell mass are transiently
elevated during puberty [613–616] and during pregnancy [617–620], and the incidence or severity of metabolic
syndrome increases significantly during perimenopause [621,622]. Therefore, it seems especially pertinent to un-
derstand the relationships between nutritional status, metabolic health, and female reproductive function during
these transitional periods.

The high energetic requirements of supporting reproduction mean that the signaling systems communicating food
intake, metabolic fuel stores, and energy levels play an integral role in regulating reproductive function. Consequently,
impaired metabolic health has repercussions for female reproductive health that extend beyond fertility or fetal ef-
fects. Changes to nutritional status induce a suite of responses, and it is necessary to consider the context of a broad
landscape of nutrient- and energy-responsive signaling systems instead of focusing on isolated hormones under spe-
cific conditions. For instance, food ingestion or a surplus of energy stores generally leads to increased levels of insulin,
GIP, GLP-1, and leptin, together with suppression of growth hormone, ghrelin, and adiponectin; energy deficits tend
to cause the opposite endocrine shifts (Figure 1). Each of these hormones can cause their own effects within the
reproductive axis, in addition to generating signaling pathway cross-talk and interplay with other hormones. More-
over, the precise effects of each hormone might vary depending on nutritional conditions and interacting signaling
factors. Delineating the complexities of these mechanistic relationships is essential for understanding how metabolic
disorders or energy imbalance deregulates female reproductive health.
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AMP- activated protein kinase; FSH , follicle-stimulating hormone; GH , growth hormone; GHSR, growth hormone secretagogue
receptor; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide 1; GnRH , Gonadotropin-releasing
hormone; HPG , hypothalamic-pituitary-gonadal; IGF-1, insulin-like growth factor 1; InsR , insulin receptor; JAK2 , janus ki-
nase 2; Kiss1, kisspeptin; LH , luteinizing hormone; MAPK, mitogen-activated protein kinase; mTOR , mechanistic target of
rapamycin; PCOS , polycystic ovary syndrome; PI3K , phosphatidylinositol 3-kinase; STAT, signal transducers and activators of
transcription.

12 © 2024 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Bioscience Reports (2024) 44 BSR20231916
https://doi.org/10.1042/BSR20231916

References
1 Schneider, J., Klingerman, C. and Abdulhay, A. (2012) Sense and nonsense in metabolic control of reproduction. Front Endocrinol. 3, 26,

https://doi.org/10.3389/fendo.2012.00026
2 Ball, G.F. and Ketterson, E.D. (2007) Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos. Trans. R.

Soc. B Biol. Sci. 363, 231–246, https://doi.org/10.1098/rstb.2007.2137
3 Thomas, D.W., Blondel, J., Perret, P., Lambrechts, M.M. and Speakman, J.R. (2001) Energetic and Fitness costs of mismatching resource supply and

demand in seasonally breeding birds. Science 291, 2598–2600, https://doi.org/10.1126/science.1057487
4 Luquet, P. and Watanabe, T. (1986) Interaction “nutrition-reproduction” in fish. Fish Physiol. Biochem. 2, 121–129,

https://doi.org/10.1007/BF02264080
5 Rideout, R.M., Rose, G.A. and Burton, M.P.M. (2005) Skipped spawning in female iteroparous fishes. Fish Fish 6, 50–72,

https://doi.org/10.1111/j.1467-2679.2005.00174.x
6 Karp, X. (2021) Hormonal regulation of diapause and development in nematodes, insects, and fishes. Front Ecol. Evol. 9, 735924,

https://doi.org/10.3389/fevo.2021.735924
7 Short, C.A. and Hahn, D.A. (2023) Fat enough for the winter? Does nutritional status affect diapause?. J. Insect Physiol. 145, 104488,

https://doi.org/10.1016/j.jinsphys.2023.104488
8 Bond, S.T., Calkin, A.C. and Drew, B.G. (2021) Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin. Sci. 135,

2691–2708, https://doi.org/10.1042/CS20210086
9 Mauvais-Jarvis, F. (2015) Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differ. 6, 14,

https://doi.org/10.1186/s13293-015-0033-y
10 Tramunt, B., Smati, S., Grandgeorge, N., Lenfant, F., Arnal, J.-F., Montagner, A. et al. (2020) Sex differences in metabolic regulation and diabetes

susceptibility. Diabetologia 63, 453–461, https://doi.org/10.1007/s00125-019-05040-3
11 Meczekalski, B., Tonetti, A., Monteleone, P., Bernardi, F., Luisi, S., Stomati, M. et al. (2000) Hypothalamic amenorrhea with normal body weight: ACTH,

allopregnanolone and cortisol responses to corticotropin-releasing hormone test. Eur. J. Endocrinol. 142, 280–285,
https://doi.org/10.1530/eje.0.1420280

12 Bomba, M., Gambera, A., Bonini, L., Peroni, M., Neri, F., Scagliola, P. et al. (2007) Endocrine profiles and neuropsychologic correlates of functional
hypothalamic amenorrhea in adolescents. Fertil. Steril. 87, 876–885, https://doi.org/10.1016/j.fertnstert.2006.09.011

13 Perkins, R.B., Hall, J.E. and Martin, K.A. (2001) Aetiology, previous menstrual function and patterns of neuro-endocrine disturbance as prognostic
indicators in hypothalamic amenorrhoea. Hum. Reprod. 16, 2198–2205, https://doi.org/10.1093/humrep/16.10.2198

14 Golden, N.H. and Carlson, J.L. (2008) The pathophysiology of amenorrhea in the adolescent. Ann. N. Y. Acad. Sci. 1135, 163–178,
https://doi.org/10.1196/annals.1429.014

15 Frisch, R.E., Wyshak, G. and Vincent, L. (1980) Delayed menarche and amenorrhea in ballet dancers. N. Engl. J. Med. 303, 17–19,
https://doi.org/10.1056/NEJM198007033030105

16 Warren, M.P. (1980) The effects of exercise on pubertal progression and reproductive function in girls. J. Clin. Endocrinol. Metab. 51, 1150–1157,
https://doi.org/10.1210/jcem-51-5-1150

17 Frisch, R.E., Gotz-Welbergen, A.V., McArthur, J.W., Albright, T., Witschi, J., Bullen, B. et al. (1981) Delayed menarche and amenorrhea of college
athletes in relation to age of onset of training. JAMA 246, 1559–1563, https://doi.org/10.1001/jama.1981.03320140047029

18 Ravi, S., Valtonen, M., Ihalainen, J.K., Holopainen, E., Kosola, S., Heinonen, S. et al. (2023) Eating behaviours, menstrual history and the athletic
career: a retrospective survey from adolescence to adulthood in female endurance athletes. BMJ Open Sport Exerc. Med. 9, e001489,
https://doi.org/10.1136/bmjsem-2022-001489

19 Golden, N.H. and Shenker, I.R. (1994) Amenorrhea in anorexia nervosa. Neuroendocrine control of hypothalamic dysfunction. Int. J. Eat. Disord. 16,
53–60, https://doi.org/10.1002/1098-108X(199407)16:1%3c53::AID-EAT2260160105%3e3.0.CO;2-V

20 Warren, M.P. (2011) Endocrine manifestations of eating disorders. J. Clin. Endocrinol. Metab. 96, 333–343, https://doi.org/10.1210/jc.2009-2304
21 Hetland, M.L., Haarbo, J., Christiansen, C. and Larsen, T. (1993) Running induces menstrual disturbances but bone mass is unaffected, except in

amenorrheic women. Am. J. Med. 95, 53–60, https://doi.org/10.1016/0002-9343(93)90232-E
22 Morrison, A.E., Fleming, S. and Levy, M.J. (2021) A review of the pathophysiology of functional hypothalamic amenorrhoea in women subject to

psychological stress, disordered eating, excessive exercise or a combination of these factors. Clin. Endocrinol. (Oxf) 95, 229–238,
https://doi.org/10.1111/cen.14399

23 Højlund, K., Wildner-Christensen, M., Eshøj, O., Skjærbæk, C., Holst, J.J., Koldkjær, O. et al. (2001) Reference intervals for glucose, β-cell
polypeptides, and counterregulatory factors during prolonged fasting. Am. J. Physiol.-Endocrinol. Metab. 280, E50–E58,
https://doi.org/10.1152/ajpendo.2001.280.1.E50
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76 Bellver, J., Rossal, L.P., Bosch, E., Zúñiga, A., Corona, J.T., Meléndez, F. et al. (2003) Obesity and the risk of spontaneous abortion after oocyte
donation. Fertil. Steril. 79, 1136–1140, https://doi.org/10.1016/S0015-0282(03)00176-6

77 Leddy, M.A., Power, M.L. and Schulkin, J. (2008) The impact of maternal obesity on maternal and fetal health. Rev. Obstet. Gynecol. 1, 170–178
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496 Archanco, M., Muruzábal, F.J., Llopiz, D., Garayoa, M., Gómez-Ambrosi, J., Frühbeck, G. et al. (2003) Leptin expression in the rat ovary depends on
estrous cycle. J. Histochem. Cytochem. 51, 1269–1277, https://doi.org/10.1177/002215540305101003

30 © 2024 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

https://doi.org/10.1073/pnas.93.13.6231
https://doi.org/10.1074/jbc.272.10.6093
https://doi.org/10.1210/jc.82.12.4144
https://doi.org/10.1016/0014-5793(96)00473-5
https://doi.org/10.1016/j.metabol.2014.08.004
https://doi.org/10.1016/j.metabol.2014.07.014
https://doi.org/10.1073/pnas.95.5.2541
https://doi.org/10.1056/NEJMoa040388
https://doi.org/10.1073/pnas.1015674108
https://doi.org/10.1210/endo.137.7.8770941
https://doi.org/10.1038/ng0396-318
https://doi.org/10.1172/JCI0215693
https://doi.org/10.1172/JCI119172
https://doi.org/10.1126/science.275.5296.88
https://doi.org/10.1016/j.peptides.2008.06.007
https://doi.org/10.1210/endo.138.2.5054
https://doi.org/10.1016/j.mce.2009.12.018
https://doi.org/10.1111/j.1365-2826.2011.02144.x
https://doi.org/10.1095/biolreprod.104.033035
https://doi.org/10.1096/fj.04-2271fje
https://doi.org/10.1095/biolreprod.106.054551
https://doi.org/10.1210/en.2008-1693
https://doi.org/10.1210/en.2009-1190
https://doi.org/10.1210/en.2011-0096
https://doi.org/10.1111/j.1743-6109.2008.00782.x
https://doi.org/10.1210/endo.141.1.7260
https://doi.org/10.1210/endo.138.11.5649
https://doi.org/10.1177/002215540305101003


Bioscience Reports (2024) 44 BSR20231916
https://doi.org/10.1042/BSR20231916

497 Cioffi, J.A., Van Blerkom, J., Antczak, M., Shafer, A., Wittmer, S. and Snodgrass, H.R. (1997) The expression of leptin and its receptors in pre-ovulatory
human follicles. Mol. Hum. Reprod. 3, 467–472, https://doi.org/10.1093/molehr/3.6.467

498 Duggal, P.S., Weitsman, S.R., Magoffin, D.A. and Norman, R.J. (2002) Expression of the long (OB-RB) and short (OB-RA) forms of the leptin receptor
throughout the oestrous cycle in the mature rat ovary. Reproduction 123, 899–905, https://doi.org/10.1530/rep.0.1230899

499 Agarwal, S.K., Vogel, K., Weitsman, S.R. and Magoffin, D.A. (1999) Leptin antagonizes the insulin-like growth factor-i augmentation of steroidogenesis
in granulosa and theca cells of the human ovary. J. Clin. Endocrinol. Metab. 84, 1072–1076, https://doi.org/10.1210/jc.84.3.1072

500 Brannian, J.D., Zhao, Y. and McElroy, M. (1999) Leptin inhibits gonadotrophin-stimulated granulosa cell progesterone production by antagonizing
insulin action. Hum. Reprod. 14, 1445–1448, https://doi.org/10.1093/humrep/14.6.1445

501 Spicer, L.J. and Francisco, C.C. (1998) Adipose obese gene product, leptin, inhibits bovine ovarian thecal cell steroidogenesis. Biol. Reprod. 58,
207–212, https://doi.org/10.1095/biolreprod58.1.207

502 Zachow, R.J., Weitsman, S.R. and Magoffin, D.A. (1999) Leptin impairs the synergistic stimulation by transforming growth factor-β of
follicle-stimulating hormone-dependent aromatase activity and messenger ribonucleic acid expression in rat ovarian granulosa cells. Biol. Reprod. 61,
1104–1109, https://doi.org/10.1095/biolreprod61.4.1104

503 Zachow, R.J. and Magoffin, D.A. (1997) Direct intraovarian effects of leptin: impairment of the synergistic action of insulin-like growth factor-I on
follicle-stimulating hormone-dependent estradiol-17β production by rat ovarian granulosa cells. Endocrinology 138, 847–850,
https://doi.org/10.1210/endo.138.2.5035

504 Duggal, P.S., Van der Hoek, K.H., Milner, C.R., Ryan, N.K., Armstrong, D.T., Magoffin, D.A. et al. (2000) The in vivo and in vitro effects of exogenous
leptin on ovulation in the rat. Endocrinology 141, 1971–1976, https://doi.org/10.1210/endo.141.6.7509

505 Ahrens, K., Mumford, S.L., Schliep, K.C., Kissell, K.A., Perkins, N.J., Wactawski-Wende, J. et al. (2014) Serum leptin levels and reproductive function
during the menstrual cycle. Am. J. Obstet. Gynecol. 210, 248.e1–248.e9, https://doi.org/10.1016/j.ajog.2013.11.009
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