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In Brief
Shotgun phosphoproteomics
enables high-throughput
analysis of phosphopeptides in
biological samples, but low
phosphopeptide identification
rates in data analysis limit its
potential. We introduce
DeepRescore2, a computational
workflow using deep learning-
based retention time and
fragment ion intensity
predictions to improve
phosphopeptide identification
and phosphosite localization. We
benchmark DeepRescore2
against existing workflows on a
synthetic phosphopeptide
dataset and apply it to real-world
biological datasets, revealing
improved sensitivity, fewer
missing values, and enhanced
phosphoproteomics-based
biological discoveries.
Highlights
• DeepRescore2 leverages deep learning to improve phosphopeptide identification.

• Demonstrated sensitivity and accuracy in synthetic and biological datasets.

• Increased identification of prognostic phosphosites in liver cancer.

• EGFR hyperactivation as a new target in poor-prognosis liver cancer.
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TECHNOLOGICAL INNOVATION AND RESOURCES
Deep Learning Prediction Boosts
Phosphoproteomics-Based Discoveries
Through Improved Phosphopeptide
Identification
Xinpei Yi1,2 , Bo Wen1,2, Shuyi Ji3, Alexander B. Saltzman4 , Eric J. Jaehnig1,2 ,
Jonathan T. Lei1,2 , Qiang Gao3, and Bing Zhang1,2,*
Shotgun phosphoproteomics enables high-throughput
analysis of phosphopeptides in biological samples. One
of the primary challenges associated with this technology
is the relatively low rate of phosphopeptide identification
during data analysis. This limitation hampers the full
realization of the potential offered by shotgun phospho-
proteomics. Here we present DeepRescore2, a computa-
tional workflow that leverages deep learning-based
retention time and fragment ion intensity predictions to
improve phosphopeptide identification and phosphosite
localization. Using a state-of-the-art computational
workflow as a benchmark, DeepRescore2 increases the
number of correctly identified peptide-spectrum matches
by 17% in a synthetic dataset and identifies 19% to 46%
more phosphopeptides in biological datasets. In a liver
cancer dataset, 30% of the significantly altered phos-
phosites between tumor and normal tissues and 60% of
the prognosis-associated phosphosites identified from
DeepRescore2-processed data could not be identified
based on the state-of-the-art workflow. Notably, Deep-
Rescore2-processed data uniquely identifies EGFR
hyperactivation as a new target in poor-prognosis liver
cancer, which is validated experimentally. Integration of
deep learning prediction in DeepRescore2 improves
phosphopeptide identification and facilitates biological
discoveries.

Post-translational modifications (PTMs) are ubiquitous in
human cells and are broadly involved in the regulation of
protein activity, localization, stability, and interaction. One of
the most important and extensively studied PTMs is phos-
phorylation, which plays a critical role in regulating a wide
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range of biological processes and signaling pathways (1).
Shotgun phosphoproteomics, in which proteins are digested
by proteases such as trypsin and analyzed via liquid
chromatography-tandem mass spectrometry (LS-MS/MS),
provides an unbiased, high-throughput method to systemati-
cally study phosphorylation in biological samples (2).
The first and absolutely essential step in phosphoproteo-

mics data analysis is the identification of phosphopeptides
based on MS/MS spectra, which is commonly achieved
through database searching (3). Multiple tools, such as
MaxQuant (4), MS-GF+ (5), X!Tandem (6), Comet (7), Mascot
(8), pFind (9), SEQUEST (10), and MSFragger (11), are avail-
able for this analysis. The peptide-spectrum match (PSM)
scoring algorithms employed by these search engines are
primarily focused on matching spectra to potential peptides
or phosphopeptides without providing a formal assessment
of the confidence regarding the localization of phosphoryla-
tion sites. To ascertain the confidence level associated with
each potential phosphorylation site candidate in an identified
peptide sequence, various computational algorithms have
been developed. Mascot Delta score (12) and SLIP (13)
compute the difference of PSM scores associated with
different competing phosphosites to determine site localiza-
tion. PhosSA (14) uses a dynamic programming algorithm for
phosphorylation site assignment. Many other algorithms
employ probability-based scores to determine phosphoryla-
tion site localization, such as AScore (15) and phosphoRS
(16) implemented in PeptideShaker (17), PTMScore (18)
implemented in MaxQuant, and PTMprophet (19) imple-
mented in philosopher (20).
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Deep Learning Boosts Phosphoproteomics-Based Discoveries
Despite the availability of numerous computational tools,
phosphopeptide identification remains a challenging task, as
clearly indicated by the high level of discrepancy among iden-
tification results generated by different computational tools on
the same data (21). Because each peptide sequence may
include multiple candidate phosphorylation sites, the search
space in phosphoproteomics is much larger compared with an
unmodified search, and this can lead to reduced sensitivity and
increased false positive rate in phosphopeptide identification
and phosphosite localization. Phosphosite localization is
further hampered by the lack of site-determining ions in many
experimental spectra. As a result, the spectrum identification
rate in a phosphoproteomics experiment is much lower than
that in a global proteomics experiment (Supplemental Fig. S1),
limiting the potential of phosphoproteomics-based biological
discoveries. Moreover, a low spectrum identification rate in
individual experiments further leads to many missing values in
the resulting dataset, which further reduces the statistical po-
wer for biological discoveries.
Recent advancements in deep learning have provided new

opportunities for proteomics (22). Deep learning–derived fea-
tures, such as the retention time (RT) difference between
experimentally observed and computationally predicted RTs
and the similarity between experimentally observed and
computationally predicted MS/MS spectra have been shown
to effectively discriminate correct and incorrect PSMs in
phosphoproteomics, and these features have been used as
evaluation metrics to benchmark computational tools for
phosphopeptide identification and phosphosite localization
(21). Incorporating these features into PSM rescoring has been
shown to improve peptide identification in global proteomic
profiling and immunopeptidomic profiling (23–27). Recently, it
has been shown that deep learning-based fragment ion in-
tensity prediction can facilitate phosphorylation site localiza-
tion (28). However, the potential utility of retention time
prediction in phosphorylation site localization has not been
investigated. Furthermore, there is no method combining deep
learning-facilitated PSM rescoring and site localization to
improve the sensitivity and accuracy of phosphopeptide
identification.
Built upon our previously published DeepRescore tool that

uses deep learning to improve peptide identification in
immunopeptidomics (23), we present in this paper DeepRe-
score2, a computational workflow that leverages deep
learning-based fragment ion intensity prediction and RT pre-
diction for phosphopeptides to enhance phosphosite locali-
zation and PSM rescoring. We benchmark DeepRescore2
against existing state-of-the-art workflows for phosphosite
localization and PSM rescoring on a synthetic phosphopep-
tide dataset. We also demonstrate its application to three real-
world biological datasets to improve the sensitivity of phos-
phopeptide identification, reduce the number of missing
values, and boost phosphoproteomics-based biological
discoveries.
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EXPERIMENTAL PROCEDURES

Datasets

One LC-MS/MS dataset of synthetic phosphopeptides and three
real-world LC-MS/MS phosphoproteome datasets from biological
samples were used in this study. RawMS data of the synthetic dataset
were downloaded from the PRIDE database (https://www.ebi.ac.uk/
pride/) with the accession key PXD000138, which included 96 li-
braries generated from 96 seed peptides (29). For each seed peptide,
the seed position was synthesized with either serine, threonine, or
tyrosine or their phosphorylated forms, and the amino acids before or
after the seed position were permuted with 20 amino acids to generate
up to 2400 different phosphorylated or non-phosphorylated peptides
for each library. In this study, we used libraries 1 to 11, which were
generated within a single day (Supplemental Table S1). A PSM was
considered correct if the identified peptide sequence and phosphory-
lation site localization matched any of the phosphorylated peptides
listed in thematched library (21, 29). Oneof the three biological datasets
was a label-free phosphoproteome dataset, and the other two were
tandem mass tag (TMT) phosphoproteome datasets. The label-free
dataset was from the U2OS cell line. Raw data were downloaded
from the PRIDE database with the accession key PXD023665 (30), and
three raw files were used in this study for method evaluation
(Supplemental Table S1). Raw data of the TMT datasets were down-
loaded from the Proteomic Data Commons (PDC, https://pdc.cancer.
gov/pdc/). The first one is a TMT10-labeled phosphoproteome data-
set from the National Cancer Institute’s Clinical Proteomic Tumor
Analysis Consortium (CPTAC) uterine corpus endometrial carcinoma
(UCEC) study (31) with the accession key PDC000126, and the first plex
including 12 fractions were used in this study for method evaluation
(Supplemental Table S1). The second dataset is a TMT10-labeled
phosphoproteome dataset from the International Cancer Proteoge-
nomeConsortium (ICPC) Hepatitis B Virus (HBV)-related hepatocellular
carcinoma (HCC) study (32) with the accession key PDC000199, and all
33 plexeswere used in this study for biological discovery (Supplemental
Table S1). All the raw MS/MS data files used were converted to MGF
files using ProteoWizard (v3.0.19014).

Database Searching

For the synthetic dataset, we followed the original study (29) and
used MaxQuant (v1.6.5.0) to search the MS/MS data against the hu-
man IPI v3.72 database concatenated with the default MaxQuant
contaminant database. Oxidation of methionine (+15.9949) and
phosphorylation of serine, threonine and tyrosine (+79.9663) were
used as variable modifications, and no fixed modification was used.
Trypsin/P was used as the digestion enzyme and up to 4 missed
cleavages were allowed. The default settings for other parameters
were used, but with all statistical filters in MaxQuant, including PSM,
protein, and site level false discovery rates (FDRs), disabled in order to
collect all possible candidate PSMs for downstream analyses.

For the U2OS and UCEC datasets, MS-GF+ (v2019.02.28) (5),
Comet (2018.01 rev.4) (7), X!Tandem (v2017.2.1.2) (6), and MaxQuant
(v1.6.5.0) (4) were used to evaluate the performance of DeepRescore2
in combination with different search engines. For the HCC dataset,
MaxQuant (v1.6.5.0) was used as the search engine. These datasets
were searched against the human protein database downloaded from
Uniprot (v20190214) and concatenated with the default contaminant
database in the MaxQuant analysis. Parameters for database
searching were set as follows: Oxidation of methionine (+15.9949) and
phosphorylation of serine, threonine, and tyrosine (+79.9663) were
used as variable modifications, and carbamidomethylation of cysteine
(+57.02146) was used as fixed modification. For the TMT datasets,
TMT labeling (+229.1629) of peptide N-termini and lysine residues
were specified as fixed modifications. Trypsin/P was used as the
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Deep Learning Boosts Phosphoproteomics-Based Discoveries
digestion enzyme. Up to 2 missed cleavages were allowed for the
U2OS and HCC data, and up to 4 missed cleavages were allowed for
the UCEC data. The precursor mass tolerance was set as 20 p.p.m
and the MS/MS mass tolerance was set as 0.02 Da.

RT and Fragment Ion Intensity Prediction

AutoRT (v2.0) (21, 33) was used for RT prediction, and pDeep3
(v1.0) (34) was used for fragment ion intensity prediction for each
peptide sequence. Fine-tuning of the AutoRT model is recommended
to account for dataset-specific variations in RT prediction. For
pDeep3, if the MS/MS data in the new dataset are generated using
similar mass spectrometers with similar settings to the pretrained
models, fine-tuning may not be necessary as the pretrained models
can be directly applied. In this study, we fine-tuned both models.

To construct experiment-specificdatasets for fine-tuning,we included
both phosphorylated and non-phosphorylated peptide identifications
passing 1% FDR (estimate by PGA R package (v1.15.1) (35)) filtering at
both PSM and peptide levels, and the phosphorylated peptide identifi-
cationswere also required tohavehigher than0.75phosphoRS (v3.1) (16)
site localization probability. For the test data, we randomly selected 500
identifications fromthe experiment-specificdatasets,while the remaining
identifications were used for the training datasets. The AutoRT algorithm
automatically splits the training datasets into two parts: the training data
for model training and the validation data for monitoring the model’s
performanceduring training anddecidingwhen toapply early stopping to
preventoverfitting.Since thepDeep3algorithmallowsonlyamaximumof
2 epochs, early stopping is not necessary and thus all the training data-
sets were used for model training.

For RT prediction, we utilized the “phosphorylation_sty” model as
the base model from the “ptm_base_model” folder in AutoRT, which is
available at https://github.com/bzhanglab/AutoRT. The base model
was fine-tuned using the experiment-specific data for a maximum of
40 epochs, with a batch size of 64. We implemented early stopping
based on the validation loss, allowing for a maximum of 10 epochs
with no improvement. For fragment ion intensity prediction, we fine-
tuned the phosphorylation-specific base model of pDeep3, which is
available at https://github.com/pFindStudio/pDeep3, using transfer
learning with the experiment-specific data for a maximum of 2 epochs,
with a batch size of 1024 to create experiment-specific models. The
parameters and training models for all datasets have been uploaded to
Zenodo (https://zenodo.org/records/10049730).

The experiment-specific models were then used to predict RT and
MS/MS spectrum for all peptide isoforms of all identified peptides.

Deep Learning-Facilitated Site Localization

For each phosphorylated site candidate i in an identified peptide
sequence corresponding to spectrum S, two deep learning-derived
scores were used to adjust the phophosRS localization score of this
candidate site i (PhosphoRSScorei ).

The first deep learning-derived score is the spectrum similarity (SS)
between a predicted MS/MS spectrum Sp and corresponding experi-
mental MS/MS spectrum Se. Several MS/MS spectrum similarity calcu-
lationmethodswere investigated, including dot product (DP), square root
dot product (srDP), spectral contrast angle (SA), Pearson correlation
coefficient (PCC), unweighted entropy distance (unwEntropy) (36), and
entropydistance (Entropy) (36). Let Ip and Ie be twovectors containing the
peak intensities from Sp and Se, respectively; similarity between Sp and
Se can be calculated by the six different scoring methods as follows:

DP= ∑ Ip × Ie̅̅̅̅̅̅̅̅̅̅̅∑ Ip
2

√
×

̅̅̅̅̅̅̅̅̅̅̅∑ Ie
2

√

srDP= ∑ ̅̅̅̅
Ip

√ × ̅̅̅̅
Ie

√
̅̅̅̅̅̅̅̅̅∑ Ip

√ × ̅̅̅̅̅̅̅̅̅∑ Ie
√

SA=1−
2 cos−1(Ip × Ie)

π

PCC= ∑[(Ip−Ip)(Ie−Ie)]̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑ (Ip−Ip)2 ∑ (Ie−Ie)2
√

unwEntropy=−

2 × Spe−Sp−Se

ln(4) ,SI =∑
i

Ii ln(Ii)

Entropy = −

2 × S
′
pe−S

′
p−S

′
e

ln(4) ,S
′
I = ∑

i

I
′
i ln(I′i ), I′ = Iw ,w

= 0.25+ S × 0.5 (S < 1.5)

DP, PCC, unwEntropy, and Entropy were calculated using the
Spectral Entropy Python package (36). srDP and SA were calculated
by python scripts following the equations.

The second deep learning-derived score is the retention time differ-
ence between predicted RT (RTp) of the identified peptide sequence with
phosphorylated site candidate i and experimentally observed RT (RTe) of
the corresponding spectrum. Two methods were used to calculate the
difference between RTp and RTe. The first is delta RT (DRT):

DRT =
⃒⃒
RTp−RTe

⃒⃒

The closer DRT is to 0, the closer RTp is to RTe. The second is RT
ratio (RTR):

RTR= min(RTp,RTe)
max(RTp,RTe)

The closer RTR is to 1, the closer RTp is to RTe.
For a candidate site i of an identified peptide sequence corre-

sponding to spectrum S, the following equations were used to adjust
its PhosphoRS localization score by integrating SS score and DRT
score or RTR score:

Scorei =PhosphoRSScorei × SSi

maxi(SSi) ×
mini(DRTi)

DRTi

or:

Scorei =PhosphoRSScorei × SSi

maxi(SSi) ×
RTRi

maxi(RTRi)

wheremaxi(SSi) andmaxi(RTRi) are the maximum SS and RTR for
all the phosphorylated site candidates in the identified peptide
sequence, respectively, and mini(DRTi) is the minimum for all the
phosphorylated site candidates in the identified peptide sequence.

Finally, the site localization probability of phosphorylated site
candidate i was calculated by transforming the localization score
through the base 10 SoftMax transformation formula as previously
described (28):
Mol Cell Proteomics (2024) 23(2) 100707 3
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Probabilityi = 10
Scorei
10

∑
i
10

Scorei
10

Deep Learning–Facilitated PSM Rescoring

The localization probabilities for all potential sites are predicted and
stored for each spectrum. During rescoring, the stored probabilities
are used for the selection of the best phosphorylation site candidate
with the largest site localization probability as the site identification of
spectrum S. Following the DeepRescore strategy (23), three feature
sets (Supplemental Table S2) were extracted from the original PSM
identifications or calculated based on the selected phosphorylated
site and non-phosphorylated identifications. The first set comprised
search engine-specific features, the second set comprised search
engine-independent features, and the last set comprised deep
learning-derived features, including both RTR and SS computed
based on the entropy distance. Using the semi-supervised support
vector machine (SVM)-based Percolator rescoring model (v3.4) (37), all
the above features were integrated to compute a new score for each
PSM.

False Localization Rate (FLR) Calculation for the Synthetic Dataset

For each method, all phosphorylated PSMs with correctly identified
sequence were sorted by the site localization probability in
descending order, and the FLR was calculated as:

FLR= FL
TL + FL

where TL and FL are the numbers of true and false localization
sites at the site localization probability cutoff.

Phosphosite Level Quantification

The single site-level quantitation procedure was written in Python 3
(Python Software Foundation. Python Language Reference http://
www.python.org), along with third-party libraries NumPy (v1.19.5)
(38) and Pandas (v1.3.4, mckinney-proc-scipy-2010,
reback2020pandas).

First, any identical modified peptide sequences (different PSMs;
different scans with the same modified amino acid sequence) are
combined into one record. Quantities are summed, and the best
database search score is kept, creating a table unique on the modified
sequence. Next, the table is expanded to produce a separate record
for each modification (e.g., a doubly phosphorylated modified
sequence is duplicated into two records, one specific to each posi-
tion). From here, a 15-mer site identifier is calculated for each record.
Final site level quantitation is produced by summing each group of
15mers. This procedure is performed independently for each entry in
the reference protein database. Phosphosite abundances were log2
transformed and median normalized for downstream analyses.

Kinase Activity Inference

Kinase activity scores were inferred for each data table using the
Kinase-Substrate Enrichment Analysis (KSEA) algorithm (39) imple-
mented in R. Kinase and kinase family target phosphorylation sites
collected from several sources and used to evaluate the GPS 5.0
target prediction model were used for the inference here
(Supplemental Table S4 from Wang et al. (40)). For this study, we
required measurements for at least five kinase targets in a given
sample for the HCC dataset for kinase activity inference.
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Liver Cancer Organoid Culture and Afatinib Response Testing

Liver cancer specimens were collected from patients who under-
went surgical resection at Zhongshan Hospital of Fudan University
with signed informed consent forms. Liver cancer tissues were minced
and digested at 37 ◦C in phosphate buffer saline (PBS, Gibco) con-
taining Collagenase Type IV (5 mg/ml, Gibco) for 30 to 60 min with
gentle shaking. After digestion, the suspension was filtered through a
100-mm cell strainer and centrifuged consecutively at 1000 rpm,
800 rpm, and 600 rpm for 5 min, respectively. The pellet was resus-
pended in a cold organoid culture medium and then mixed 1:2 with
Matrigel (Corning) to reach a density of 4000 cells per 50 ml before
seeding into a 24-well culture plate. After Matrigel solidification at 37 ◦C,
an organoid culture medium was added to each well and organoids
were cultured in a humidified incubator at 37 ◦C with 5% CO2.

For Afatinib (Selleck) response testing, organoids were gently
digested and seeded into 384-well plates (Corning) at a density of
500 cells per well in a volume of 15 ml (1:1 mixture of culture medium
and Matrigel) by Multidrop Combi Reagent Dispenser (Thermo Fisher
Scientific). After incubation at 37 ◦C to make the Matrigel-medium
mixture solidify, 35 ml of the pre-warmed culture medium was
added into each well. After 72-h incubation, organoids were treated
with serial dilutions of Afatinib using a D300e Digital Dispenser
(Tecan). After another 72-h drug treatment, 20 ml of CellTiter Glo 3D
(Promega) was added to each well followed by measuring the lumi-
nescent signals using an EnVision Multilabel Reader (PerkinElm) to
determine the cell viability. Three replicative wells were measured.
AUC was calculated with the equation:

AUC=
∑n
i=1

(Vi−Vi−1) × (Log Ci−Log Ci−1)
2 × (Log Cmax−Log Cmin)

where Ci stands for each concentration and Vi stands for the
relative cell viability at Ci. Cmax and Cmin were the maximum and
minimum concentration for each drug in our screening.

Western Blot Analysis of EGFR_Y1068

For the analysis of phospho-EGFR inhibition, 5 μM afatinib was
added into the culture medium, and organoids were collected after
incubation for 2 h. The organoid samples were collected and lysed in
RIPA buffer supplemented with protease and phosphatase inhibitor
cocktail (Beyotime). The samples were quantified by BCA Protein
Assay Kit (Beyotime), separated by 10% SDS-PAGE (Beyotime), and
transferred to a PVDF membrane (Millipore). The membrane was
blocked with QuickBlock Western (Beyotime) and incubated with
primary antibody (Phospho-EGF Receptor (Tyr1068) (D7A5), Cell
Signaling Technology, CST-3777, 1:1000 dilution) at 4 ◦C overnight
followed by secondary antibody incubation. The protein bands were
visualized using ChemistarTM ECL Western Blotting Substrate
(Tanon).

RESULTS

DeepRescore2 Workflow

Figure 1 depicts the overall DeepRescore2 workflow, which
processes the results of database searching in four steps to
improve phosphopeptide identification and phosphosite
localization (Experimental Procedures). First, based on the
confidently identified PSMs from database searching, RT and
fragment ion intensity prediction models are trained using

http://www.python.org
http://www.python.org
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FIG. 1. DeepRescore2 workflow for phosphopeptide identification and phosphosite localization. After searching the MS/MS spectra
against a protein database using a search engine, DeepRescore2 processes the search results in four steps: (1) RT and fragment ion intensity
prediction for all identified peptide sequences with all possible phosphosite localizations using deep learning models fine-tuned with confidently
identified PSMs from the database search. (2) Phosphosite localization by combining site localization score from PhosphoRS and deep learning
prediction derived spectrum similarity and retention time (RT) difference scores. (3) PSM rescoring using Percolator based on search engine
specific features, search engine independent features, and spectrum similarity and retention time difference scores. (4) Visualization of the PSMs
by PDV.

Deep Learning Boosts Phosphoproteomics-Based Discoveries
AutoRT (21, 33) and pDeep3 (34), respectively, and then used
to predict RTs and MS/MS spectra for all identified peptide
sequences with all possible phosphosite localizations (i.e.,
peptide isoforms). Second, for each peptide isoform, a prob-
ability score is computed taking into consideration the Phos-
phoRS score (16), RT difference between predicted and
experimentally observed RTs, and spectrum similarity be-
tween predicted and experimentally observed spectra, and
then phosphosite localization is determined based on the
combined probability score. Third, PSM rescoring is per-
formed using the semi-supervised Percolator algorithm (37),
which integrates search engine-specific features, search
engine-independent features, and the two deep learning-
derived features to improve the accuracy and sensitivity of
phosphopeptide identification. Finally, identified PSMs can be
manually validated using the visualization tool PDV (41).

Evaluation of RT and Fragment Ion Intensity Predictions

The DeepRescore2 workflow relies on accurate predictions
of RT and fragment ion intensity. These predictions are ach-
ieved by utilizing AutoRT for RT predictions and pDeep3 for
fragment ion intensity predictions. To improve the perfor-
mance of these models, experiment-specific data was used to
fine-tune their pre-trained base models (Experimental
Procedures). To assess the potential overfitting of the fine-
tuned deep learning models, we evaluated their performance
on the train, validation, and test PSMs in a label-free dataset
from human osteosarcoma cell line U2OS (30), and a TMT
dataset on UCEC from the CPTAC (31). To save computa-
tional resources, the method evaluation was based on three
raw files from the U2OS study and one TMT plex from the
UCEC study (Supplemental Table S1). Both datasets were
searched using four search engines Comet, MaxQuant, MS-
GF+, and X!Tandem, respectively (Experimental Procedures).
Only identifications within the 1% FDR limit at both PSM and
phosphopeptide levels and a site localization probability
greater than 0.75 were considered confident identifications.
The predicted RT values showed excellent alignment with

the observed RT values in both the training and validation
datasets, with a Spearman correlation close to 1
(Supplemental Fig. S2, A and B). Although the performance on
the test dataset was slightly lower, the Spearman correlation
remained around 0.9 across all four search engines for both
the label-free and TMT datasets. In evaluating the similarities
between the predicted and observed fragment ion intensities
in both the training and test datasets, we found no significant
Mol Cell Proteomics (2024) 23(2) 100707 5
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differences for any of the four search engines in both the label-
free and TMT datasets (Supplemental Fig. S2, C and D). These
results indicate that the models were able to accurately pre-
dict RT and fragment ion intensity and generalize well to the
test datasets.

Benchmarking of Deep Learning-Facilitated Phosphosite
Localization

We benchmarked the performance of four site localization
methods, PhosphoRS alone (Method 1) and its combination
with either spectrum similarity (Method 2), RT difference
(Method 3) or both (Method 4), on MaxQuant search results
from a synthetic phosphopeptide dataset (29), in which the
ground truth is known and the FLR can be determined pre-
cisely (Fig. 2A, Supplemental Table S1). Of note, no rescoring
was involved in this section. Spectrum similarity was
computed based on Entropy (36), which outperformed the
other five spectrum similarity computation methods including
DP, srDP, SA, PCC, and unwEntropy in our comparative
A

Method 1

Method 2

Method 4

PhosphoRS

Method 3

pDeep3PhosphoRS

PhosphoRS

PhosphoRS

AutoRT

pDeep3 AutoRT

80
61

81 68 134 112
0

10
8

0
20

00
40

00
60

00
80

00

#PSMs under 1% FLR

C

0

2000

4000

6000

8000

Method 4
Method 3
Method 2
Method 1

FIG. 2. Benchmarking of deep learning-facilitated phosphosite loc
were benchmarked. B, the number of correctly localized PSMs at differen
numbers of correctly localized PSMs at 1% FLR and the percent increas
comparing the PSM identifications from the four methods. The number of
at different site probability cutoffs are shown. The FLRs at 0.75 site pro
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analysis (Experimental Procedures, Supplemental Fig. S3A).
RT difference was computed based on RTR, which out-
performed the alternative method DRT in our comparative
analysis (Experimental Procedures, Supplemental Fig. S3B).
Among the four site localization methods, the ones incor-

porating deep learning-derived features consistently out-
performed the PhosphoRS alone method at different levels of
FLRs, with the best performance observed for the method
simultaneously incorporating both features (Fig. 2B). At 1%
FLR, compared with Method 1, Methods 2, 3, and 4 increased
the number of correctly identified PSMs by 2.78%, 2.47%,
and 4.65%, respectively. Almost all PSMs correctly identified
by Method 1, 2, or 3 were also correctly identified by Method 4
(Fig. 2C). To illustrate the complementary contributions of RT
prediction and fragment ion intensity prediction to the superior
performance of Method 4, we investigated the RT difference
and spectrum similarity scores for two sets of PSM identifi-
cations. The first set consisted of 81 PSMs successfully
identified by Methods 3 and 4 but not Methods 1 and 2, while
B

0

1

2

3

4

5

6

60
00

65
00

70
00

75
00

80
00

85
00

#Correct PSMs

FL
R

(%
)

Method 1: 8068
Method 2: 8292 (+2.78%)
Method 3: 8267 (+2.47%)
Method 4: 8443 (+4.65%)

0

1

2

3

4

5

6

>0.25 >0.5 >0.75 >0.99
Site probability

FL
R

(%
)

Method 1: 0.81%
Method 2: 1.04%
Method 3: 0.90%
Method 4: 0.79%

D

3 2

alization on the synthetic dataset. A, four site localization methods
t levels of PSM FLR are shown for the four methods, respectively. The
e compared with Method 1 (phosphoRS) are indicated. C, upSet plot
correctly localized PSMs by Method 4 are marked as red. D, the FLRs
bability are indicated.



Deep Learning Boosts Phosphoproteomics-Based Discoveries
the second set consisted of 120 PSMs successfully identified
by Methods 2 and 4 but not Methods 1 and 3 (Fig. 2C). In a
majority of these cases, the experimental spectra lacked the
ions necessary to precisely determine the phosphosite local-
ization, resulting in a localization probability close to 0.5 when
using Method 1. Among the 81 cases, the incorporation of RT
prediction helped distinguish the isoform with correct phos-
phosite localization from the putative isoforms (Supplemental
Fig. S4A), whereas the incorporation of spectrum prediction
did not show the same effect (Supplemental Fig. S4B).
Consequently, Method 3, but not Method 2, produced high
phosphosite localization probabilities for this set of PSMs
(Supplemental Fig. S4C). On the other hand, for the 120
PSMs, opposite trends were observed (Supplemental Fig. S4,
D–F). These results suggest that the integration of the com-
plementary information sources in Method 4 leads to
improved performance.
We further investigated the relationship between computed

site localization probabilities and the true FLR. Among the four
methods, Method 4 was associated with the lowest FLRs for
all four site localization probability cutoffs investigated, with an
FLR of 0.79% observed for the cutoff of 0.75 (Fig. 2D).
Moreover, with the site probability cutoff of 0.75, all other
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localized PSMs by Method 7 is marked as red. D, the FLRs at different s
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methods were also able to achieve an FLR of around 1%,
which is acceptable for typical phosphoproteomics studies.

Benchmarking of Deep Learning-Facilitated
Phosphopeptide Identification

Based on MaxQuant search results from the synthetic
phosphopeptide dataset, we further benchmarked three
phosphopeptide identification methods with different combi-
nations of the site localization and PSM rescoring algorithms,
using Method 1 (PhosphoRS only) as the baseline method for
comparison (Fig. 3A). The three methods included Phos-
phoRS followed by a traditional PSM rescoring algorithm
without using deep learning-derived features (Method 5),
PhosphoRS followed by our proposed DeepRescore algo-
rithm for PSM rescoring (Method 6), and Method 4 followed by
DeepRescore (Method 7). In DeepRescore, the two deep
learning-derived features, spectrum similarity and RT differ-
ence, were computed based on entropy distance and RT ratio,
respectively, based on their superior performance as
compared to alternative methods (Experimental Procedures,
Supplemental Fig. S5, A and B).
Method 6 and 7 consistently outperformed Method 1 and 5

at different levels of FLRs, and Method 5 outperformed
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Method 1, but only in the region where FLR was higher than
0.4% (Fig. 3B). At 1% FLR, compared with Method 1,
Methods 5, 6, and 7 increased the number of correctly iden-
tified PSMs by 8.32%, 11.87%, and 17.33%, respectively.
These increases were much higher than those observed for
Methods 2, 3, and 4, suggesting a dominant role of PSM
rescoring, especially DeepRescore, in the observed perfor-
mance gain. The largest performance gain was from Method
7, which leverages deep learning-derived features in both site
localization and PSM rescoring. Almost all PSMs correctly
identified by the other six methods were also correctly iden-
tified by Method 7 (Fig. 3C). Similar to Methods 1 to 4,
Methods 5 to 7 were also able to achieve an FLR of around
1% with the site probability cutoff of 0.75 (Fig. 3D).
The initial database search results consisted of both true

and false identifications, and both were used as targets or
positive samples during the training of AutoRT and pDeep3
models. In the synthetic dataset, the true and false identifi-
cations could be separated, allowing us to evaluate the po-
tential impact of including false identifications as positive
training samples on the final results. We compared the score
distributions of true targets, false targets, and decoy identifi-
cations for Method 1 (without rescoring), Method 5 (rescoring
without deep learning-derived features), and Method 7
(rescoring with deep learning-derived features). As expected,
rescoring enhanced the score difference between true targets
and decoys, irrespective of whether deep learning-derived
features were used or not (Supplemental Fig. S6). At a 1%
FDR, the ratio between the numbers of true and false targets
for Method 5 was 9.17x, which was comparable to that of
Method 1 (10.58x). Interestingly, Method 7 reported not only
an increased number of true targets but also a reduced
number of false targets, resulting in the highest true target to
false target ratio (14.32x). These results highlight that incor-
porating deep learning-derived features in both the relocali-
zation and rescoring process within the workflow effectively
addresses false identifications in the initial database search
results, ultimately enhancing sensitivity and accuracy.
Together, data from our benchmarking study on a synthetic

dataset clearly revealed superior performance for Method 7
compared with other competing methods. Method 7, which
leverages deep learning-based retention time and fragment
ion intensity predictions in both phosphosite localization and
PSM rescoring, was referred to as DeepRescore2 and used in
all subsequent studies in this paper.

Sensitivity Improvement in Real-World Biological Datasets

Next, we assessed the performance of DeepRescore2 in
two real-world biological datasets, including the U2OS label-
free dataset (30) and the UCEC TMT dataset (31)
(Experimental Procedures, Supplemental Table S1). For each
dataset, the search results from Comet, MaxQuant, MS-GF+,
and X!Tandem, respectively, were processed using DeepRe-
score2 or PhosphoRS.
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In the U2OS label-free dataset, when used in combination
with DeepRescore2, Comet, MaxQuant, MS-GF+, and X!
Tandem identified 9,135, 10,380, 8613, and 8897 phosphor-
ylated peptides, respectively, which were 31%, 19%, 27%,
and 32% higher than the numbers reported when they were
used in combination with PhosphoRS (Fig. 4A, Supplemental
Table S3). Furthermore, we investigated the consistency of
phosphosite identification and localization along an Extracted
Ion Chromatogram (XIC), using a 0.5 tolerance window around
the RT and mass values. For all four search engines, Deep-
Rescore2 exhibited higher stability along peptide elution and
displayed less dependence on the absolute precursor in-
tensity at the time of the MS/MS event compared to Phos-
phoRS (Supplemental Fig. S7).
In the UCEC TMT dataset, when used in combination with

DeepRescore2, Comet, MaxQuant, MS-GF+, and X!Tandem
identified 27,881, 28,658, 29,082, 25,679 phosphorylated
peptides, respectively, which were 40%, 28%, 43%, 46%
higher than the numbers reported when they were used in
combination with PhosphoRS (Fig. 4B, Supplemental
Table S3). In both the label-free and the TMT datasets,
DeepRescore2 identifications covered almost all PhosphoRS
identifications for all search engines (Fig. 4). All above
phosphopeptide-level observations were similarly observed at
the PSM level (Supplemental Fig. S8, Supplemental Table S3).
Together, these results clearly demonstrate that DeepRe-
score2 increases the sensitivity of phosphopeptide identifi-
cation in real-world biological datasets.

Increased Identification of Liver Cancer-Associated
Phosphosites

Improved phosphopeptide identification is expected to
enhance biological discoveries. To demonstrate this potential,
we applied DeepRescore2 to a previously published HCC
study (32), which included TMT-based phosphoproteomic
analysis of paired treatment-naive tumors and normal adja-
cent tissues (NATs) from 159 HCC patients (Supplemental
Table S1). The dataset was searched using MaxQuant
(Experimental Procedures) and then processed using either
PhosphoRS or DeepRescore2. Identifications within the 1%
FDR limit at both PSM and phosphopeptide levels and a site
localization probability greater than 0.75 were considered as
confident identifications. Phosphosite level quantification was
performed for confident identifications from PhosphoRS and
DeepRescore2 (Experimental Procedures).
Across the whole cohort, DeepRescore2 identified

2,457,685 PSMs and 93,759 phosphopeptides, which
increased the PhosphoRS-based PSM and phosphopeptide
identifications by 41% and 23%, respectively (Fig. 5, A and B).
Importantly, the vast majority of PSM and phosphopeptide
identifications reported by PhosphoRS were covered by
DeepRescore2 identifications. Phosphosite quantification
matrices generated based on DeepRescore2 included more
“quantifiable” phosphosites than those based on PhosphoRS
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identifications across a wide range of non-missing value cut-
offs (Fig. 5C). For downstream analyses, we defined quantifi-
able sites as those quantified in at least 100 tumor samples
and 100 NAT samples. With this definition, DeepRescore2
identified 22,033 quantifiable sites, which was 34% more than
those identified by PhosphoRS (Fig. 5D, Supplemental
Table S4). Only 443 out of the 16,451 (2.7%) quantifiable
sites identified by PhosphoRS were not identified by
DeepRescore2.
To identify liver cancer-associated phosphosites, we

assessed the differences in phosphosite abundance between
tumors and paired NATs. Among the 22,033 quantifiable
phosphorylation sites reported by DeepRescore2, 5021 were
significantly increased and 4929 were significantly decreased
in tumors compared to paired NATs (adj. p < 0.01, Wilcoxon
signed-rank test). Of these, only 3567 (71%) and 3498 (71%)
were also found to be significantly altered based on
PhosphoRS-derived data, and others were not identified (95 +
113), not quantifiable (967 + 1097), or not significantly altered
(392 + 221) (Fig. 6A, Supplemental Table S4). Phosphosites
that showed statistically significant alterations and were not
identified or quantifiable in the PhosphoRS-derived data
included both known functional sites on established cancer
genes such as CHEK2_S379 (known to induce CHEK2 enzy-
matic activity (42)) and EGFR_S1071 (associated with EGFR
desensitization (43)), as well as sites on less explored genes
such as RIPK2_S176 (known to induce RIPK2 enzymatic ac-
tivity (44)) (Fig. 6B). These findings expanded the pool of pu-
tative liver cancer associated phosphosites for further
experimental validation.
At the pathway level, parent genes of the 4929 decreased

sites were enriched in different metabolic processes
(Fig. 6C), consistent with the essential role of the liver in
metabolism. Parent genes of the 5021 increased sites were
Mol Cell Proteomics (2024) 23(2) 100707 9
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enriched in biological processes related to CENP-A con-
taining nucleosome assembly, chromatin assembly, nega-
tive regulation of cell cycle phase transition, nuclear division,
regulation of cell cycle phase transition, mitotic cell cycle,
mRNA processing, DNA metabolic process, etc (Fig. 6D).
Protein phosphorylation plays an important role in many
mRNA processing events, including pre-mRNA splicing (45).
Phosphorylation status greatly modulates the activity of SR
proteins, a family of nuclear RNA-binding proteins involved
in the regulation of both constitutive and alternative splicing
(46). In our tumor versus NAT comparison, 98 phosphosites
from the 12 SR proteins were significantly increased in tu-
mors. Moreover, 78 (80%) of the 98 phosphosites were on
serines located in the RS domain. This region is specifically
recognized by SRPK1 (47), the most well-studied SR protein
kinase (48). In accordance with this observation, SRPK1
showed significantly increased mRNA and protein abun-
dance in tumors compared with NATs in this cohort
(Fig. 6E). Thus, data from both kinase and substrates sup-
port the role of SPRK1 activity in liver cancer development.
Importantly, only 55 out of the 78 phosphosites (71%) in the
RS domain were identified as significantly increased in the
analysis of the PhosphoRS-derived dataset (Fig. 6F).
Together, DeepRescore2 provides a more comprehensive
catalog of liver cancer-associated phosphosites, linking
functional phosphosites and biological processes to liver
10 Mol Cell Proteomics (2024) 23(2) 100707
cancer oncogenesis, and expanding the list of putative
substrates of liver cancer-associated SRPK1 activity.

Increased Identification of Prognosis-Associated
Phosphosites in Liver Cancer

To identify prognosis-associated phosphosites in liver
cancer, we further performed survival analysis based on
overall survival (OS) data of the 159 HCC patients. Among
the 22,033 quantifiable phosphorylation sites reported by
DeepRescore2, 420 were significantly associated with poor
prognosis (p < 0.01, hazard ratio (HR) > 2, log-rank test) and
202 were significantly associated with good prognosis (p <
0.01, HR < 0.5). Of these, only 176 (42%) and 79 (39%) were
also found to be significantly associated with prognosis
based on PhosphoRS-derived data, and others were not
identified (9 + 3), not quantifiable (95 + 38), or not significantly
associated (140 + 82) (Fig. 7, A and B, Supplemental
Table S4). Among the top 10 poor prognosis-associated
phosphosites with the largest HRs, only seven showed sig-
nificant association with OS in PhosphoRS-derived data
(Table 1). Moreover, eight out of the 10 phosphosites had a
larger hazard ratio than those computed based on cognate
mRNA and protein measurements (Table 1). In particular,
NAV3_S1190 and MIEF1_S79 were significantly associated
with poor prognosis based on DeepRescore2-but not
PhosphoRS-derived data, while their cognate mRNA and
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comparison of phosphosite abundance in tumors and NATs for CHEK2_S379, RIPK2_S176, and EGFR_S1071, respectively. C, gene ontology
enrichment analysis results of the parent proteins of the 4929 significantly down-regulated phosphosites. D, gene ontology enrichment analysis

Deep Learning Boosts Phosphoproteomics-Based Discoveries

Mol Cell Proteomics (2024) 23(2) 100707 11



Deep Learning Boosts Phosphoproteomics-Based Discoveries
protein were not significantly associated with OS (Fig. 7, C
and D), suggesting a specific contribution of phosphorylation
to the observed survival associations.

EGFR Hyperactivation as a New Target in Poor-Prognosis
Liver Cancer

Since kinases are important therapeutic targets, we next
performed kinase activity inference for the 159 HCC tumor
samples based on DeepRescore2-and PhosphoRS-derived
phosphoproteomics datasets, respectively (Experimental
Procedures). Kinase activity was quantified for 134 and 120
kinases/kinase families based on DeepRescore2-and
PhosphoRS-derived data, respectively. To identify prognosis-
associated kinases, we performed survival analysis using ki-
nase activity scores derived from DeepRescore2 and Phos-
phoRS data, respectively.
The activities of eight kinases (EGFR, CDK7, AMPK-family,

CDK6, CDC7, CDK2, ATR, and RPS6KA5) were significantly
associated with OS (p < 0.05, HR > 2 or <0.5, log rank test) in
one or both analyses (Supplemental Table S5), and analysis
results based on the two datasets were comparable for the
vast majority of kinases (Fig. 8A). One notable outlier was
EGFR, for which higher inferred activity was associated with
shorter OS, but only when the inference was made based on
DeepRescore2 data (Fig. 8, A–C).
To examine whether EGFR hyperactivation could serve as a

target for anti-cancer interventions in HCC, liver cancer cell
line data from DepMap was used to correlate Reverse Phase
Protein Array (RPPA) measurement of EGFR_Y1068, a site
that is crucial to EGF-induced Ras/MAPK signaling (49), with
response to afatinib, an EGFR-specific tyrosine kinase inhib-
itor. We observed a strong negative correlation between
EGFR_Y1068 abundance and afatinib response as quantified
by the area under the curve (AUC, smaller AUC corresponds
to higher sensitivity) across the eight liver cancer cell lines
(R = − 0.79, p = 0.021, spearman correlation, Fig. 8D), sug-
gesting that EGFR_Y1068 levels could be a potential marker
of response to EGFR inhibition.
To further confirm this finding from a cell line-based high-

throughput study, we identified three HCC organoids with
varied levels of EGFR_Y1068 phosphorylation by Western blot
(Experimental Procedures). HCCO7 expressed a high level of
EGFR_Y1068, whereas HCCO31 and HCCO5 had much lower
levels of EGFR_Y1068 abundance (Fig. 8E). Upon afatinib
treatment, a detectable decrease of EGFR_Y1068 was
observed in all models, confirming drug target engagement
(Fig. 8E). HCCO7 demonstrated high sensitivity to afatinib
(AUC = 0.31, Experimental Procedures), while the other
results of the parent proteins of the 5021 significantly up-regulated phosp
number of parent proteins identified by both PhosphoRS and DeepResco
and the total number of parent proteins in the pathway, respectively. E, c
and protein levels, respectively. F, differentially expressed phosphosite
proteins. p values are based on the Wilcoxon rank sum test.
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organoids were less sensitive (Fig. 8F). These results corrob-
orate the results from the DepMap cell line analysis and
support the use of EGFR_Y1068 as a marker of response to
EGFR inhibitors in liver cancer. Together, our data demon-
strate the power of improved phosphosite identification in
improving kinase activity inference, leading to the identifica-
tion of poor-prognosis-associated hyperactivated kinases as
new targets for drug repurposing or development.
DISCUSSION

We developed DeepRescore2, a computational workflow
that leverages deep learning prediction to improve phospho-
peptide identification and phosphosite localization in phos-
phoproteomics data analysis. DeepRescore2 substantially
increases the sensitivity of phosphopeptide identification in
both synthetic and real-world biological datasets, and
improved identification leads to an in-depth understanding of
kinase signaling and deeper biological discoveries.
A key strength of DeepRescore2 is the integrative workflow

that leverages complementary computational techniques
including PhosphoRS scoring, semi-supervised machine
learning through Percolator, and deep learning-based pre-
diction of phosphopeptide RT and fragment ion intensities.
Based on a synthetic dataset with known ground truth, our
benchmarking study clearly showed that the combination of
all these techniques collectively contributed to the ultimate
best performance. The performance gain was observed when
incorporating deep learning prediction in either phosphosite
localization or PSM rescoring, but the latter provided a
stronger sensitivity increase.
During the benchmarking process, we also comprehen-

sively assessed the impact of different methods for computing
spectrum similarity and RT difference on the performance of
site localization and PSM rescoring (Supplemental Figs. S3
and S5). Our analyses revealed a substantial impact of
method selection on the performance of both tasks. For
spectrum similarity computation, entropy distance, a similarity
scoring method recently proposed for metabolomics data
analysis32, showed the best performance in our evaluation.
For RT difference computation, a new method, RT ratio, out-
performed the routinely used delta RT method. Although not
the focus of this study, these results should be of particular
interest to the proteomics and mass spectrometry community.
Applying DeepRescore2 to three real-world biological

datasets demonstrated its application to both label-free and
TMT phosphoproteomics datasets, and its flexibility to be
combined with different search engines. Importantly,
hosites. In C and D, the numbers at the end of each bar represent the
re2, the number of parent proteins identified by DeepRescore2 alone,
omparison of SRPK1 abundance between tumors and NATs at mRNA
s detected in DeepRescore2-or PhosphoRS-derived data on 12 SR
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improved sensitivity in phosphopeptide identification directly
translated into increased biological discoveries. Most of the
phosphosites significantly associated with liver cancer
development and prognosis have very limited information in
the literature, opening new opportunities for further investi-
gation. Increased phosphosite identification also led to
improved kinase activity inference. One important finding is
that EGFR hyperactivation is not only associated with poor
prognosis in liver cancer but also associated with increased
sensitivity to afatinib in both cell lines and organoids. Afatinib
is approved for non-small cell lung cancer harboring EGFR
mutations. It is also being investigated as a tissue-agnostic
drug in a biomarker-guided phase 2 basket clinical trial
where patients with tumors, regardless of location, harboring
EGFR activating mutations are matched to treatment with
afatinib (NCT02465060). Although EGFR inhibitors have not
been approved for liver cancer, our finding may accelerate
mechanism-based drug repurposing by incorporating
EGFR_Y1068 as a patient stratification marker for clinical
investigation.
Mol Cell Proteomics (2024) 23(2) 100707 13



TABLE 1
Survival data for the top 10 poor prognosis-associated phosphosites identified by DeepRescore2 and their parent genes based on RNA and

protein measurements

No. Site

Phosphoproteomics RNA-seq Proteomics

DeepRescore2 PhosphoRS
p-value HR p-value HR

p-value HR p-value HR

1 DNAJB1_S16 1.1e-07 4.9 1.3e-07 4.8 0.03 1.8 0.13 1.5
2 DTL_S655 1.3e-04 3.9 NA NA 0.002 2.4 7.8e-04 4.0
3 CEP170_T628 7.6e-05 3.9 3.2e-03 2.7 0.06 1.6 2.0e-04 2.8
4 PKM_S127 2.8e-06 3.8 9.4e-06 3.5 5.3e-06 3.6 2.0e-03 2.3
5 PSMD11_S298 4.0e-05 3.7 1.8e-04 3.4 0.03 1.8 0.83 0.9
6 ARHGEF1_S631 1.1e-05 3.5 1.1e-04 3.0 0.58 1.2 0.25 1.4
7 FXR1_S432 4.6e-04 3.5 1.1e-03 3.1 0.11 1.5 0.03 1.8
8 ANLN_S72 9.4e-05 3.3 4.0e-04 3.0 8.5e-06 3.5 0.007 2.2
9 NAV3_S1190 7.9e-04 3.3 0.8 1.1 0.70 1.1 0.81 1.1
10 MIEF1_S79 1.7e-04 3.3 NA NA 0.20 1.4 0.60 0.9

Deep Learning Boosts Phosphoproteomics-Based Discoveries
One limitation of our study is that we performed the
benchmarking analysis on only a subset of mass spectrometry
runs from the synthetic dataset. This was done to allow us to
compare seven different methods in a reasonable time frame.
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However, using the complete dataset could lead to more
robust benchmarking results. Another limitation of the study is
that our new method was combined only with the phosphosite
localization algorithm phosphoRS. We chose phosphoRS as
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the baseline method because it showed relatively higher
sensitivity compared with other phosphosite localization al-
gorithms in previous evaluation studies (28, 29, 50). During our
manuscript preparation, a new phosphosite localization al-
gorithm, AScorePro, has been published and showed superior
performance compared with its predecessor AScore (51).
Because the deep learning-derived features are largely inde-
pendent of the information used in AscorePro, we expect that
combining deep learning-derived features with AscorePro
could also improve phosphosite localization. However, this
will need to be formally tested in the future. It would also be
interesting to leverage the new Iterative Synthetically Phos-
phorylated Isomers (iSPI) resource (51) in future benchmarking
efforts. Moreover, DeepRescore2 could be further improved
by integrating additional deep learning-derived features, such
as phosphosite probability prediction (21). However, such a
method might introduce a bias into scoring towards previously
identified phosphopeptides and thus additional benchmarking
is required to thoroughly evaluate the impact and effective-
ness of this approach. With the increasing use of other PTM
profiling in biomedical research, DeepRescore2 can also be
expanded to support other PTMs by incorporating deep
learning-derived features trained on data of other PTMs, which
will further broaden the impact of the DeepRescore2 workflow.
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