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In January, the U.S. federal government declared 2023 to 
be a “Year of Open Science” and set new requirements and 

guidelines from the National Institutes of Health on data 
sharing (1). Although we have a few exemplary open datasets 
in our radiology artificial intelligence (AI) community, we 
can and must do better as physicians and scientists for the 
benefit of our patients. Sharing data, increasingly important 
for open science, promotes nonmaleficence (a value of the 
Hippocratic oath) by reducing duplicate imaging, using data 
more efficiently, and ensuring clear communication to dis-
seminate research and advance medical care. For example, 
a dataset shared online by one research group as part of a 
specific study can spark ideas in other researchers and stimu-
late new research directions. By embracing open science, we 
have the opportunity to stimulate innovative research while 
being time-conscious (think of the time it takes to collect 
and curate data and pretrain AI models!) during a time of re-
duced public funding; to recover public trust in science and 
medicine by improving reproducibility (2); and to support 
diverse and inclusive research environments.

Public sharing of imaging datasets is a crucial element 
of open science, which most notably has been associated 
with open-source code. Open science broadly supports the 
transparent and collaborative sharing of code, data, meth-
odology, and education—tenets that allow for reproduc-
ibility within our research. The concept of open science 
is not new; scientists in the 17th century recognized the 
need to communicate results efficiently, and journals and 
conferences were conceived. However, in modern research 
where science and information technology meet, the tools 
for how we conduct research and communicate it have 
changed drastically. Consider, for instance, the recent CO-
VID-19 pandemic, during which the AI community had 
a chance to demonstrate its value to the public by building 
predictive models based on information contained within 
chest radiographs and CT images. By the conclusion of 
the pandemic’s initial year, it was reported that out of the 
hundreds of AI models published, none were deemed suit-
able for clinical translation (3). From these initial publica-
tions and reports, data sharing was applauded, and large 
databases were built (4). Nevertheless, it was clear that we 
still had to learn how to share quality datasets and ensure 
close collaboration with radiologists and imaging scientists 
(5,6). If we want AI to succeed in radiology, we must share 
data and learn how to share data.

Sharing medical imaging datasets is an ongoing global 
effort; numerous datasets and repositories have been 

around for the last decade or so. For example, a major re-
source is The Cancer Imaging Archive, an expansive reposi-
tory housing cancer-related medical imaging datasets with 
corresponding clinical data that aims at supporting the re-
producibility of quantitative imaging metrics (7,8). These 
various datasets have allowed researchers to build and share 
postprocessing algorithms for various cancer applications. 
Another important resource is the UK Biobank Imaging 
Study (9), which provides an extensive collection of imag-
ing data, paired with comprehensive clinical and genetic 
information. Furthermore, initiatives such as the Alzheim-
er’s Disease Neuroimaging Initiative (10), Open Access Se-
ries of Imaging Studies (11), and the Human Connectome 
Project (12) offer vast datasets that contribute substantially 
to neuroscience research and foster a deeper understand-
ing of brain function. Stanford Medicine’s Artificial Intel-
ligence in Medicine and Imaging datasets platform (13) 
offers a diverse range of medical imaging datasets. In MRI, 
datasets such as fastMRI (14), mridata.org (15), SKM-
TEA (16), M4Raw (17), and others (18) offer raw, non-
reconstructed MRI data (k-space measurements), hence 
enabling development of advanced MRI reconstruction 
techniques aimed at reducing scan times. Other databases 
are more focused on certain diseases. The Multimodal 
Brain Tumor Image Segmentation Benchmark (BraTS) 
dataset, for example, which is published and continuously 
updated as part of the BraTS challenges, is dedicated to 
automated segmentation of brain glioma (19–21). Addi-
tionally, the Open Source Imaging Consortium dataset fo-
cuses on pulmonary fibrosis (22), and the Mammographic 
Image Analysis Society dataset (23) and Digital Database 
for Screening Mammography (24) offer mammographic 
images for breast cancer detection.

The recent rise of large language models (LLMs) has 
drawn interest to datasets that contain medical text. LLMs 
are advanced AI systems capable of processing and gen-
erating humanlike text, which can be immensely valuable 
in radiology (eg, in assisting radiologists in generating re-
ports). Recently developed models include RadBERT (25) 
and Radiology-GPT (26); additionally, databases such as 
MIMIC-CXR (27) that contain chest radiographs paired 
with free-text radiology reports hold much promise for 
development of further LLMs. In summary, publicly avail-
able databases are leveraged for research and development, 
such as through community challenges; these databases 
promote the development of reproducible code for clinical 
translation (eg, segmentation tools and diagnostic models 
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permissions associated when publishing a dataset. We encourage 
researchers to advocate for change within their institutions as we 
have done from personal experience.

Due to the many challenges in data curation, researchers of-
ten face scarcity or complete lack of data suitable for training 
AI models, which causes additional challenges and sometimes 
methodologic failures. For example, a database curated for one 
purpose might be used for a different purpose. A dataset pub-
lished for brain tumor segmentation, for example, could be used 
mistakenly to develop MRI reconstruction algorithms. A recent 
study demonstrated that such “off-label” data use could lead to 
biased results and overly optimistic algorithm evaluation (29) 
due to subtle, task-specific preprocessing steps that are applied 
to different datasets. Although preprocessing often cannot be 
detected by the human eye, it can alter the performance of the 
trained AI algorithms and lead to biased results. Moreover, such 
workflows could lead to algorithmic failure in clinical settings, as 
algorithms developed using preprocessed data have very limited 
applicability to the clinical real world and might miss clinically 
important details (29).

Additionally, a lack of data may also lead to the improper 
construction of training and test datasets which can create a 
different source of bias. For example, AI algorithms trained on 
data from healthy individuals or those who have a limited range 
of conditions may not generalize well to a test dataset that in-
cludes a larger range of conditions, as typically seen in a hos-
pital (6). Furthermore, studies have shown that AI algorithms 
are sensitive to sex and racial bias and could perform poorly in 
underserved populations, such as Black individuals or Hispanic 
women (30,31). Another source of bias is highly specific data; 
AI methods trained on data acquired using a medical imaging 
device from a single vendor or anatomic region might not gen-
eralize to data of other vendors or organ systems (32). Finally, 
another problem that arises from lack of training data is the 
shift of research efforts toward research problems where data are 
abundant. For example, the scarcity of open-access datasets in 
abdominal medical imaging poses a major obstacle to the ad-
vancement of algorithms for diagnosing inflammatory bowel 
disease and hinders the development of AI techniques for ac-
celerated, motion-robust dynamic body imaging (33).

These substantial challenges necessitate the development of 
novel approaches to facilitate data sharing and open science. At 
present, the medical imaging community is dedicating efforts 
along several lines. First, centralized platforms have been devel-
oped that enable online storage of open-access data. A notable 
example is the Medical Imaging and Data Resource Center 
(MIDRC), established by the National Institutes of Health; 
MIDRC serves as a centralized platform for COVID-19–related 
medical imaging data, facilitating in-depth analysis of virus im-
pact. Additionally, platforms like Zenodo, a well-known open-
access repository, also contribute to the accessibility and sharing 
of medical imaging datasets, fostering collaboration and research 
endeavors across the field. Zenodo assigns a unique digital ob-
ject identifier to each repository. This ensures a persistent and 
citable link, enhancing the discoverability and long-term acces-
sibility of research datasets, and facilitates proper attribution in 
scholarly publications. Second, community-driven efforts focus 

for disease prediction). Nevertheless, open-access datasets are 
still needed for different applications (eg, dynamic MRI), and in 
many cases, articles are published without sharing data and code.

The common reluctance to share datasets at the time of pub-
lication is associated with the substantial challenges related to 
curation and publication of open-access databases. These chal-
lenges come in different forms. First is the issue of patient pri-
vacy, which is closely related to a patient’s well-being and con-
fidentiality—core principles of ethical practice in medicine. 
Protecting privacy requires applying data anonymization steps, 
including removal of patient-specific metadata often stored in 
Digital Imaging and Communications in Medicine images and 
skull-stripping from three-dimensional brain scans where face 
recognition may be a concern. Furthermore, the risk of identifi-
cation necessitates comprehensive informed consent from indi-
viduals, which further complicates database curation. Moreover, 
with the intention of patient privacy, certain legislative policies, 
such as the General Data Protection Regulation in Europe and 
the California Consumer Privacy Act in the United States, may 
potentially complicate data sharing (28). Second, acquiring suf-
ficient data for training models poses a formidable challenge, 
particularly in modalities such as MRI, where costs can be pro-
hibitively high, and CT, where radiation exposure is a concern. 
Third, the process of data annotation, a crucial step for training 
AI models, necessitates expertise in radiology. However, imaging 
experts have limited time to generate reference standard annota-
tions and their time can be very expensive. An additional barrier 
stems from the lack of standardized data formats when it comes 
to raw MRI data (specifically k-space), with disparate vendors 
like GE, Siemens, and Philips adopting their own data saving 
conventions. Such variation not only complicates data sharing 
but also poses challenges for seamless integration and analysis. 
For instance, the use of various formats like Digital Imaging 
and Communications in Medicine, NIfTI, and raw MRI data 
hinders cross-vendor compatibility and requires extensive pre-
processing, consuming valuable time and resources in the medi-
cal imaging workflow. Last (and anecdotally), we acknowledge 
that institutional policies may create barriers for various reasons 
when it comes to sharing datasets. A potential solution is agree-
ing on the appropriate license that clearly outlines rights and 

Abbreviations
AI = artificial intelligence, LLM = large language model

Summary
If we want artificial intelligence to succeed in radiology, we must 
share data and learn how to share data.

Key Points
	■ Data are a key component of AI model development. To succeed, 

we must learn to share data.
	■ Sharing datasets is increasingly being required by institutions that 

provide publicly funded research. Let’s do it right.
	■ Open science is science, and it’s in all of our best interest for ac-

celerating patient care to embrace it.

Keywords
Open Science, Data Sharing

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 6: Number 1—2024  ■  radiology-ai.rsna.org� 3

Bell and Shimron

Choose one goal to focus on, whether it is actively partici-
pating in an open science initiative within your society (40), 
committing to publishing open code, reading guidelines for 
how to prepare medical imaging data for publication (41), re-
leasing an open dataset from a previously published article, or 
allocating funds in your next grant to support open-science 
practices. Science has always been an iterative process, and in 
this dynamic field of AI for medical imaging, we must learn 
to embrace open science to accelerate the translation of our 
tools into clinical practice.
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