Skip to main content
. 2024 Jan 17;12:e49007. doi: 10.2196/49007

Table 2.

Spherical feature annotation and increase in topic share (n=52,222)a.

Clinical topic NLPb Records tagged initially, n (%) Records tagged NLP-augmented, n (%) Increase in tagged patient records, n (%)c
COVID-19 375 (0.72) 405 (0.78) 30 (8)
General symptom 6401 (12.26) 6867 (13.15) 466 (7.28)
General administration 315 (0.6) 1217 (2.33) 902 (286.35)
Systemic clinical 3219 (6.16) 3519 (6.74) 300 (9.32)
Gastrointestinal 3421 (6.55) 4159 (7.96) 738 (21.57)
Respiratory 4040 (6.55) 4159 (7.96) 738 (21.57)
Cardiovascular 2683 (5.14) 5219 (9.99) 2536 (94.52)
Neurological 414 (7.93) 4485 (8.59) 345 (8.33)
Eye; ear, nose, and throat; and derma 1818 (3.48) 2061 (3.95) 243 (13.37)
Gynecology and urology 2712 (5.19) 3004 (5.75) 292 (10.77)
Trauma 16,516 (31.63) 17,389 (33.3) 873 (5.29)
General psychiatric 1989 (3.81) 2627 (5.03) 638 (32.08)
No tag 14,141 (27.08) 10,569 (20.24) –3572 (–25.26)

aThis table presents the distribution of the diagnosis topics obtained with the NLP-based text annotation before and after the spherical feature annotation.

bNLP: natural language processing.

cPercent of initially recorded tags.