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Abstract

Dosing rate decisions for drugs and changes in dosing in a patient due to disease states, drug 

interactions and pharmacogenomics are all based on clearance, a measure of the body’s ability 

to eliminate drug. The primary organs of elimination are the liver and the kidney. Clearance for 

each of these organs is a summative composition of biologic processes. In 1857, Gustav Kirchhoff 

first developed his laws to describe the “motion of electricity in conductors... [and] ...in wires”, 

recognizing that summative processes occur either in parallel or in series. Since then, Kirchhoff’s 

Laws have also been applied to heat transfer, diffusion and drag force on falling objects, but not 

to pharmacology. Although not previously recognized, renal clearance always follow Kirchhoff’s 

Laws, as does hepatic clearance for drugs where basolateral transporters are not clinically relevant. 

However, when basolateral transporters are clinically relevant, we demonstrate that the present 

accepted approach is inconsistent with recognized drug disposition processes. However, this 

clearance relationship can be easily corrected using Kirchhoff’s Laws. The purpose of this review 

is to demonstrate that Kirchhoff’s Laws, which define how to approach rate processes that occur 

in parallel versus processes that occur in series, can be applicable to pharmacology in addition to 

the over 160-year recognition of their use in physical sciences. We anticipate that the application 

to clearance will be only the first of many such pharmacological analyses.
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1. Introduction

Mathematical models of drug clearance rates in the body have traditionally been derived 

based on particular dynamic mechanisms, for example the notion of a well-stirred model 

(WSM). Here, we review a more general derivation, independent of mechanistic details, 
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using Kirchhoff’s Laws combined with knowledge of which flow processes are in series 

vs. parallel. Clearance CL  is the most important pharmacokinetic parameter as it defines 

the dosing rate for drugs in patients to achieve efficacy and minimize toxicity. At any ith 

time-point, CL (volume/time) is defined as the rate of elimination (Relim, mass/time) divided 

by the systemic exposure at that time-point (Ci, mass/volume) that is driving elimination 

(Benet et al., 2021) as given in Eq. 1

CL = Relim
Ci

(Eq. 1)

There are many processes in the body contributing to drug clearance, although the 

primary sites for elimination are the kidney and liver. In the kidney, there are several 

renal elimination processes all influenced by the steady-state concentration input occurring 

independently of each other, whereas in the liver, there are several hepatic elimination 

processes occurring in sequence. The question arises: can clearance rates for each process be 

simply combined into net clearance rates CLR and CLH for the kidney and liver, respectively, 

without solving differential equations?

For decades, this question has been answered with specific mechanistic models, including 

primarily the so-called ”well-stirred model” (Rowland et al.,1973; Wilkinson & Shand, 

1975). However, conditions for the WSM have been deemed non-physiological - and yet, 

when researchers have proposed equations based on seemingly more physiologically-sound 

models, the WSM-derived equation continues to best match experimental data (Pang et al., 

2019; Sodhi et al.,2020). A previously unconsidered conclusion is that the equations that 

follow from the WSM must be valid for reasons other than those provided by the WSM. 

Here we show that the presently employed CLR equations under all conditions and CLH

equations for drugs where hepatic basolateral transporters are not clinically relevant may 

be easily derived based on Kirchhoff’s Laws (as we define subsequently) independent of 

specific mechanistic models. Thus, the liver clearance data would be believed to fit the 

WSM, when in fact Kirchhoff’s Laws give the same equation. However, when basolateral 

hepatic transporters are clinically relevant, the presently utilized mechanistic model requires 

an illogical conclusion as we detail subsequently. The correct relationship can be easily 

obtained following Kirchhoff’s Laws. We believe that this is the first application of 

Kirchhoff’s Laws to pharmacological processes but anticipate that many more uses will 

be identified in the future.

2. Application of Kirchhoff’s Laws to Pharmacological Process

As pharmacologists and medical scientists may not be familiar with or do not recall the 

discussion, proof and application of Kirchhoff’s Laws to physical and electrical processes, 

we provide at the end of this manuscript a Theoretical Background section as a reminder 

and guidance. In 1857 Gustav Kirchhoff published two papers, the first titled in English 

“On the Motion of Electricity in Conductors” (Kirchhoff, 1857a) and the second titled 

in English “On the Motion of Electricity in Wires” (Kirchhoff, 1857b). In the first paper 
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he demonstrated that when electrical resistors were in parallel, the total conductance (the 

inverse of resistance) was equal to the sum of the two conductances (Kirchhoff, 1857a), 

which has been subsequently designated as Kirchhoff’s Current Law. In the second paper 

he demonstrated that when two resistors are in series, the inverse of the total conductance 

is equal to the sum of the inverse conductance for each resistor (Kirchhoff, 1857b), which 

has been subsequently designated as Kirchhoff’s Voltage Law. The take home application of 

relevance here, based on the Theoretical Background, is that when two or more rate limiting 

processes are in parallel the total value of the measured outcome parameter is equal to the 

sum of those rate limiting processes. While when two or more rate limiting processes are 

in series the inverse of the total measured outcome parameter is equal to the sum of the 

inverse of those rate limiting parameters. Here we show these relationships for clearance as 

the measured outcome parameter when rate limiting processes are in parallel (Eq. 2) and in 

series (Eq. 3).

CLtotal = CLrate limiting parallel process 1 + CLrate limiting parallel process 2 + …

(Eq. 2)

1
CLtotal

= 1
CLrate limiting sequencial process 1

+ 1
CLrate limiting sequencial process 2

+ …

(Eq. 3)

3. Application to Bodily Clearance Rates

3.1 Renal Clearance

In the kidney, there are three independent - i.e., parallel – renal clearance processes, all 

influenced by the steady-state concentration input. There is glomerular filtration (GF), in 

which the unbound fraction fuB of drug molecules in the blood is filtered by the glomeruli at 

a rate of GFR , corresponding to a clearance rate of CLGF = fuB · GFR. There is also secretion 

of the drug molecules by drug transporters into the urine through other parts of the kidney 

(i.e., proximal tubule) occurring at a clearance rate of CLsec . Lastly, there is reabsorption of 

drug molecules back into the bloodstream, occurring at a clearance rate of −CLreab , where 

CLreab is a positive number, but it gets a minus sign because it corresponds to flow occurring 

in the opposite direction of the other flows, back into the bloodstream rather than out of it.

Applying Eq. 2 we immediately get:

CLR = CLGF + CLsec + CLreab = fuB ⋅ GFR + CLsec + −CLreab = fuB ⋅ GFR + CLsec − CLreab

(Eq. 4)

We note that there is no net passive secretory clearance of drug in the kidney tubule 

following the glomerulus, since the free drug concentrations initially in the tubule and blood 

are equal but with fluid reabsorption (glomerular filtration rate in a healthy individual is 

~120 ml/min but urine flow is only ~1 ml/min) drug concentrations in the tubule will rapidly 
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exceed blood concentrations so that CLreab will be the combination of passive reabsorption 

and any potential active reabsorption. The concept that renal clearance process act in parallel 

and are additive has been well recognized as Eq. 4 has existed in the literature and in use for 

decades (Smith, 1950). In this review we just show that although not previously recognized 

as following Kirchhoff’s laws, the correct equation results.

3.2 Hepatic Clearance

In the liver, there are several sequential clearance processes. First, the drug enters the 

liver at the rate of blood flow into the liver QH (hepatic blood flow in a healthy 

individual is ~1500 ml/min), which is itself the clearance rate CLent for this first step. 

There are then metabolic and biliary excretion processes occurring in parallel, with 

intrinsic rates CLmet and CLbil , respectively, summing up to the total intrinsic rate 

CLint. Utilizing Eq. 2, and with the recognition that these processes operate on the 

unbound fraction fuB of drug molecules in the blood, the total rate for this elimination 

clearance step is CLelim = fuB ⋅ CLint = fuB ⋅ CLmet + Cbil . If basolateral hepatocyte transporters 

are relevant, the pathway also includes a step with intrinsic clearance rate PSinflux due to 

transporters removing the unbound fraction fuB from the bloodstream at a clearance rate of 

CLinflux = fuB ⋅ PSinflux , which can be modulated by PSefflux in the opposite direction. PSefflux

is the intrinsic rate at which the unbound drug is returned to the bloodstream, resulting in 

CLefflux = fuB ⋅ PSefflux, which when compared to CLinflux has a minus sign due to its opposite 

direction. Forward and backward reversible steps must always be considered as parallel 

processes since it is not possible for the backward step to be the rate limiting process, a 

potential outcome for all in-series steps. Having enumerated all of the sequential steps, we 

simply add the inverse clearance rates, as instructed in Eq. 3, yielding:

1
CLH

= 1
CLent

+ 1
CLelim

+ 1
CLinflux − CLefflux

(Eq. 5)

1
CLH

= 1
QH

+ 1
fuB ⋅ CLint

+ 1
fuB ⋅ PSinflux − PSefflux

Then

CLH = QH ⋅ fuB ⋅ CLint ⋅ CLinflux − CLefflux
fuB ⋅ CLint ⋅ CLinflux − CLefflux + QH ⋅ CLinflux − CLefflux + QH ⋅ CLint

(Eq. 6)

If basolateral transporter processes are not relevant, Eq. 5 reverts to:

1
CLH

= 1
QH

+ 1
fuB ⋅ CLint

(Eq. 7)
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which becomes

CLH = QH ⋅ fuB ⋅ CLint
QH + fuB ⋅ CLint

(Eq. 8)

Again, as with Eq. 4, this equation has existed in the literature and in use for decades 

believing it to be the WSM. We believe this is the first publication showing how simple its 

derivation can be following Kirchhoff’s Laws, without any assumptions related to hepatic 

drug disposition.

When basolateral transporter processes are relevant, hepatic blood flow effects are usually 

negligible, since the hepatic blood flow is much greater than the transporter clearances and 

Eq. 5 becomes

1
CLH

= 1
fuB ⋅ CLint

+ 1
fuB ⋅ PSinflux − PSefflux

(Eq. 9)

which when solved for CLH gives

CLH = fuB ⋅ CLint ⋅ PSinflux − PSefflux
CLint + PSinflux − PSefflux

(Eq. 10)

and when numerator and denominator are divided by CLint yields

CLH = fuB ⋅ PSinflux − PSefflux

1 + PSinflux − PSefflux
CLint

(Eq. 11)

4. Discussion and Outlook

Using Kirchhoff’s Laws, the renal and hepatic clearance equations may be easily calculated 

independent of any mechanistic model of organ elimination. These organ model-independent 

equations are consistent with the data in the literature both for hepatic and renal clearance 

measurements. Although investigators proposed and tested mechanistic models of hepatic 

organ elimination, all experimental evidence (when basolateral transporters are not clinically 

relevant) appears to only be consistent with Eq. 8 (Sodhi et al., 2020; Pang et al., 2019). 

This is consistent with the recognition that all published clearance values are arterial 

clearance numbers (Benet & Sodhi, 2022) and thus should be unaffected by the organ 

mechanistic model. At present physiologically based pharmacokinetic (PBPK) approaches 

often include different mechanistic models of hepatic organ elimination, such as the parallel 

tube or dispersion models, in trying to predict a clearance parameter that is independent 

of mechanistic models. The appropriate relationship is Eq. 8, which previously was only 
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believed to be consistent with the WSM but is now recognized to be the universal 

relationship independent of any mechanistic model of the organ.

However, as stated in the Introduction, the equations currently used to predict hepatic 

clearance when basolateral transporter effects are relevant are not consistent with Eq. 11. 

Rather the equation universally used in the literature (e.g., Sirianni & Pang, 1997; Webborn 

et al., 2007; Kusuhara & Sugiyama, 2009; Caminesh & Umehara, 2012; Barton et al., 

2013; Patilea-Vrana and Unadkat, 2016) when hepatic blood flow is much greater than the 

transporter clearances is

CLH = fuB ⋅ PSinflux ⋅ CLint
CLint + PSefflux

(Eq. 12)

From this equation, it is concluded that PSinflux may become the rate limiting step in 

hepatic elimination for substrates of hepatic uptake transporters such as the organic anion 

transporting polypeptides (OATPs) when PSefflux is either zero or negligible compared to 

the irreversible elimination clearance, since then the CLint values in the numerator and 

denominator of Eq. 12 will cancel. This is the same conclusion one would reach with 

Eq. 11 when CLint > > PSinflux (if PSefflux is zero). Yet, in reality, the rate limiting step is 

(PSinflux – PSefflux) as per Eq. 11. That is, the difference in the influx and efflux clearances 

is the rate limiting step with respect to hepatic basolateral transporters. Neither influx nor 

efflux alone will be rate limiting. Even when influx clearance is inhibited, it is the difference 

between influx and efflux that will be rate limiting. Thus, there is no need to assume efflux 

is negligible for transporter processes to be rate limiting. However, one must accept an 

illogical outcome from the widely used Eq. 12 approach. According to Eq. 8 if basolateral 

hepatic transporters are relevant to any extent, it is impossible for metabolic and/or biliary 

elimination to be the rate limiting step in hepatic elimination independent of the transporter 

clearances. This illogical predictive outcome disappears when Kirchhoff’s Laws are used 

to derive clearance equations as in Eq. 11. Then, when CLint is the slowest rate limiting 

step, this is the expected outcome from Eq. 11 independent of the values for the transporter 

clearances.

We have shown in this manuscript that physical relationships recognized for the past 

160 years may be readily applied to a pharmacological rate process by considering 

whether the drivers of the process are in parallel or in series (or any combination of 

parallel and sequential drivers). There are many important rate processes that define 

pharmacological outcomes that are now derived in terms of differential equations that 

become operative at steady-state when the differential equations are set to zero. In the 

clearance analyses presented here we employed no differential equations, although in the 

Theoretical Background below we do assume linear force-flow and that these processes 

exhibit mass balance at a local equilibrium (the same assumptions required for differential 

equation derived processes). Thus, we believe that the presentation here will serve as 

a template for applying Kirchhoff’s Laws to many other pharmacological and clinical 

outcomes.

Pachter et al. Page 6

Pharmacol Ther. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Theoretical Background

5.1 Linear Force-Flow Relations

If we rearrange Eq. 1 ever-so-slightly, we get:

Relim = CL ⋅ Ci

(Eq. 1A)

For physicists and many other scientists, this equation may bring to mind similar-looking 

relationships: Fick’s Law of Diffusion, drag force on falling objects, and where we focus 

now - Ohm’s Law for Electric Current, among many others. These equations all share a 

basic form:

J = K ⋅ f

(Eq. 13)

where J is some sort of current or flux, f is some driving force or impetus causing that flux, 

and K is a coefficient of proportionality determining the magnitude of the flux response to 

the input force. Note that K can be positive or negative, depending on the direction of the 

flux in response to the input. In Eq. 1A, we see that the rate of elimination, Relim, serves 

as the current or flux, the input concentration Ci is the impetus driving the processes of 

elimination to occur, and thus the clearance rate CL is the constant of proportionality. In 

Ohm’s Law, analogously, the electric current (I) serves as the flux, the voltage (V ) is the 

driving force causing current flux, and in this case the conductance σ = 1/R - which equals 

the inverse of the resistance - is the coefficient of proportionality:

V = I ⋅ R I = σ ⋅ V

(Eq. 14)

5.2 Why Linear?

One might ask where an equation like Eq. 13 comes from in the first place? Why should 

a flux rate be directly proportional to the force driving it, as opposed to some other more 

complicated function? The reason we use equations of this form so often is two-fold: the 

first is simply that it works, i.e., it has been matched very successfully to a plethora of 

diverse situations. The second reason comes from some quick calculus. Let us say that the 

flux or current J is some more complicated function g(f) of the driving force f; what can 

we say immediately about this function? First, we expect the flux rate to flip signs when the 

driving force flips signs; if we push something to the right and it moves to the right, then we 

expect it to move to the left when we move it to the left. This means the function g(f) must 

be odd in f, i.e., g(−f) = − g(f). From this, we immediately get that g(0) = g(−0) = − g(0), 
therefore g(0) = 0. This is a good outcome, this is what we expect, as there will be no flux 

without any input.
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Next, we perform a Taylor expansion around f = 0 ; this means we are assuming that f small 

in some sense, relative to some relevant scale. The first few terms are:

J = g(f) + g′(0) ⋅ f + 1/2g′′(0) ⋅ f2 + O f3

(Eq. 15)

But we said that g(f) is odd, which means not only is g(0) = 0, but also any even derivative of 

g(f) is equal to zero, so there are no even powers of f in the Taylor expansion. That leaves us 

with:

J = g′(0) ⋅ f + O f3

(Eq. 16)

We can compare Eq. 15 with Eq. 13 and identify the coefficient of proportionality as 

K = g′(0) . We see now that Eq. 13 is indeed very general, provided the driving force 

is not too large. It is important to always remember that we could have nonlinearities 

whenever a driving force gets too large, even though the linear approximation has been so 

experimentally successful.

There are two other small notes that will not be discussed in detail here but are nevertheless 

important to remember: (a) J really represents an average flux. The flux at any given 

moment can fluctuate above and below this average value, depending on the system; it 

is only the average J that satisfies Eq. 13 and (b) Eq. 13 assumes the equality of ratios 

between fluxes and forces in systems out of equilibrium, but where a notion of local 

equilibrium exists, i.e., when the input driving force has been held constant long enough that 

the macroscopic parameters of the system settle into constant values themselves. When the 

driving force changes, there are generally transient fluxes as the system settles into a new 

local equilibrium. Both the assumptions of notes a) and b) are also required for differential 

equation derived processes.

Having acknowledged the above, we will simply refer to J as the flux rate, where the driving 

force has been constant for a sufficient time, and thus the system is in a local equilibrium.

5.3 Parallel and Series

Now we may ask how to combine fluxes for different processes into net flux. We will do so 

in perfect analogy with the determination of effective resistance (or effective conductance) in 

electric circuits containing multiple resistors, derivations that many high school and college 

freshmen physics students see every year. These derivations employ Kirchhoff’s Laws, 

which, in the language we have introduced here, are quite simple.

Kirchhoff’s Current Law (KCL) states that, if multiple branches of current or flux meet at 

a point, the net flux going into the point must equal the net flux exiting the point, which 

he used to refer to electric currents and nodes in circuits. We use this to study a parallel 

setup, in which two independent processes can be considered two branches of flux, whereby 
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the flux through each branch must add up to the net flux, according to KCL. That means 

J = J1 + J2 , where the subscripts refers to the number of different processes being evaluated. 

We then plug in Eq. 15 noting that the driving force acting on each branch is the same, i.e., 

f1 = f2 = f, yielding:

K ⋅ f = J = J1 + J2 = K1 ⋅ f1 + K2 ⋅ f2 = K1 ⋅ f + K2 ⋅ f

Therefore

K=K1+K2

(Eq. 17)

So, we see that coefficient of proportionality for parallel processes simply add, and that this 

is a very general result.

Similarly, Kirchhoff’s Voltage Law (KVL) states that, if multiple processes occur in 

sequence, the driving forces for each process add up to the total driving force; Kirchhoff 

actually used this to describe voltages adding up to zero in any closed loop in an electric 

circuit, but more generally it can be taken to mean driving forces adding up for processes in 

sequence; in our terminology, this means f = f1 + f2. We can plug this into a rearranged Eq. 

13, f = J /K, noting that, since the processes all occur along the same pathway, the flux rate 

through each of them must be the same, i.e., J = J1 = J2, yielding:

J
K = f = f1 + f2 = J1

K1
+ J2

K2
= J

K1
+ J

K2
= J ⋅ 1

K1
+ 1

K2

Therefore:

1
K = 1

K1
+ 1

K2
and K = K1 ⋅ K2

K1 + K2

(Eq. 18)

So, we see that coefficients of proportionality for series processes add in inverse, and that 

this is a very general result. In the second part of Eq. 15, we simply rearranged this result 

into a different, commonly used form.

As we prefaced, these results, Eqs. 13 and 14, bear great resemblance to, and are in 

fact more general cases of, the laws for combining resistances in electric circuits, though 

they are switched around since these formulas apply to the inverse resistances, known as 

conductances, rather than to the resistances themselves. The same deep underlying principle 

that justifies application of Kirchhoff’s Laws to electrical currents also justifies application 

to the situation addressed here, namely of drug molecules flowing across membranes and 

organ barriers. In particular, Kirchhoff’s laws apply to any flow of conserved particles/ units/ 

agents that are driven by a potential function. In electrical flows, those particles are electrons 

or ions. They are conserved: within a flow, the particles are neither created nor destroyed. 
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And they are driven by an electrostatic potential energy. The same conservation laws and 

forces apply to drugs and other pharmacological molecules. They are conserved and subject 

to chemical potentials (Dill and Bromberg, 2010).

Having derived these general results for combining coefficients of proportionality, we return 

to Section 3 of the manuscript where they can be quickly and easily applied to clearance 

rates from various processes in the liver and kidney.
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Abbreviations:

Ci systemic concentration at the ith time point

CL clearance

CLbil intrinsic biliary clearance

CLelim elimination clearance

CLent entering clearance

CLH hepatic clearance

CLint intrinsic clearance

CLmet intrinsic metabolic clearance

CLR renal clearance

CLreab reabsorption clearance

CLsec secretion clearance

f driving force causing flux

fuB fraction unbound in blood

GF glomerular filtration

GFR glomerular filtration rate

I current

J flux
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K coefficient of proportionality

KCL Kirchhoff’s Current Law

KVL Kirchhoff’s Voltage Law

OATP organic anion transporting polypeptide

PS intrinsic transporter clearance either influx or efflux

QH hepatic blood flow

R resistance

Relim rate of elimination

σ conductance

V voltage

WSM well-stirred model
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