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Abstract
Motivation: Single-cell RNA sequencing has emerged as a powerful technology for studying gene expression at the individual cell level.
Clustering individual cells into distinct subpopulations is fundamental in scRNA-seq data analysis, facilitating the identification of cell types and
exploration of cellular heterogeneity. Despite the recent development of many deep learning-based single-cell clustering methods, few have
effectively exploited the correlations among genes, resulting in suboptimal clustering outcomes.

Results: Here, we propose a novel masked autoencoder-based method, scMAE, for cell clustering. scMAE perturbs gene expression and
employs a masked autoencoder to reconstruct the original data, learning robust and informative cell representations. The masked autoencoder
introduces a masking predictor, which captures relationships among genes by predicting whether gene expression values are masked. By
integrating this masking mechanism, scMAE effectively captures latent structures and dependencies in the data, enhancing clustering perfor-
mance. We conducted extensive comparative experiments using various clustering evaluation metrics on 15 scRNA-seq datasets from different
sequencing platforms. Experimental results indicate that scMAE outperforms other state-of-the-art methods on these datasets. In addition,
scMAE accurately identifies rare cell types, which are challenging to detect due to their low abundance. Furthermore, biological analyses confirm
the biological significance of the identified cell subpopulations.

Availability and implementation: The source code of scMAE is available at: https://zenodo.org/records/10465991.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized
our understanding of cellular biology by enabling gene ex-
pression analysis at the individual cell level. This break-
through technology has provided unprecedented insights into
cellular heterogeneity, revealing previously unknown func-
tional roles and driving advancements in studying the tumor
microenvironment and advancing targeted therapies and per-
sonalized medicine (Buettner et al. 2015, Papalexi and Satija
2018). As a result, accurate identification of cell types has be-
come a critical step in scRNA-seq analysis. Unsupervised clus-
tering has been proven to be the most effective method for cell
type identification, as it can automatically discover similarities
and differences between cells, unravel cell heterogeneity, and
explore the intrinsic structure and patterns of the data with-
out relying on prior knowledge (Kiselev et al. 2019, Zhao
et al. 2024). By grouping cells based on gene expression pat-
terns, clustering facilitates the exploration of distinct cell pop-
ulations, enabling further analysis and enhancing our
understanding of cellular biology and disease mechanisms.

Currently, there are several clustering methods for single-
cell analysis (Qi et al. 2020, Zhao et al. 2023). The first cate-
gory involves dimensionality reduction of the gene expression
matrix, followed by the use of traditional clustering methods
such as k-means or hierarchical clustering for clustering. For
example, pcaReduce (�Zurauskien_e and Yau 2016) combines

principal component analysis (PCA) with k-means clustering,
associating each cluster branch with a principal component
variable to obtain hierarchical clustering results. CIDR (Lin
et al. 2017) performs data imputation on gene expression
data and then uses the first few principal coordinates of the
imputed data for hierarchical clustering. The second category
of methods is based on graphs. Seurat (Satija et al. 2015) uti-
lizes a shared nearest neighbor (SNN) graph to describe the
similarity between cells and performs clustering using the
Louvain (Blondel et al. 2008) algorithm. The construction of
the SNN graph is also based on the principal components of
the gene expression matrix. However, PCA is a linear dimen-
sionality reduction method that may not capture the complex
nonlinear relationships between genes. The third category
comprises ensemble methods. SC3 (Kiselev et al. 2017) inte-
grates results from multiple clustering algorithms to achieve
more stable and consistent clustering results. SIMLR (Wang
et al. 2017) combines multiple kernel functions with a multi-
kernel Bayesian learning algorithm during the dimensionality
reduction process to capture different features and relation-
ships in the data. RCSL (Mei et al. 2021) constructs a similar-
ity matrix by measuring both global and local relationships
between cells and then derives a block diagonal matrix from
it to obtain the final clustering results. SMSC (Qi et al. 2021)
adopts a multiple kernel combination approach, enabling di-
rect learning of similarity metrics from single-cell RNA
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sequencing data while simultaneously considering the con-
straints of clustering structure, thereby discovering effective
cell clusters.

In recent years, deep embedding clustering methods have been
successfully applied to high-dimensional and sparse single-cell
RNA sequencing data (Wang et al. 2022). Among these meth-
ods, autoencoders, a popular type of self-supervised deep neural
networks, stand out for their proficiency in learning compact
representations of high-dimensional data (Tschannen et al.
2018). Eraslan et al. (2019) proposed the deep count autoen-
coder (DCA) model based on the zero-inflated negative binomial
(ZINB) distribution for denoising and low-dimensional represen-
tation learning. The DCA model takes the raw count expression
matrix as input, reduces noise using an encoder, maps the input
data to a low-dimensional space, and reconstructs the original
count data distribution using a decoder. The model uses the neg-
ative log-likelihood as the loss function and outputs parameters
related to the negative binomial distribution, such as mean, dis-
persion, and dropout probability. After obtaining the low-
dimensional representations, traditional clustering methods can
be applied. scDeepCluster (Tian et al. 2019) integrates the DCA
model with the deep embedding clustering (DEC) algorithm us-
ing the Kullback–Leibler divergence, achieving coordinated opti-
mization of clustering and dimensionality reduction. The
scziDesk (Chen et al. 2020a) model further emphasizes the con-
centration of similar cell types and adopts a weighted soft
K-means clustering algorithm in the latent space. scVI (Lopez
et al. 2018) uses variational inference to approximate the zero-
inflated negative binomial distribution, effectively managing
gene expression values. Svensson et al. (2020) improved scVI,
enhancing model interpretability without a significant loss in ac-
curacy. However, these methods do not effectively capture the
correlations between genes as they simply add simple Gaussian
noise or no noise to the inputs.

The second category of methods is based on graph neural net-
works. scGNN (Wang et al. 2021) constructs a cell–cell graph
using the gene expression matrix and iteratively builds connec-
tions between cells using three multimodal autoencoders. On the
other hand, graph-sc (Ciortan and Defrance 2022) utilizes a
gene–cell graph, treating both cells and genes as graph nodes.
Unlike the cell–cell graph, there are no direct connections be-
tween cells in graph-sc, only connections between genes and
cells. Cell embeddings for clustering are obtained using graph
autoencoders. However, since scRNA-seq data only consists of
gene expression data, both the cell–cell graph and the gene–cell
graph are constructed based on the gene expression matrix. As a
result, the graph structure information and the node feature in-
formation essentially represent the same information, limiting
the full potential of graph neural networks.

The third category is based on contrastive learning.
However, applying existing methods originally designed for
image and language data to single-cell data is challenging be-
cause these methods heavily rely on spatial or semantic fea-
tures. Both contrastive-sc (Ciortan and Defrance 2021),
CLEAR (Han et al. 2022), and scNAME (Wan et al. 2022)
are all methods based on contrastive learning methods.
contrastive-sc creates augmented samples by masking some
genes of cells. However, simply randomly zeroing out or add-
ing Gaussian noise to some features may not effectively cap-
ture important patterns between features. CLEAR, on the
other hand, performs more complex operations such as swap-
ping gene values between two cells to create augmented sam-
ples. scNAME constructs positive sample pairs based on the

nearest neighbors of gene expression. The contrastive loss
used in contrastive learning strengthens the similarity between
positive sample pairs (i.e. a sample and its augmented sample)
while increasing the distance between negative sample pairs
(i.e. a sample and other samples) (Chen et al. 2020b).
However, these methods may mistakenly treat cells belonging
to the same cluster as negative sample pairs, resulting in false
clustering results.

Significant advancements have been made in the field of
natural language processing through the use of self-supervised
learning techniques, including autoregressive language models
like GPT (Radford et al. 2018) and masked autoencoder mod-
els like BERT (Devlin et al. 2018). These approaches involve
masking a portion of the data and training the model to
predict the masked content. By doing so, the resulting low-
dimensional embeddings capture semantic information, con-
textual relationships, and syntactic structures within the text,
effectively capturing the relationships between words and sen-
tences. Similar strategies have also been applied in computer
vision, such as masked autoencoders (MAE) (He et al. 2022),
which mask random regions of input images and reconstruct
the missing pixels.

Inspired by these methods, our study proposes scMAE, a
masked autoencoder specifically designed for scRNA-seq data
analysis. In scMAE, we randomly shuffle each gene with a cer-
tain probability and input them into the encoder to obtain low-
dimensional representations. This shuffling of the input data
serves the purpose of denoising and enables the model to learn
the correlations between genes, resulting in more meaningful
low-dimensional representations. A masking predictor is then
employed to predict whether the expression values have been
shuffled. Subsequently, the concatenated low-dimensional repre-
sentations and masking prediction results are passed through the
decoder to reconstruct the original gene expression matrix. The
masking prediction results guide the decoder in identifying
which gene values have been disrupted, facilitating a more accu-
rate reconstruction of the original gene expression matrix.
Experimental results on 15 real scRNA-seq datasets demonstrate
the superior performance of scMAE in terms of clustering com-
pared to state-of-the-art single-cell clustering methods. In addi-
tion, scMAE exhibits the ability to identify rare cell types,
further highlighting its effectiveness.

2 Materials and methods

2.1 Method

The input is a processed gene expression matrix X 2 R
C�G

(see Supplementary Note S1 for details), where Xij represents
the expression of the jth gene in the ith cell, C is the number
of cells, G is the number of genes. The objective of scMAE is
to train a model that can estimate the mask vector applied to
each cell and subsequently reconstruct the original gene ex-
pression from its corrupted version.

2.1.1 Generation of masked gene expression matrix
To introduce variability and perturbation into the gene ex-
pression matrix, three steps are taken. Firstly, the gene expres-
sion values within each gene in the matrix X are randomly
shuffled. This shuffling process involves permuting the order
of expression values while maintaining the associations within
each gene. The resulting shuffled gene expression matrix is
denoted as X0. Next, we generate a mask matrix M using the
Bernoulli distribution. This mask matrix determines which
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elements of the gene expression matrix will be modified. It is
generated based on a list of probabilities ðp1;p2; . . . ;pGÞ, in
which each probability corresponds to the likelihood of modi-
fying the expression values of the respective gene. The mask
matrix M is then generated by applying the Bernoulli distribu-
tion as follows:

Mij � BernoulliðpjÞ; (1)

where Mij denotes the element at the ith row and jth column
of the mask matrix M, and pj represents the probability asso-
ciated with the jth gene in the list of probabilities, controlling
the proportion of the feature that will be masked and
corrupted.

Finally, the masked gene expression XM is obtained by ap-
plying element-wise operations (Wan et al. 2022). The calcu-
lation can be expressed as:

XMij ¼ Xij � ð1�MijÞ þX0ij �Mij; (2)

where Xij denotes the element at the ith row and jth column
of the original gene expression matrix X, X0ij represents the el-
ement at the ith row and jth column of the shuffled gene ex-
pression matrix X0, and XMij represents the element at the ith
row and jth column of the masked gene expression matrix
XM. By following these steps, the gene expression matrix X
undergoes random shuffling of gene expression values within
each gene and the application of a mask matrix, resulting in
the modified gene expression matrix XM.

2.1.2 Masked autoencoder
As illustrated in Fig. 1, the masked autoencoder consists of
three components: an encoder, a mask predictor, and a de-
coder. The encoder maps the gene expression XM into a low-
dimensional embedding E. Assuming the encoder has L
layers, we denote the learned data representation from the lth
layer as El, the weight matrix as Wl, and the bias vector as bl.
The input of the first layer is E0 ¼ XM. The learning process
of the lth layer in the encoder is defined as follows:

El ¼ rðWlEl�1 þ blÞ; (3)

where r represents an activation function. The last layer of
the encoder performs a linear transformation, meaning that r
is the identity function. Consequently, the output of the last
layer El corresponds to the embedding E.

For a modified gene expression XMi: of a specific cell, it is
possible that certain genes contain erroneous expression in-
formation, which poses challenges in directly reconstructing
the original gene expression. Therefore, we divide the process
into two steps. First, we utilize a mask predictor based on the
latent embedding to identify which gene expression values are
corrupted. Subsequently, the predicted results are fed into the
decoder, which leverages the information about the corrupted
genes and the latent embedding to reconstruct the gene ex-
pression. Having prior knowledge of the corrupted features
greatly improves the efficiency of the reconstruction process.
Specifically, the mask predictor utilizes the embedding E to
predict whether the input XM is masked, and the resulting
prediction is denoted as ~M. The mask predictor is imple-
mented as a linear layer and is trained using the cross-entropy
loss:

Lm ¼ �
X

ij

Mij logð ~MijÞ; (4)

where Mij represents the element at the ith row and jth col-
umn of the input mask M, while ~Mij denotes the element at
the corresponding position in the predicted mask ~M. The loss
function quantifies the discrepancy between the predicted
mask and the true mask, with a higher penalty for incorrect
predictions.

The decoder takes the concatenation of the embedding E
and the predicted mask ~M as input and maps it to the raw
gene expression. Providing information about the corrupted
inputs enables the decoder to reconstruct the raw gene expres-
sion more effectively. In scMAE, the decoder is implemented
as a linear layer, allowing it to transform the concatenated in-
put into the raw gene expression. In the reconstruction loss,
we assign different weights to the corrupted and non-
corrupted genes. We use a weighted mean squared error
(MSE) loss function as follows:

Lr ¼
1
N

X

ij

Xij � jXij � ~Xijj2; (5)

where ~Xij represents the element at the ith row and jth column
of the decoder output ~X. The weight Xij is calculated based
on the binary mask Mij and a hyper-parameter k, given by:

Xij ¼Mij � kþ ð1�MijÞ � ð1� kÞ: (6)

The parameter k determines the emphasis placed on the cor-
rupted entries during the reconstruction process. By using the
weighted MSE loss function, we aim to achieve a more accu-
rate and comprehensive reconstruction of the original gene
expression, giving higher importance to correctly reconstruct-
ing the genes affected by corruption.

In summary, the total loss function is calculated as:

L ¼ ð1� cÞLr þ cLm; (7)

where Lr is the mask weighted reconstruction loss, Lm is the
mask estimation loss and c is a hyper-parameter that balances
two losses. These two loss functions share the encoder. In the
downstream clustering, we only rely on the cell embeddings
generated by the encoder.

Based on our intuitive observations, we have concluded
that the encoder’s ability to capture the correlations among
the features of X and produce embeddings E can effectively
reconstruct X. In this regard, the mask predictor identifies the
masked features by detecting inconsistencies in the gene val-
ues. In addition, the decoder possesses prior knowledge about
which features have been damaged. As a result, the decoder
can focus on learning from the correlated non-masked fea-
tures to fill in the missing information. The decoder’s aware-
ness of the damaged features in advance is critical for
achieving successful reconstruction. The learned cell represen-
tations, which capture the gene’s correlation, serve as infor-
mative embeddings for clustering.

2.1.3 Clustering phase
After generating cell embeddings, we apply a clustering algo-
rithm to assign cells to clusters. In this paper, we use two gen-
eral clustering methods: K-means (Hartigan and Wong 1979)
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and Leiden (Traag et al. 2019) clustering. The choice between
K-means and Leiden is based on the number of cells in the
dataset. K-means is suitable for smaller datasets, while Leiden
clustering is more effective for larger datasets. Specifically, we
use the K-means method when the number of cells is <10000.
For datasets with larger cell populations, we employ the
Leiden method.

2.2 Datasets

The scMAE method is evaluated on a total of 16 real scRNA-
seq datasets, each of which contains cells with known labels
or validated in previous studies (Pollen et al. 2014, Macosko
et al. 2015, Baron et al. 2016, Shekhar et al. 2016, Tirosh
et al. 2016, Bach et al. 2017, Cao et al. 2017, Guo et al.
2018, Hrvatin et al. 2018, Tabula Muris Consortium et al.
2018, Tosches et al. 2018, Wang et al. 2018, Young et al.
2018, Tran et al. 2020). These datasets have been widely used
for evaluating other clustering methods as well (Ciortan and
Defrance 2021, Ciortan and Defrance 2022, Han et al. 2022,
Wan et al. 2022, Yan et al. 2022). The characteristics of these
datasets, including the biological tissues and organisms they
represent, are summarized in Supplementary Table S1. The
datasets cover a diverse range of tissues such as the cerebral
cortex, mouse lung, mouse limb muscle, human kidneys, hu-
man testis, human pancreas, mouse spleen, and human fetal
kidney, among others. The number of cells in these datasets
varies from hundreds to tens of thousands, and the number of
genes also varies accordingly. Among them, six datasets have

cell numbers >18 000. In addition, the Spleen, Tosches, Guo,
Baron, Shekhar, and Macosko datasets contain rare cell types
that account for <0.5% of the total cells. These datasets were
generated using different sequencing platforms such as Smart-
seq2, 10x, sci-RNA-seq, inDrop, and Drop-seq, providing a
comprehensive representation of scRNA-seq data generated
by different technologies. To assess the impact of batch effects
on these clustering methods, we also used a dataset
MouseRetina, which contains batch effects.

2.3 Comparison methods

Seven state-of-the-art single-cell deep learning clustering
methods, namely scNAME (Wan et al. 2022), scGNN (Wang
et al. 2021), graph-sc (Ciortan and Defrance 2022),
contrastive-sc (Ciortan and Defrance 2021), scVI (Lopez et al.
2018), scVI-LD (Svensson et al. 2020), and CLEAR (Han
et al. 2022), were evaluated and compared. To ensure a fair
comparison, each method underwent the pre-processing steps
specified in its respective methodology. For CLEAR, the pre-
processing involved normalization, log transformation, high
variable gene selection, and scaling. These steps were per-
formed following the online tutorial provided by the method’s
authors (https://github.com/ml4bio/CLEAR). For contrastive-
sc, graph-sc, and scNAME, the original data were used for
subsequent pre-processing and clustering. The authors of
these methods provided the necessary instructions for pre-
processing the data. For both scVI and scVI-LD, their input

Figure 1. Workflow of scMAE. Initially, the expression matrix X undergoes a certain degree of shuffling to create a masked matrix, XM . Next, XM is fed

into the encoder, which captures the correlations among genes to generate low-dimensional cell embeddings. These embeddings are then inputted into a

mask predictor to determine if masking was applied to the gene expression matrix during the first step. In the fourth step, the low-dimensional

embeddings and vectors indicating masking status are concatenated and supplied to the decoder. Finally, these trained embeddings are employed for

downstream cell clustering.
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consists of the original count matrix, with the selection fo-
cused on highly variable genes.

As for scGNN, data preprocessing and left truncated mixed
Gaussian (LTMG) model processing are performed. These steps
were carried out as specified in the method’s guidelines. In the
evaluation, the number of clusters was provided for CLEAR,
contrastive-sc, graph-sc, scVI, scVI-LD, and scNAME. However,
scGNN does not require specifying the number of clusters; the
method automatically identifies the number of clusters.
Parameters for all methods were either set as default or adjusted
following the guidelines provided by their respective authors.

2.4 Evaluation metrics

To conduct an effective evaluation of the performance of vari-
ous clustering algorithms, we employ three widely utilized
metrics: the Adjusted Rand Index (ARI) (Hubert and Arabie
1985), the Normalized Mutual Information (NMI) (Davies
and Bouldin 1979), and the average silhouette width (ASW)
(Rousseeuw 1987). ARI and NMI offer quantitative measures
that evaluate the alignment between the derived clustering
labels and the actual cell labels.

ARI quantifies the similarity between the predicted and true
labels by considering all pairs of cells, thereby measuring the
agreement beyond random chance. The ARI values span from
�1 to 1, with 1 signifying a flawless clustering agreement, 0
indicating a random clustering result, and negative values sug-
gesting a disagreement between the predicted and the true
labels.

NMI, on the other hand, measures the mutual information
between the clustering and the true labels while considering
the distribution of labels and cluster assignments. Similar to
ARI, the NMI values also range from 0 to 1, where 1 indicates
perfect agreement in clustering.

The silhouette simultaneously considers the cohesion within
clusters and the separation between clusters. Generally, an
ASW score of 1 implies well-separated clusters, a score of 0
implies overlapping clusters and a score of -1 implies strong
misclassification. Following Lotfollahi (Lotfollahi et al.
2022), we scale the ASW scores to a range between 0 and 1
using the formula:

cell� typeASW ¼ ASW þ 1
2

: (8)

Larger values correspond to denser clusters. We also calcu-
late an ASW score on batches to assess the extent of batch ef-
fect removal. In this context, we scale and invert the ASW
score for consistent metric comparison:

BatchASW ¼ 1� absðASWÞ (9)

A higher final score indicates better mixing, reflecting im-
proved batch removal effects. By evaluating the clustering
algorithms using these metrics, we can assess their effective-
ness in accurately assigning cells to clusters and capturing the
underlying structure of the scRNA-seq datasets.

3 Results

3.1 scMAE achieves excellent clustering

performance and outperforms existing methods

To evaluate the effectiveness of scMAE, we compared it with
seven deep learning methods, namely scNAME (Wan et al.

2022), scGNN (Wang et al. 2021), graph-sc (Ciortan and
Defrance 2022), contrastive-sc (Ciortan and Defrance 2021),
scVI (Lopez et al. 2018), scVI-LD (Svensson et al. 2020), and
CLEAR (Han et al. 2022), on various datasets. Each method
was run 10 times with different random seeds, and we pre-
sented the results using median values. The evaluation metrics
employed include ARI, NMI, and cell-type ASW. ARI and
NMI measure the similarity between the predicted clustering
labels and the true labels. Meanwhile, cell-type ASW assesses
the average silhouette width between different cell types.

Based on the ARI values of each method on each dataset, a
higher rank indicates a larger ARI value and better clustering
performance for that method (Fig. 2A). scMAE achieved the
highest ARI scores on 10 datasets, including Lung, Melanoma,
Young, Guo, Baron, Spleen, Bach, Shekhar, Macosko, and
Hrvatin. This indicates its robustness and accuracy in clustering
cells from diverse platforms, tissues, and organisms.
Furthermore, in nine datasets, scMAE outperformed the second-
best method by a margin of >0.01 in terms of ARI. Notably, in
datasets such as Braon, Shekhar, and Macosko, the ARI values
of scMAE were >0.1 higher than the second-best method. In the
remaining five datasets, scMAE’s ARI value was slightly lower
than the highest ARI value, with a difference of <0.01 on two
datasets (Limb_Muscle and Wang), and a difference of 0.02 on
the Tosches, Worm_Neuron and Pollen datasets.

scMAE achieved the highest average rank value among the
15 datasets (Fig. 2A). The next best methods were scNAME,
graph-sc, and contrastive-sc. It is worth noting that scNAME,
contrastive-sc, and CLEAR are all based on contrastive learn-
ing with different augmentation methods. However, their per-
formances varied significantly, highlighting the importance of
augmentation in contrastive learning. The best-performing
method among these three contrastive-based methods,
scNAME, used the same augmentation method as scMAE,
which involves generating a masked gene expression matrix.
This demonstrates the effectiveness of this type of augmenta-
tion for deep learning models on scRNA-seq data. Overall,
this comparison emphasizes the superior clustering perfor-
mance of scMAE compared to existing methods, indicating its
effectiveness in accurately identifying and characterizing cell
clusters in single-cell RNA-seq data. As shown in Fig. 2B and
C (see Supplementary Tables S2 and S3 for details), overall,
scMAE exhibits superior performance by achieving a signifi-
cantly higher average ARI and NMI score across all datasets,
compared to other methods. In terms of cell-type ASW, we
observed that contrastive-sc achieved the best performance,
followed by scMAE (Supplementary Fig. S1 and
Supplementary Table S4).

Moreover, to provide an intuitive understanding of the
low-dimensional cell representations, we visualized the cell
embeddings for each dataset (Fig. 2D and E, Supplementary
Figs S2–S7). In this visualization, each point corresponds to a
cell, and the cells are colored according to the clustering labels
derived from each method as well as the actual labels. In the
case of the Macosko dataset (Macosko et al. 2015), which
primarily comprises rod cells, bipolar cells, amacrine cells,
Müller glia, cone cells, and retinal ganglion cells, along with a
few fibroblasts, microglia, pericytes, vascular or endothelium
cells, astrocytes, and horizontal cells, as shown in Fig. 2D,
only scMAE was able to clearly define the boundaries of rare
cell type clusters, such as fibroblasts, microglia, and horizon-
tal cells. Our results indicate that scMAE tends to distinguish
different cell types effectively across 15 real scRNA-seq
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datasets. These results demonstrate that scMAE has learned
cell representations that retain cell type information.

3.2 Ablation analysis

In this experiment, we conducted ablation experiments to ana-
lyze the effects of each component in the scMAE method. Three
scenarios were considered: (i) removing the weighted reconstruc-
tion loss for unmasked data and only reconstructing the
unmasked portion (referred to as scMAE-U); (ii) removing the
weighted reconstruction loss for masked data and only recon-
structing the masked portion (referred to as scMAE-M); (iii) re-
moving the mask estimation loss (referred to as scMAE-W). The
scatter plot in Supplementary Fig. S8A shows the ARI values for
these three scenarios, as well as the scenario without any re-
moval, using the scMAE method. The results indicate that
reconstructing only the unmasked portion leads to worsened or
similar performance for most datasets, with only slight improve-
ment observed for the Baron dataset. On the other hand, recon-
structing only the masked portion significantly reduces the
clustering accuracy for most datasets, especially for the Shekhar,
Spleen, Macosko, and Worm_Neuron datasets. For most data-
sets, the mask estimation loss positively impacts the clustering
performance, except for the Pollen and Limb_Muscle datasets

where the performance changes are minimal. Supplementary
Figure S8B presents the average ARI, NMI, and silhouette coeffi-
cient values (Rousseeuw 1987) for the 15 datasets under the
three ablation experiments and the scMAE method. The results
indicate that both the weighted reconstruction loss and the mask
estimation loss contribute to improved clustering performance,
highlighting the effectiveness of all the loss functions in scMAE.
Furthermore, to visually demonstrate the effectiveness of the
scMAE loss functions, we visualize the cell embeddings of the
Macosko dataset (Macosko et al. 2015) under scMAE and the
three ablation scenarios (Supplementary Fig. S8C). Compared to
the original scMAE, the clusters in the ablation scenarios appear
more scattered, especially when reconstructing only the masked
data, where the clusters are mixed.

To evaluate the impact of the masked input data ratio, the
weighting of the masked portion in the reconstruction loss,
the weighting parameters of the two objective functions, and
the learning rate on the clustering results, we conducted a
comprehensive sensitivity analysis of hyperparameters. The
results demonstrate the robustness of the chosen masked data
ratio within the range of 0.2–0.4. The default values for the
weights of the masked portion in the reconstruction loss,
weights for the two objective functions, and the learning rate

Figure 2. Real scRNA-seq data analysis results. (A) ARI scores of scMAE and seven comparative methods on 15 real scRNA-seq datasets. Each block

represents the performance of a method on a dataset, where the size indicates the ARI score and the color represents the rank. The last column shows

the average ARI score of each method. (B) Bar plots showing the average ARI values on the 15 real scRNA-seq datasets using scMAE and seven

comparative methods. (C) Bar plots showing the average NMI values on the 15 real scRNA-seq datasets using scMAE and seven comparative methods.

(D) UMAP visualization of the cell embeddings for Macosko datasets learned by scMAE and comparative methods. The colors represent the clustering

labels of each method. (E) UMAP visualization of the cell embeddings for Macosko datasets learned by scMAE and comparative methods. The colors

represent the true cell types.
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were determined based on extensive hyperparameter search
experiments, as summarized in Supplementary Fig. S9 and
Supplementary Note S2.

3.3 scMAE can accurately identify rare cell types

To demonstrate the accurate identification of rare cell types
by scMAE, we conducted a detailed analysis of the Shekhar
dataset. This dataset consists of mouse retinal bipolar cells,
with a total of 18 cell subtypes, including bipolar cells (BC),
Rod Bipolar cells (RBC), Müller glia (MG), amacrine cells
(AC), and photoreceptors (PR) (Shekhar et al. 2016). The BC
cells further divide into 13 subpopulations (BC1A, BC1B,
BC2, BC3A, BC3B, BC4, BC5A, BC5B, BC5C, BC5D, BC6,
BC7, and BC8/9), and the PR cells are categorized as Rod
Photoreceptors (Rod PC) and Cone Photoreceptors (Cone
PC). It is worth noting that the Rod PR and Cone PR cells are

extremely rare, accounting for only 0.003% and 0.001% of
the total cell population, respectively.

Following scNAME (Wan et al. 2022), we performed dif-
ferential expression analysis using the true labels, scMAE
clustering labels, and labels obtained from the comparative
methods to identify differentially expressed genes (DEGs) in
each cluster. To validate the superiority of scMAE, we com-
pared the overlap between the top 50 DEGs in each cluster
identified by scMAE and the seven comparative methods and
the DEGs in the true cell types. In Fig. 3A and Supplementary
Fig. S10, each row represents a cluster obtained by a specific
method, and each column represents a known cell type. The
color depth indicates the degree of overlap between the DEGs
from the true labels and the DEGs from the clustering labels.
scMAE achieved the highest overlap with the true labels using
the top 50 most important DEGs, allowing for the assignment

Figure 3. scMAE can accurately identify rare cell types. (A) Overlap of top 50 differentially expressed genes in clusters detected by scMAE and

comparative methods with true cell types. (B) Violin plot showing the differential expression genes of the Rod PR cluster and the Cone PR cluster. (C)

UMAP visualization of the cell embeddings for the Macosko dataset learned by scMAE. The colors represent the scMAE clustering labels. (D) Dot plot

showing the marker genes of the clusters.
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of a unique cluster to each cell type. However, scNAME failed
to accurately identify BC5B and Cone PR cells, graph-sc could
not assign a cell type to Cluster 9, RBC cells were distributed
across Clusters 14 and 0, and MG cells were found in
Clusters 8 and 17. contrastive-sc identified Clusters 9, 1, 14,
and 13 as RBC cells, and Cluster 7 contained both BC3B and
BC4 subpopulations, but no match was found for the Cone
PR cell type. Both scVI and scVI-LD identified BC3B and BC4
as the same cluster. Moreover, scVI failed to recognize two
rare cell types, Cone PR and Rod PR, while scVI-LD grouped
these two rare types into the same cluster. scGNN incorrectly
estimated the number of clusters, and CLEAR failed to accu-
rately identify Cone PR and Rod PR cells. In other words,
only scMAE was able to annotate each cluster to a known cell
type.

Based on these results, we annotated the clustering results
of scMAE (Fig. 3C). In addition, we performed separate dif-
ferential gene expression analyses for Rod PR and Cone PR
cells, revealing that Rod PR cells highly expressed genes such
as Rho and Gnat1, while Cone PR cells exhibited high expres-
sion of Gngt2, Gnat2, Pde6h, Gnb3, and Opn1sw genes
(Fig. 3B). Rho and Gnat1 are primarily associated with rod
cells and visual signal transduction (Botta et al. 2016), while

Gngt2, Gnat2, Pde6h, Gnb3, and Opn1sw genes are collec-
tively involved in visual signal transduction processes in cone
cells (Mustafi et al. 2011). We also presented bubble plots of
marker genes defining the cell types as described in the litera-
ture (Shekhar et al. 2016) (Fig. 3D), further validating the
ability of scMAE to accurately distinguish subtypes of mouse
retinal bipolar cells.

3.4 Biological analysis of scMAE clustering results

We have demonstrated the outperforming clustering results
provided by scMAE based on evaluation metrics. However, it
is also important to interpret these results biologically in prac-
tical applications. Therefore, we further explore the biological
implications of the clustering results using the Hrvatin dataset
(Hrvatin et al. 2018). This dataset consists of adult mouse vi-
sual cortex cells and includes eight major cell types: excitatory
neurons, inhibitory neurons, oligodendrocytes, oligodendro-
cyte precursor cells (OPCs), astrocytes, endothelial and
smooth muscle cells, pericytes, microglia, and macrophages
(Hrvatin et al. 2018).

To visually assess the accuracy of each method’s clustering,
Fig. 4A and Supplementary Fig. S11 display the clustering
labels on the left side of each plot and the true cell labels on

Figure 4. Biological analysis in the Hrvatin dataset. (A) Sankey plots of clustering results and true cell types for scMAE and comparative methods. For

each subplot, the left side represents the clustering labels generated by each method, while the right side represents the true cell types. (B) UMAP

visualization of the cell embeddings learned by scMAE and comparative methods. The colors represent the clustering labels assigned by each method.

(C) Violin plot showing the differential expression genes of Cluster 2 and Cluster 5. (D) The enriched Gene Ontology (GO) terms in Cluster 2 versus

Cluster 5.
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the right side. The thickness of the connecting lines represents
the number of matching labels between the clustering and the
ground truth. scMAE effectively distinguishes all cell types
and separates oligodendrocytes into two clusters. However,
scNAME merges interneurons into excitatory neurons and
mural into endothelial and smooth muscle cells. graph-sc suc-
cessfully distinguishes interneurons and mural, but Cluster 2
contains astrocytes, microglia, excitatory neurons, and oligo-
dendrocyte precursor cells. contrastive-sc fails to identify mac-
rophages and interneurons, while CLEAR fails to recognize
macrophages and interneurons. In the clustering by scVI,
Macrophages cells and Excitatory cells were mixed, and inter-
neurons and Oligodendrocytes were also combined. Similarly,
scVI-LD did not accurately identify Macrophages and inter-
neurons as distinct cell types.

Figure 4B presents the UMAP embeddings of each method,
where different colors represent the clustering labels.
Moreover, we conducted differential gene expression analysis
and performed functional annotation to characterize the dis-
tinct functions of Cluster 2 and Cluster 5, both labeled as oli-
godendrocytes. The violin plots in Fig. 4C depict the
expression profiles of the top five differentially expressed
genes. Notably, Pdgfra and Ptprz1 are known marker genes
for oligodendrocyte precursors (Marques et al. 2016).
Enrichment analysis reveals that Cluster 2 is associated with
Myelination and neural system development, while Cluster 5
is enriched in Golgi lumen and perisynaptic extracellular
matrix-related signaling pathways (Fang et al. 2023)
(Fig. 4D). These findings provide valuable insights into the bi-
ological interpretation of the clustering results obtained by
scMAE, highlighting specific cell types and their functional
characteristics within the adult mouse visual cortex.

4 Discussion

In this study, we have developed a novel single-cell denoising
autoencoder model called scMAE for identifying cell types in
scRNA-seq datasets. Unlike previous autoencoder models,
scMAE introduces partial corruption to the gene expression
data and incorporates a masking predictor to capture the cor-
relations between genes. Specifically, scMAE takes the cor-
rupted data as input to the encoder, obtains a low-
dimensional embedding, and then passes it to the masking
predictor. The masking predictor predicts whether a feature is
corrupted by comparing its value with similar features. The
predicted results and the embedding features are then fed into
the decoder to reconstruct the original gene expression values.

The encoder’s ability to capture feature correlations and
generate informative embeddings proved to be critical in
achieving effective reconstruction. The mask predictor further
contributed to the model’s performance by identifying
masked features based on gene value inconsistencies. In addi-
tion, the decoder’s prior knowledge of corrupted features was
instrumental in accurately filling in missing information, lead-
ing to meaningful cell representation. We visualized the loss
during the training process for 15 datasets and observed a
continuous decrease in loss as training progressed, especially
the rapid convergence of Mask estimation loss to near 0 in
the initial epochs (Supplementary Fig. S12). This also indi-
cates that the Mask predictor accurately predicts which ex-
pression values are corrupted, which is crucial for the
successful reconstruction by the decoder.

Our experimental results demonstrate that scMAE achieves
excellent clustering performance on 15 datasets, outperform-
ing seven state-of-the-art clustering methods designed for
scRNA-seq data. These methods are based on contrastive
learning and graph neural networks, and they have been
proven to outperform previous autoencoder-based methods.
In particular, scMAE excelled in accurately identifying rare
cell types, showcasing its potential for discovering subtle cel-
lular differences. Therefore, we believe that appropriate cor-
ruption or perturbation of gene expression data facilitates the
learning of higher-order features by the encoder. scMAE
shows efficient runtime and exhibits memory performance
comparable to most methods (Supplementary Fig. S13).
Furthermore, we conducted experiments on two datasets with
batch effects and found that scMAE achieves satisfactory clus-
tering results when handling data with batch effects.
(Supplementary Fig. S14) and (Supplementary Note S3).

As high-throughput scRNA-seq technologies and cell
atlases continue to evolve, we will explore the performance of
scMAE on larger-scale scRNA-seq datasets in the future. In
addition, considering the integration of annotated cell infor-
mation to achieve more accurate identification of cell sub-
types (Qiu et al. 2023). The effectiveness of scMAE in
accurately identifying and grouping cells based on gene ex-
pression profiles contributes to a deeper understanding of cel-
lular heterogeneity and functional diversity.

Supplementary data

Supplementary data are available at Bioinformatics online.
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