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Mycoplasma genitalium is a cause of sexually transmitted infection 
that is associated with non-gonococcal urethritis and pelvic inflam-
matory disease.1,2 Over the past decade, M. genitalium has become 
increasingly resistant to recommended antimicrobials, including 
macrolides (>50% of M. genitalium globally) and fluoroquinolones 
(∼7.7%), with fluroquinolone resistance increasing along with asso-
ciated treatment failures.3,4 Treatment failure with moxifloxacin is 
mediated by mutations in the fluoroquinolone resistance- 
determining region of the DNA topoisomerase (parC, amino acid 
positions S83 and D87) and DNA gyrase (gyrA, positions M95 and 
D99) genes.4,5 This has been further demonstrated by recent stud-
ies from Australia and Japan, showing an increased risk of moxi-
floxacin or sitafloxacin treatment failure where M. genitalium 
harboured both the ParC-S83I mutation (G248T DNA change) and 
a concurrent GyrA mutation affecting M95 (particularly M95I/ 
G285A or G285T) or D99.5,6 Here, we explored the proportion of con-
current ParC and GyrA mutations in M. genitalium in Queensland, 
Australia, to better understand their co-occurrence and diagnostic 
value for resistance-guided treatment, and their potential links 
with specific M. genitalium genotypes.

M. genitalium-positive samples (n = 391; e.g. urine, urogenital 
and anal/rectal swabs) collected from male and female indivi-
duals between 2016 and 2021 in Queensland, Australia, were ob-
tained from Pathology Queensland without corresponding 
clinical information about treatment success, and characterized 
for the presence of parC and gyrA mutations using established 
PCR assays and Sanger sequencing. A smaller representative sub-
set (n = 139) was subjected to genotyping. Details are outlined in 
the Supplementary Methods (available as Supplementary data at 
JAC Online). Ethics approval was provided by the Children’s Health 
Queensland Human Research Ethics Committee (HREC/12/QRCH/ 
139 and HREC/22/QCHQ/85249).

Samples from 326 patients (107 female, 214 male, 5 not spe-
cified) were included. Determination of the proportion of samples 
with parC and gyrA mutations was based on a single sample per 
patient (n = 326 samples), except one patient exhibiting reinfec-
tion >2 years later (n = 327/391 samples). A further 4% of samples 
were excluded from further analysis after repeat sequencing fail-
ure of one or both loci (Table S1). Analysis of the remaining 96% 
(314/327) of samples characterized for both parC and gyrA genes 
showed that the M95I (G285A or G285T) mutation was the most 
common GyrA mutation observed, found in 29.6% (93/314) of 
samples, while 2.2% (7/314) of samples carried a D99 mutation. 
Interestingly, 2.9% (9/314) of samples contained ‘mixed’ suscep-
tibility populations, with five harbouring both GyrA WT and a mu-
tation (e.g. M95I, A96T, F108I) within the same sample, and four 
samples harbouring single/dual GyrA mutations at two nucleotide 
positions (Figure 1a, Table S2).

Of the 55.4% (174/314) samples with a ParC-S83I (G248T) mu-
tation, 56.9% (99/174) also had a single concurrent mutation in 
GyrA, with M95I being the most common (52.3%; 91/174; G285A  
= 90, G285T = 1). GyrA mutations were rare in ParC WT samples 
(5.8%; 6/104), or samples harbouring non-S83I mutations in ParC 
(9.4%; 3/32) (Figure 1a, Table S1, Supplementary Results).

Genotyping (MG191 and MG309 loci) was available for 135/139 
samples with available parC and gyrA sequences. Of 125 individual 
patient samples, we identified 28 MG191 and 21 MG309 STs, includ-
ing 9 novel MG191 and 6 novel MG309 STs (Figure 1b, Table S1, 
Table S2). The most common MG191 STs were 130 and 146 (22/ 
125; 17.6% and 26/125; 20.8%, respectively), which frequently har-
boured dual ParC-S83I/GyrA-M95I mutations (Figure 1b).

Genotypes were assigned based on combined MG191 and 
MG309 data, with 71 genotypes from 125 individual patient sam-
ples (1–18 samples per genotype) (Figure 1b). Of these, 16 har-
boured dual ParC-S83I/GyrA-M95I mutations, with genotype 35 
(n = 18 samples) being the most common, which exclusively har-
boured dual ParC and GyrA mutations. Of the remaining 15 geno-
types harbouring concurrent ParC-S83I and GyrA-M95I mutations, 
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almost all of these belonged to MG191 ST130 or ST146 and had 
differing MG309 STs (see Table S1 and Supplementary Results).

In summary, consistent with recent findings in Australia and 
Japan,5–8 GyrA-M95I was the most common GyrA mutation ob-
served, with the majority of GyrA mutations co-occurring with 
ParC-S83I. The GyrA-M95I mutation was rarely found in samples 
considered to be ParC WT or non-S83I (2.2%; 2/93). Combined 

with results from Hamasuna et al.,9 which showed elevated moxi-
floxacin MICs (≥2 mg/L) in M. genitalium strains with concomitant 
ParC-S83I and GyrA mutations, and recent studies linking the pres-
ence of concurrent ParC-S83I and GyrA mutations to significantly 
lower cure rates with sitafloxacin and moxifloxacin,5,6 this study fur-
ther highlights the utility of diagnostic tests that include both 
ParC-S83I and GyrA-M95I for precision treatment of M. genitalium.

gyrA

parC M95I    
(n = 93)

M95(T/V)      
(n = 3)

D99(Y/N/G)       
(n = 7)

WT          
(n = 201)

mixed         
(n = 9)2

G93C 
(n = 1)

D87H (n = 1) - - - 1 - -
D87N (n = 18) - - 1 16 - 1
D87Y (n = 6) - - - 6 - -
S83I (n = 174) 91 3 5 70 5 -
S83N (n = 1) - - - 1 - -
S83R (n = 5) 1 - - 4 - -
mixed WT/S83I (n = 4)1 - - - 4 - -
G81C (n = 1) - - - 1 - -
WT (n = 104) 1 - 1 98 4 -
WT = Wildtype
1as determined by established parC PCR assay
2dual peaks observed with gyrA Sanger sequencing

(a)

(b)

Figure 1. Concurrent ParC and GyrA mutations as determined by PCR and Sanger sequencing (a) and their respective MG191 and MG309 STs depicted 
in a neighbour-joining phylogenetic tree (b) in M. genitalium samples from Queensland, Australia. Data (from innermost to outermost) depicted cor-
respond to sample ID, collection year and location (SEQ = South East Queensland; NQ = Northern Queensland; NA = unknown), gender (NA = unknown), 
ParC and GyrA mutations, and MG191 and MG309 loci. This figure appears in colour in the online version of JAC and in black and white in the print 
version of JAC.
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Interestingly, while previous studies suggested no association 
between genotype and antimicrobial resistance in M. genita-
lium,8,10 the distribution of concurrent ParC and GyrA mutations 
among M. genitalium genotypes in this study suggests enrich-
ment of the dual ParC and GyrA mutations in the MG191 STs 
130 and 146. These key STs were found among male and female 
patients within the study, and across geographically distinct lo-
cations, suggesting these highly resistant strains may be circulat-
ing among large/complex sexual networks.
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