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Abstract 
Summary: The package mvlearnR and accompanying Shiny App is intended for integrating data from multiple sources or views or modalities 
(e.g. genomics, proteomics, clinical, and demographic data). Most existing software packages for multiview learning are decentralized and offer 
limited capabilities, making it difficult for users to perform comprehensive integrative analysis. The new package wraps statistical and machine 
learning methods and graphical tools, providing a convenient and easy data integration workflow. For users with limited programming language, 
we provide a Shiny Application to facilitate data integration anywhere and on any device. The methods have potential to offer deeper insights 
into complex disease mechanisms.
Availability and implementation: mvlearnR is available from the following GitHub repository: https://github.com/lasandrall/mvlearnR. The 
web application is hosted on shinyapps.io and available at: https://multi-viewlearn.shinyapps.io/MultiView_Modeling/.

1 Introduction
Multiple types of data or views (e.g. genomics, proteomics, 
metabolomics) are now frequently collected on the same indi-
viduals, leading to a new area of research called multiview 
learning. This approach recognizes that analyzing different 
types of data together can help uncover the underlying mech-
anisms of complex diseases, marking a shift from analyzing 
each type of data separately. However, analyzing these data 
types to obtain useful information and knowledge is challeng-
ing because the data are complex, heterogeneous, and high- 
dimensional, and requires a considerable level of analytical 
sophistication.

Several methods have been proposed to associate data 
from multiple sources, some of which are unsupervised, while 
others are a mix of supervised and unsupervised techniques 
(e.g. Hotelling 1936, Horst 1961, Kettenring 1971, Lock 
et al. 2013, Safo et al. 2021, Safo and Lu 2023). Some unsu-
pervised methods involve learning low-dimensional represen-
tations that maximize association between different data 
types (e.g. Hotelling 1936, Safo et al. 2018), while others 
learn common (e.g. Wang et al. 2023), and both common 
and view-dependent low-dimensional representations (e.g. 
Lock et al. 2013). These methods are beneficial for data ex-
ploration, and when an outcome variable is available, the 
low-dimensional representations are then associated with the 
clinical outcome. The joint association and prediction meth-
ods, on the other hand, combine supervised and unsupervised 
techniques, linking the problems of assessing associations be-
tween the views with prediction of an outcome (Safo et al. 
2021, Wang and Safo 2021, Moon and Lee 2022, Palzer 

et al. 2022). The objective is then to learn low-dimensional 
representations that can predict the outcome, making it easier 
to interpret the data.

Most existing software packages for multiview learning 
tend to be decentralized, making it difficult for users to per-
form comprehensive integrative analysis. The mix-omics 
(Rohart et al. 2017) package for integration offers both su-
pervised and unsupervised methods for multiview learning. 
However, the methods provided in mix-omics are limited. 
For instance, the outcome types are either continuous or cate-
gorical, not allowing for other types of outcomes (e.g. 
Poisson, time-to-event). The methods do not allow for the 
use of prior biological information which can enhance inter-
pretability. Importantly, users must be well versed in the R 
programming language, which is limiting.

We provide mvlearnR, an R software for multiview learn-
ing, which will serve as a comprehensive software for inte-
grating data from multiple sources. The new package wraps 
statistical and machine learning methods and graphical tools, 
providing a convenient and easy data integration workflow. 
For users with limited programming language, we provide a 
Shiny Application to facilitate data integration. Currently, 
mvlearnR can be used to:

• Prefilter each data type via differential analysis (DA). We 
provide both supervised and unsupervised options for DA 
or for filtering out noise variables prior to performing 
data integration. 

• Integrate data from two sources using a variant of the 
popular unsupervised method for associating data from 
two views, i.e. canonical correlation analysis (CCA). 
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• Predict a clinical outcome using results from CCA. We 
provide four outcome data distribution type (i.e. gaussian, 
binomial, Poisson, and time-to-event data.) 

• Jointly integrate data from two or more sources and dis-
criminate between two or more classes. We provide an ad-
ditional method which allows to incorporate prior 
biological structure (e.g. variable–variable relationships). 
These methods allow to include covariates. 

• Visualize results from DA or integrative analysis methods. 
These plots include: volcano plots, UMAP plots, variable 
importance plots, discriminant plots, correlation plots, 
relevance network plots, loadings plots, and within- and 
between- view biplots. These visualization tools will help 
unravel complex relationships in multiview data. 

• Demonstrate our integration workflow via already 
uploaded synthetic and real molecular and clinical data 
pertaining to COVID-19. 

The rest of this paper presents the package and Shiny App, 
with more details in the Supplementary Material. We orga-
nize the paper as follows. First, we discuss the implementa-
tion details of the package and web application. Then, we 
explain in greater detail the filtering, supervised and unsuper-
vised integration, and visualization methods. We demonstrate 
mvlearnR’s use on real data and interpret the results. 
Finally, we discuss the limitations of the package and web ap-
plication and suggest potential future directions.

2 Methods and implementation
In this section, we give details about the package and web ap-
plication and summarize the methods implemented. In 
Supplementary Table S1, we provide the currently available 
functions in mvlearnR and their descriptions.

2.1 The mvlearnR web app and package
The mvlearnR web app consists of a user-friendly interface 
(Fig. 1), it is ideal for users with limited programming exper-
tise in R, and it can be used anywhere and on any device. 
Leveraging state-of-the-art unsupervised (Safo et al. 2018) 
and supervised (Safo et al. 2021) integrative analysis meth-
ods, mvlearnR web server and package enable researchers 
to integrate molecular and clinical data, ultimately reducing 
the gap from raw molecular data to biological insights. The 
web application has four tabs. The first tab, “Home,” pro-
vides a brief overview of the methods and related links 
(Fig. 1). The second tab, “Supervised,” is where the user 
implements supervised integrative analysis methods. The 
third tab, “Unsupervised,” is where the user implements 
unsupervised integrative analysis methods. We provide 
options for the user to upload their own data or use example 
data. These tabs produce outputs of the model including clas-
sification performance, variable importance tables and plots, 
and several other plots to help the user understand the 
results. The fourth tab, “Filtering,” is where the user has the 
option to filter and preprocess their data to a customizable 
lower dimensional subset prior to data integration, using su-
pervised and unsupervised filtering methods. The web appli-
cation uses the R Shiny framework and is hosted at 
shinyapps.io.

In the R-package, we provide real data pertaining to 
COVID-19 severity and status. The data are from a study 
conducted by Overmyer et al. (2021) that collected blood 

samples from 102 participants with COVID-19 and 26 par-
ticipants without COVID-19 and quantified for metabolo-
mics, RNA sequencing (RNA-Seq), proteomics, and 
lipidomics. We provide in this package the proteomics and 
RNA-seq data as preprocessed in Lipman et al. (2022). 
Disease severity was measured using the World Health 
Organization (WHO) 0–8 disease specific scale (8 denotes 
death), and a score out of 45 that indicates the number of 
hospital free days (HFD-45) (Overmyer et al. 2021). These 
two outcome variables and other metadata (e.g. age, sex, 
comorbidities) are provided in the R-package. We refer the 
reader to Overmyer et al. (2021) for more details on available 
data. The R-package can be downloaded from GitHub at 
https://github.com/lasandrall/mvlearnR. We next describe the 
methods and functions.

2.2 Data import and filtering
We provide real data pertaining to COVID-19 severity and 
status and several simulated datasets to demonstrate the use 
of the package. Simulated data for two views and a binary 
outcome could be read into R as data(sidaData), and 
data(selpData). The COVID-19 data can be imported 
into R as data(COVIDData) (Supplementary Fig. S3). This 
is a list with three entries: Proteomic, RNASeq, and Clinical 
data. Integrative analysis methods sometimes perform poorly 
on large datasets so we provide supervised and unsupervised 
methods to filter data to help users focus on variables that 
are more likely to yield meaningful findings after integration. 
In the R-package, the function filter.supervised() 
(Supplementary Fig. S5) can be used to filter each view when 
an outcome is available via the four methods: linear, logistic, 
t-test, and Kruskal-Wallis (KW) test. Supervised filtering 
allows the user to filter variables based on their association 
with an outcome. P-values can be adjusted for multiple hy-
pothesis testing. The function filter.unsupervised() 
can be used to filter each view using unsupervised methods 
such as variance and interquartile range (IQR) filtering. We 
provide an option to log2 transform variables, scale variables 
to have variance one, center variables to have mean zero, or 
normalize variables to have mean zero and variance one. 
Quality control checks (e.g. batch correction) and other form 
of normalizations specific to a particular omics data should 
be done outside mvlearnR.

The web application provides the filtering, scaling, center-
ing, and normalization options. Regarding the data to be 
uploaded for filtering, the user can upload (i) Train and Test 
Sets, for when uploaded data have already been split into 
training and testing sets. Filtering will be conducted only on 
the training data. After filtering is complete, a new test set 
will be constructed to contain the same variables as the fil-
tered training data; (ii) Full dataset, for when uploaded data 
have not been split into training and testing sets. If the user 
would like the app to create separate training and testing sets, 
we provide an option for this via the “Pct in Training 
set” tab.

2.3 Unsupervised methods for associating data 
from two sources
We provide the sparse canonical correlation analysis (CCA) 
method, SELPCCA, proposed in Safo et al. (2018), and de-
scribed in details in the Supplementary Material for unsu-
pervised data integration. CCA (Hotelling 1936) is a 
multivariate linear dimension reduction method for 
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maximizing association between data from two sources. 
CCA finds weighted combinations of variables in each data 
that maximize the overall dependency structure between 
pairs of data. In the context of data integration strategies de-
scribed in Picard et al. (2021) (e.g. early, intermediate, and 
late data integration), CCA falls under the intermediate 
strategy. The classical CCA finds linear combinations of all 
available variables, and since these weights are typically 
nonzero, it is difficult to interpret the findings. SELPCCA 
(Safo et al. 2018) is a variant of CCA that shrinks some of 
the weights of the low-dimensional representations to zero, 
thus allowing to identify relevant variables contributing to 
the overall dependency structure in the data. SELPCCA is 
thus a feature extraction and feature selection method, fall-
ing under the intermediate strategy umbrella for data inte-
gration. The function cvselpscca() (Supplementary Fig. 
S8) can be used to obtain low-dimensional linear representa-
tions that maximize associations between pairs of data, and 
to identify key variables contributing to the maximum cor-
relation between the pairs of data. The main inputs to 
cvselpscca() are the train data and the number of ca-
nonical vectors, “ncancorr,” to be estimated, which defaults 
to 1 if not specified.

The output of cvselpscca() include: “hataplha” and 
“hatbeta,” representing the loadings or canonical vectors for 
the two views, respectively; “optTau,” the optimal tuning 

parameter for each data type, and “maxcorr,” estimated ca-
nonical correlation coefficient, which shows the strength of 
the association between the data types. The canonical vectors 
could be visualized, for more insight (see Section on 
Visualizations and Supplementary Material). Since these 
loadings are standardized to have unit norm, a variable with 
larger weight contributes more to the association between the 
views. Please refer to the Section Use Case for a demonstra-
tion of the cvselpscca() function.

On the web application, the SELPCCA method is located 
on the “Unsupervised” tab. The user can upload their data 
and then use the default hyper parameters to obtain the ca-
nonical vectors. After hitting the “Run Model” tab, a notifi-
cation button notifies the user that the model is running. 
After completion, the top 20 selected variables from each 
view is printed out.

2.4 Prediction with learned low-dimensional 
representations from unsupervised methods
Since SELPCCA is an unsupervised method, it can only be 
used to identify variables contributing to the maximal associ-
ation between two views. SELPCCA is ideal as an explor-
atory method to explore variables that contribute to the 
overall dependency structure between the views. If an out-
come is available, one can associate the learned low- 
dimensional representation(s) with the outcome. We provide 

Figure 1. Multiview Shiny App Interface: Our Shiny App will allow non-users of R to seamlessly conduct integrative analysis. The web application has 
four tabs. The first tab, “Home,” provides a brief overview of the methods and related links. The second tab, “Supervised,” is where the user will 
implement supervised integrative analysis methods. The third tab, “Unsupervised,” is where the user will implement unsupervised integrative analysis 
methods. We provide options for the user to upload their own data or use example data. These tabs produce outputs of the model including classification 
performance, variable importance tables and plots, and several other plots to help the user understand the results. The fourth tab, “Filtering,” is where 
the user has the option to filter and preprocess their data to a customizable lower dimensional subset prior to data integration, using supervised and 
unsupervised filtering methods.
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the function selpcca.pred() (Supplementary Fig. S15) 
for this purpose where the results from the SELPCCA model 
are used to build a generalized linear model (GLM) or Cox 
prediction model. The required option “family” is a string 
specifying the type of prediction model to build. Options are 
gaussian, binomial, Poisson, and survival. When family ¼
“survival,” a Cox proportional model will be fitted. 
Otherwise a GLM will be used. The function predict() 
can be used to predict out of sample data using the learned 
low-dimensional representations (Supplementary Fig. S16). 
The performance of these new predictions can be assessed on 
a training data using the function PerformanceMetrics 
() (Supplementary Fig. S16). Currently two family options 
are provided: “binomial” and “gaussian.”

On the web application, the SELP-Predict method is lo-
cated on the “Supervised” tab. The results from the 
SELPCCA model are used to build a generalized linear model 
(GLM) or Cox prediction model. To implement this function, 
the user uploads their data, sets the distribution family, and 
can use the default hyper parameters to obtain the canonical 
variates. The required option “family” is a string specifying 
the type of prediction model to build. Options are gaussian, 
binomial, poisson, and survival. When family ¼ “survival,” a 
Cox proportional model will be fitted. Otherwise a GLM will 
be used. After model implementation, the user can view the 
model estimates, obtain some prediction estimates, and visu-
alize the top 20 selected variables for each view.

2.5 Supervised methods for associating data from 
two or more sources
Sparse integrative discriminant analysis [SIDA] (Safo et al. 
2021) is an integrative analysis method for jointly modeling 
associations between two or more views and creating separa-
tion of classes within each view. The algorithm considers the 
overall association between multiview data, and the separa-
tion within each view when choosing discriminant vectors 
that are associated and optimally separate subjects. Thus, 
SIDA combines the advantages of linear discriminant analysis 
(Hotelling 1936), a supervised learning method for maximiz-
ing separation between classes in one view, and CCA, an 
unsupervised learning method for maximizing correlation be-
tween two data types, and falls under the intermediate strat-
egy for data integration (Picard et al. 2021). SIDA allows the 
user to select key variables that contribute to the maximum 
association of the views and separation of the classes. The 
function cvSIDA() performs n-fold cross-validation to se-
lect optimal tuning parameters for SIDA based on training 
data, and predicts training or testing class membership. The 
function cvSIDANet() incorporates prior structural infor-
mation (e.g. gene-gene connectivity) in SIDA via the use of 
the normalized Laplacian of a graph, thus encouraging selec-
tion of predictors that are connected and behave similarly. 
This enhances interpretability. Covariates, if available, can be 
included, via the option WithCovariates ¼¼ TRUE.

3 Visualizations
Results from the supervised filtering approach could be visu-
alized via volcano plots using the function volcanoPlot(). 
The filtered or original data could be visualized via uniform 
manifold approximation projection [UMAP] (McInnes et al. 
2018) with the function umapPlot(). We provide the func-
tion VarImportancePlot() to visualize the weights (in 

absolute value) of the low-dimensional loadings from 
cvselpscca(), cvSIDA(), and cvSIDANet(). Since the 
low-dimensional loadings are standardized to have unit 
norm, a variable with larger weight contributes more to the 
association between the views (for the unsupervised integra-
tive analysis methods) or to the association between the views 
and the discrimination of classes within each view (for the su-
pervised integrative analysis methods). We provide the func-
tion DiscriminantPlots() and CorrelationPlots() 
to visualize the class separation within each view, and corre-
lations between pairs of views, respectively. We provide the 
function networkPlot() for relevance network that shows 
variable–variable connections between pairs of views. We 
provide the function LoadingsPlot() to visualize the 
loadings for each view and to demonstrate the relationships 
between pairs of variables within each view. We provide the 
function WithinViewBiplot() to show the scores and 
loadings together for a specific view. The function 
BetweenViewBiplot() shows the scores and loadings 
from pairs of views together.

4 Use case
4.1 Demonstration of SELPCCA
In this Subsection, we demonstrate the use of SELPCCA on 
multiomics data pertaining to COVID-19. Our goal is to as-
sociate Proteomics and RNASeq data to identify proteins and 
genes driving the overall dependency structure between the 
two molecular data. We then associate the canonical variates 
with COVID-19 status in a logistic regression model to inves-
tigate whether the canonical variates are able to discriminate 
between individuals with and without COVID-19.

We load the data in as data(COVIData) (Supplementary 
Fig. S3). The number of cases (COVID-19) and non-cases 
(non-COIVD-19) is 98 and 22, respectively. There are 264 
proteins and 5800 genes. In this analysis, View 1 corresponds 
to the proteomis data, and View 2, the RNASeq data. We 
subset the data into 90% training, and 10% testing, keeping 
the proportion of cases and non-cases similar to the propor-
tion in the whole data (Supplementary Fig. S4). We filter 
data using the function filter.supervised() 
(Supplementary Fig. S5) with the options: “method” ¼
“logistic”; “padjust” ¼ TRUE; “adjmethod" ¼ BH; 
“standardize” ¼ TRUE. Our outcome is disease status 
(“DiseaseStatus.Indicator”). After univariate filtering by re-
moving proteins and genes that are not statistically significant 
(adjusted P-value > .05), 87 proteins and 2573 genes remain. 
We use the function volcano() to obtain volcano plots for 
proteins and genes (Supplementary Fig. S6). We use the func-
tion umapPlot() to obtain UMAP plots of the filtered data 
to visualize how well the samples are separated 
(Supplementary Fig. S7).

To fit SELPCCA, we invoke the function cvselpscca() 
and set the number of canonical variates to 2 (Supplementary 
Fig. S8). From running SELPCCA, we observed that 78 pro-
teins and 32 genes have nonzero coefficients on the first CCA 
vector, which suggests that these proteins and genes maxi-
mize correlation between the proteomics and RNASeq data 
(estimated correlation is 0.636). Further, 54 proteins and 9 
genes have nonzero coefficients on the second CCA vector, 
with estimated correlation 0.599. The top 20 proteins (shown 
as Uniprot IDs, UID) and genes with highest absolute load-
ings for the first CCA vector are shown in Supplementary 
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Fig. S9. These figures are obtained with the function 
VarImportancePlot(). Some of the highly ranked pro-
teins for the first CCA vector include: Immunoglobulin 
lambda variable 3–1 (UID P01715), HLA class I histocom-
patibility antigen, B alpha chain (UID P30491), Alpha-2-HS- 
glycoprotein (UID P02765). Some of the highly ranked genes 
on the first CCA vector include: ubiquitin conjugating en-
zyme E2 C (UBE2C), cell division cycle 6 (CDC6), cyclin A2 
(CCNA2), and DEP domain containing 1B (DEPDC1B). We 
note that some of the highly ranked proteins (e.g. HLA class I 
histocompatibility antigen, B alpha chain [UID P30491] and 
Surfactant, pulmonary-associated protein B, isoform CRA_a 
[UID D6W5L6]) and genes (e.g. CDC6 and CCNA2) each 
had high log-odds ratios for discriminating between COVID- 
19 cases and non-cases.

We observe that the first canonical variate for each view is 
able to separate those with and without COVID-19 in the 
train (Supplementary Fig. S10) and test (Supplementary Fig. 
S11) sets. We use the function WithinViewBiplot() to vi-
sualize the sample discrimination, the canonical loadings for 
each view, and assess how the top variables in each view are 
related to each other (Supplementary Fig. S12). The protein 
Immunoglobulin lambda 4–69 (UID A0A075B6H9) appears 
to be highly correlated with the protein Ferritin light chain 
(UID P02792). The gene UBE2C is loaded on the first CCA 
vector, and the genes UPK3A and GPR35 are loaded on the 
second CCA vector. We use between-view biplots to visualize 
biplots for both views (Supplementary Fig. S13). This plot 
allows us to assess how genes and proteins are related. Solid 
black vectors represent loading plots for the first view (pro-
teins). Dashed red vectors represent loadings plot for the sec-
ond view (genes). We generate this plot with the function 
BetweenViewBiplot(). The protein Immunoglobulin 
lambda variable 3–1 (UID P01715) appears to be positively 
correlated with the gene UBE2C.

For more insight into the association between the genes 
and proteins, we invoke the relevance network plot function 
networkPlot() (Fig. 2 and Supplementary Fig. S14). The 
nodes of the graph represent variables for the pairs of views, 
and edges represent the correlations between pairs of varia-
bles. Dashed and solid lines indicate negative and positive 
correlations, respectively. Circle nodes are View 1 variables 
(proteins), and rectangular nodes are View 2 variables 
(genes). We show edges with correlations at least 0.58. The 
plot suggests that the protein Immunoglobulin lambda vari-
able 3–1 (UID P01715) is highly positively correlated with 
many genes (including CDC6, CCNA2, UBE2C), and the 
protein Alpha-2-HS-glycoprotein (UID P02765) is highly 
negatively correlated with many genes (including CCNA2 
and CDC6).

In terms of prediction, we fitted a logistic regression model 
on the training data with the predictors as the first two ca-
nonical variates. We used the function selpscca.pred() 
for this purpose (Supplementary Fig. S15). Our results sug-
gest that the first canonical variates for proteins and genes 
are significantly associated with COVID-19 status (P-value <
.05). We predicted the test data from the learned model with 
the predict() function, and obtained train (Supplementary 
Fig. S16) and test (Supplementary Fig. S17) prediction esti-
mates (e.g. accuracy, sensitivity, F1, etc.) with the 
PerformanceMetrics() function. In Supplementary Figs 
S15 and S16, we observe that both train and test accuracy 
and F1 score are high, suggesting that the first two canonical 

variates potentially discriminate those with and without 
COVID-19.

4.2 Demonstration of SIDA
Unlike SELPCCA which is an unsupervised method for inte-
grating data from multiple sources, SIDA is a supervised data 
integration method. We demonstrate the use of SIDA on mul-
tiomics data pertaining to COVID-19. Our goal is to associ-
ate the proteomics and RNASeq data and discriminate 
between COVID-status in a joint model. We further identify 
proteins and genes that maximize both association and 
discrimination. We apply the function cvSIDA() 
(Supplementary Fig. S18) to obtain estimated SIDA discrimi-
nant vectors, correlation coefficients, and variables poten-
tially contributing to the association of the views and the 
discrimination between samples within each view.

From implementing SIDA, we observed that 26 proteins 
and 23 genes have nonzero coefficients, which suggests that 
these proteins and genes maximize both correlation between 
the proteomics and RNASeq data (estimated correlation 
from train data is 0.42) as well as separation between those 
with and without COVID-19. The top 20 proteins (shown as 
Uniprot IDs, UID) and genes with highest absolute loadings 
are shown in Supplementary Fig. S19. Some of the highly 
ranked proteins include: (UID P04196), (UID P14543), (UID 
E9PEK4). Some of the highly ranked genes include: 
(GOLGA8Q), (ADGB), (TNFRSF6B), and (SLC25A41).

We use the function DiscriminantPlots() 
(Supplementary Fig. S20) to visualize the separation of 
COVID-19 cases and non-cases. From Supplementary Figs 
S20 and S21, the classes are well-separated in both the train-
ing (Supplementary Fig. S20) and testing sets (Supplementary 
Fig. S21). We use the function CorrelationPlots() to vi-
sualize the strength of the association between the proteins and 
genes and separation as well. From Supplementary Fig. S22, we 
notice that the views are moderately correlated, and the classes 

Figure 2. Relevance network plot for SELPCCA. The nodes of the graph 
represent variables for the pairs of views, and edges represent the 
correlations between pairs of variables. Dashed and solid lines indicate 
negative and positive correlations, respectively. Circle nodes are View 1 
variables (proteins), and rectangular nodes are View 2 variables (genes). 
We show edges with correlations at least 0.58. The plot suggest that the 
protein P01715 is highly positively correlated with many genes, and the 
protein P02765 is highly negatively correlated with many genes.
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are well-separated. For more insight into the association between 
the genes and proteins, we invoke the relevance network plot 
function networkPlot() (Fig. 3 and Supplementary Fig. S23). 
The plot suggests that the gene FAM3D is negatively correlated 
with many proteins (e.g. PO2766, P30491, Q08380), and posi-
tively correlated with proteins that include A0ADC4DFP6, 
E9PEK4, P04196, and D6W5L6.

In terms of prediction, we obtain the train and test error 
upon running cvSIDA (Supplementary Fig. S18). We used 
the function PerformanceMetrics() to obtain other per-
formance metrics. In Supplementary Figs S24 and S25, we 
observe that both train and test performance metrics are 
high, suggesting that SIDA discriminant scores are able to dis-
criminate those with and without COVID-19. The estimated 
train correlation is 0.41. Further, the performance metrics, 
especially test performance metrics, are better for SIDA than 
SELPCCA, which suggests that in this application, joint 
modeling of association and separation is better.

5 Discussion and future work
We have introduced an R package, mvlearnR for integrating 
data form multiple sources. The package wraps statistical and ma-
chine learning methods and graphical tools, providing a conve-
nient and easy data integration workflow. For users with limited 
programming language, we provide a Shiny Application to facili-
tate data integration. Our multiview dashboard will enable easy, 
user-friendly comprehensive integrative analysis of molecular and 
clinical data from anywhere and on any device, without needing 
to know the R language. We offer a friendly web user interface us-
ing the R Shiny framework where users can integrate multiple 
datasets, visualize and download results in easy to use format. 
Currently, linear multivariate methods for integrative analysis and 
biomarker identification are provided in mvlearnR, and the 
methods can only be used for integrating cross-sectional data. 
However, we have developed integrative analysis methods for 

disease subtyping (Zhang et al. 2022) and for biomarker identifi-
cation where we model nonlinear relationships between data from 
multiple sources and a clinical outcome (Wang and Safo 2021, 
Safo and Lu 2023, Wang et al. 2023). We have also proposed a 
pipeline for integrating cross-sectional and longitudinal data from 
multiple sources (Jain and Safo 2023). These methods, and other 
methods we develop in the future, will eventually be added to 
mvlearnR and the accompanying web application. Thus, we en-
vision mvlearnR and our web application to be a one-stop place 
for comprehensive data integration, for both users of R (or 
Python) and non-users of these software.
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Figure 3. Relevance network plot for SIDA. The nodes of the graph 
represent variables for the pairs of views, and edges represent the 
correlations between pairs of variables. Dashed and solid lines indicate 
negative and positive correlations, respectively. Circle nodes are View 1 
variables (proteins), and rectangular nodes are View 2 variables (genes). 
We show edges with correlations at least 0.1. The plot suggests that the 
gene FAM3D is negatively correlated with many proteins (e.g. PO2766, 
P30491, Q08380), and positively correlated with proteins such as 
A0ADC4DFP6, E9PEK4, P04196, and D6W5L6.
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