Skip to main content
American Journal of Alzheimer's Disease and Other Dementias logoLink to American Journal of Alzheimer's Disease and Other Dementias
. 2006 Aug-Sep;21(4):258–262. doi: 10.1177/1533317506289260

Systemic Inflammatory Markers and Risk of Dementia

Tomasz Dziedzic 1
PMCID: PMC10833275  PMID: 16948290

Abstract

Inflammation plays an important role in the pathogenesis of Alzheimer's disease. This article reviews the results of prospective studies demonstrating that the level of systemic inflammation markers, particularly C-reactive protein and interleukin-6, can predict cognitive decline or dementia. The potential mechanisms linking systemic inflammatory molecules to cognitive decline are also discussed.

Keywords: Alzheimer's disease, dementia, inflammation

Full Text

The Full Text of this article is available as a PDF (55.3 KB).

References

  1. Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000;21:383-421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eikelenboom P, Bate C, Van Gool WA, etal;. Neuroinflammation in Alzheimer's disease and prion disease. Glia. 2002;40:232-239. [DOI] [PubMed] [Google Scholar]
  3. Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461-467. [DOI] [PubMed] [Google Scholar]
  4. Wenk GL. Inflammation in Alzheimer's disease: its role and an opportunity for therapy. Brain Aging. 2003;3:16-20. [Google Scholar]
  5. Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 2002;52:168-174. [DOI] [PubMed] [Google Scholar]
  6. Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59:371-378. [DOI] [PubMed] [Google Scholar]
  7. Yaffe K, Lindquist K, Penninx BW, et al. Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology. 2003;61:76-80. [DOI] [PubMed] [Google Scholar]
  8. Yaffe K, Kanaya A, Lindquist K, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292:2237-2242. [DOI] [PubMed] [Google Scholar]
  9. Engelhart MJ, Geerlings MI, Meijer J, et al. Inflammatory proteins in plasma and the risk of dementia: the Rotterdam Study. Arch Neurol. 2004;61:668-672. [DOI] [PubMed] [Google Scholar]
  10. Dik MG, Jonker C, Hack CE, Smit JH, Comijs HC, Eikelenboom P. Serum inflammatory proteins and cognitive decline in older persons. Neurology. 2005;64:1371-1377. [DOI] [PubMed] [Google Scholar]
  11. Perry VH. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun. 2004;18:407-413. [DOI] [PubMed] [Google Scholar]
  12. Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci. 2003;4:103-112. [DOI] [PubMed] [Google Scholar]
  13. Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B. TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J. 1999;13:63-68. [DOI] [PubMed] [Google Scholar]
  14. Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye-Bouchaud N, Mariani J. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci U S A. 1995;92:3032-3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003;14:133-145. [DOI] [PubMed] [Google Scholar]
  16. Barrientos RM, Higgins EA, Biedenkapp JC, et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging. 2006;27:723-732. [DOI] [PubMed] [Google Scholar]
  17. Krabbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK, Bruunsgaard H. Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun. 2005;19:453-460. [DOI] [PubMed] [Google Scholar]
  18. Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, Perry VH. Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2003;74:788-789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guan Z, Fang J. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun. 2006;20:64-71. [DOI] [PubMed] [Google Scholar]
  20. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003; 107:363-369. [DOI] [PubMed] [Google Scholar]
  21. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111:1805-1812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jialal I, Devaraj S, Venugopal SK. C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension. 2004;44:6-11. [DOI] [PubMed] [Google Scholar]
  23. Blackburn R, Giral P, Bruckert E, et al. Elevated C-reactive protein constitutes an independent predictor of advanced carotid plaques in dyslipidemic subjects. Arterioscler Thromb Vasc Biol. 2001;21:1962-1968. [DOI] [PubMed] [Google Scholar]
  24. van der Meer IM, de Maat MP, Bots ML, et al. Inflammatory mediators and cell adhesion molecules as indicators of severity of atherosclerosis: the Rotterdam Study. Arterioscler Thromb Vasc Biol. 2002;22:838-842. [DOI] [PubMed] [Google Scholar]
  25. Cao JJ, Thach C, Manolio TA, et al. C-reactive protein, carotid intima-media thickness, and incidence of ischemic stroke in the elderly: the Cardiovascular Health Study. Circulation. 2003; 108:166-170. [DOI] [PubMed] [Google Scholar]
  26. Wang TJ, Nam BH, Wilson PW, et al. Association of C-reactive protein with carotid atherosclerosis in men and women: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2002;22:1662-1667. [DOI] [PubMed] [Google Scholar]
  27. Rost NS, Wolf PA, Kase CS, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: the Framingham study. Stroke. 2001;32:2575-2579. [DOI] [PubMed] [Google Scholar]
  28. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973-979. [DOI] [PubMed] [Google Scholar]
  29. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836-843. [DOI] [PubMed] [Google Scholar]
  30. Curb JD, Abbott RD, Rodriguez BL, et al. C-reactive protein and the future risk of thromboembolic stroke in healthy men. Circulation. 2003;107:2016-2020. [DOI] [PubMed] [Google Scholar]
  31. Hoshi T, Kitagawa K, Yamagami H, Furukado S, Hougaku H, Hori M. Relations of serum high-sensitivity C-reactive protein and interleukin-6 levels with silent brain infarction. Stroke. 2005;36:768-772. [DOI] [PubMed] [Google Scholar]
  32. van Dijk EJ, Prins ND, Vermeer SE, et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam Scan Study. Circulation. 2005;112:900-905. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Alzheimer's Disease and Other Dementias are provided here courtesy of SAGE Publications

RESOURCES