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turn to the generation of NFTs and finally to neu-
ronal death.1 NFTs are composed of paired helical
filaments (PHFs) and straight filaments. The major
component of PHFs is the microtuble-associated
protein τ.2-4 In PHFs, τ shows distinctive properties,
such as high aggregation, hyperphosphorylation,
and other posttranslational modifications, including
glycosylation, ubiquitination, glycation (formation
of advanced glycation end products [AGEs]),
polyamination, nitration, and proteolysis.

There have been variable reports on whether
type 2 diabetes mellitus (DM) is a clinical risk fac-
tor for AD. Recent evidence from population-based
studies does indicate a link between DM and AD,
with an incidence of AD as much as 2 to 5 times
higher in diabetic patients.5-8 In addition to AD,
other neurodegenerative diseases, such as
Huntington’s disease, Friedrich’s ataxia, Werner’s
disease, and myotonic dystrophy, are associated with
the development of DM.9-12 Continuous hyper-
glycemia is a causative factor for diabetic complica-
tions, and it enhances the production of AGEs
through the Maillard reaction. AGEs were originally
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characterized by a yellow-brown fluorescent color
and an ability to form cross-links with and between
amino groups,13 but the term is now used for a broad
range of advanced products of the Maillard reac-
tion,14-16 including N-carboxymethyllysine (CML)
and pyrroline, which show neither color nor fluores-
cence and do not cross-link proteins.17,18 CML can
be formed from the precursors glyoxal and glyco-
laldehyde by an intramolecular Cannizzaro reaction,
a process that is largely independent of glucose
autoxidation.19

The formation and accumulation of AGEs in
various tissues are known to progress during normal
aging and at an accelerated rate in DM.20-22 Recent
understanding of this process has confirmed that
AGEs interaction with their receptors (RAGE) play
a role in the pathogenesis of diabetic complications
and neurodegenerative disorders, including AD.20-22

The aggregation of Aβ is promoted by its glycation in
vitro.23 Moreover, the glycation of τ, in addition to
hyperphosphorylation, appears to enhance the for-
mation of PHFs.24,25 AGEs are likely important
factors in the progression of neurodegenerative dis-
orders that are characterized by protein aggregation
and deposition. Recently, we showed that glycer-
aldehyde-derived AGEs (AGE-2) and glycolalde-
hyde-derived AGEs (AGE-3), but not glucose-derived
AGEs (AGE-1) or CML, contribute to neuronal cell
toxicity in diabetic patients, and it was emphasized
that both contributing types of AGEs have high tox-
icity. We proposed that 2 groups of AGEs are associ-
ated with the cell toxicity: toxic AGEs (TAGE)26-30

and nontoxic counterparts such as CML, pentosi-
dine, pyrraline, and crossline. This review summa-
rizes the molecular mechanisms of AD, focusing on
the TAGE-RAGE system.

Formation of AGEs In Vivo

AGEs form by the Maillard reaction, a nonenzy-
matic reaction between ketones or aldehydes and the
amino groups of proteins, which contributes to the
aging of proteins and to the pathological compli-
cations of diabetes.31-35 In DM, reducing sugars
including glucose, fructose, and trioses (such as glyc-
eraldehyde) are known to react with the amino groups
of proteins nonenzymatically to form reversible Schiff
bases and then Amadori products. These early glyca-
tion products undergo further complex reactions such
as rearrangement, dehydration, and condensation
to become irreversibly cross-linked, heterogeneous

fluorescent derivatives termed AGEs.36,37 Recent
studies have suggested that AGEs can arise not only
from sugars but also from carbonyl compounds
derived from the autoxidation of sugars and other
metabolic pathways.19,38-40 In a previous report,41-44

we described the contribution of glucose, α-hydrox-
yaldehydes (glyceraldehyde and glycolaldehyde), and
dicarbonyl compounds (methylglyoxal [MGO], gly-
oxal [GO], and 3-deoxyglucosone) to the glycation of
proteins, and we developed anti-AGEs antibodies
that specifically recognize 6 distinct classes of AGEs
structures (AGE-1; AGE-2; AGE-3; AGE-4, MGO-
derived AGEs; AGE-5, GO-derived AGEs; and AGE-
6, 3-deoxyglucosone-derived AGEs), but not CML
structure, within the circulating proteins and pep-
tides present in serum from type 2 diabetes patients
undergoing hemodialysis. These results suggest that
all 6 forms of AGEs were synthesized in vivo. Based
on these data, we proposed a pathway for the for-
mation of distinct AGEs by the Maillard reaction,
sugar autoxidation, and sugar metabolic pathways in
vivo, as shown in Figure 1.

Moreover, AGE-1 and AGE-2 are present in
human serum, and the level of both of these AGEs
is elevated in type 1 and type 2 diabetic patients.45-47

These AGEs, especially the AGE-2-epitope, elicit
angiogenesis at the concentrations present in the
plasma of diabetic patients. The results therefore
suggest the relevance of the AGE-2 epitope in the
pathologic angiogenesis in vivo. We demonstrated
for the first time that vitreous levels of both AGE-2
and vascular endothelial growth factor (VEGF) were
significantly higher in diabetic patients than in con-
trol subjects and that these levels were elevated in
association with the severity of neovascularization in
diabetic retinopathy.48

Receptor for AGEs

Receptors could play a critical role in AGEs-related
biology and the pathology associated with diabetic
complications and aging disorders.49-52 Several AGEs-
binding molecules have been described, and it is
thought that many of the adverse effects caused by
advanced glycation are mediated via AGEs receptors,
such as RAGE,53 oligosaccharyl transferase-48 (AGE-
R1),54 galectin-3 (AGE-R3),55 CD36,56 macrophage
scavenger receptors types 1 and 2,57 and FEELs-1 and
-2 (fasciclin EGF-like, laminin-type EGF-like, and link
domain-containing scavenger receptors 1 and 2).58 The
relative pathogenic contribution of these receptors in
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diabetic complications is poorly defined, although
RAGE is by far the best characterized mechanism dur-
ing in vitro and in vivo studies on RAGE, and its regu-
latory fragments, such as soluble RAGE (sRAGE),
indicate an important role in pathobiology.52,59 BIAcore
surface plasmon resonance assays demonstrated that
AGE-2 and AGE-3 (Kd values for RAGE were esti-
mated to be 0.3 µM and 1.4 µM, respectively), but not
AGE-1, AGEs-4 to -6, CML, or pentosidine, were
specifically bound to RAGE.60,61

RAGEs has also been proposed to play a major
role in the onset of the AD. RAGE is expressed in a
variety of cell types, including endothelial cells, peri-
cytes, mesangial cells, neurons, and glia.62-64 RAGE
has been found to be a specific cell-surface receptor
for Aβ peptide, thus eliciting neuronal cell perturba-
tion.62,65 The active participation of RAGE in the
pathogenesis of AD has been confirmed in animal
models; double transgenic mice with neuronal over-
expression of neuronal RAGE and mutant amyloid

precursor protein (mAPP) displayed early abnormali-
ties in spatial learning/memory, accompanied by
altered activation of markers of synaptic plasticity and
exaggerated neuropathological findings, before such
changes were found in mAPP transgenic mice.66

Relationship Between DM and AD

The relationship between DM, cognitive
decline, and AD is still under active investigation,
but some studies suggest that DM may be associated
with an increased risk of developing AD, along with
enhanced decline in some cognitive systems.67,68 The
Rotterdam Study, which surveyed more than 6300
patients, showed a relation between DM and AD,
with a relative risk (RR) of 1.9.5 Of particular note,
given the recent interest in insulin dysfunction and
AD,69-72 patients in that study receiving exogenous
insulin therapy were at the highest risk (RR = 4.3)
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of dementia. The Honolulu-Asia Aging Study, which
examined a cohort of 2574 patients, showed also
that DM patients’ risk was 1.8 for AD and 2.3 for
vascular dementia.7 Recently discovered links
between DM and AD are indications of AGEs and
increased RAGE expression in brains of patients
with AD.62,73 As AGEs are involved in diabetes com-
plications, diabetes might influence AD brain
pathology.

To what extent do circulating AGEs play a
role in AD pathology? The degradation products of
AGEs-modified proteins are not cleared during renal
dialysis of diabetic patients.41,74 These low-molecular-
weight AGEs have been shown to be chemically
reactive and to contribute to the further modifica-
tion and damage of tissue proteins.74 It remains of
interest to determine whether AGEs formation is
involved in abnormal τ-protein processing and in
the deposition of Aβ that has been observed in
the brains of patients undergoing renal dialysis.75

Riviere et al quantified plasma protein glycation
specifically derived from glucose in AD patients.76

Protein glycation in plasma, evaluated by plasma
furosine, was almost 2 times greater in subjects with
AD than in controls but still 50% less than in sub-
jects with DM. Recently, Shuvaev et al studied
changes in the level of an early glycation product, an
Amadori product, in cerebrospinal fluid (CSF) in
aging patients and in those with late-onset AD.77

The concentration of an Amadori product in CSF
correlated with the CSF glucose concentration but
did not change with age. In contrast, the level of
CSF Amadori product was 1.7 times greater in AD
patients than in a nondemented age-matched con-
trol group.

We have found that AGE-2 and AGE-3 cause
apoptosis of retinal pericytes and induce VEGF after
the interaction with RAGEs.27,78,79 AGE-2 and AGE-
3 also induce VEGF expression, DNA synthesis, and
angiogenesis in microvascular endothelial cells
(ECs), which are the hallmark of proliferative dia-
betic retinopathy. Although the molecular mecha-
nisms of VEGF overexpression elicited by AGEs are
not fully understood, our recent investigation has
shown that the AGE-2–RAGE interaction might
increase VEGF gene transcription in ECs by
NADPH oxidase-mediated reactive oxygen species
generation and the subsequent nuclear factor κB
activation via Ras-mitogen-activated protein kinase
pathway.80,81 In mesangial cells, cell growth is inhib-
ited by AGEs, especially by AGE-2 and AGE-3, with
a strong inhibitory property. Furthermore, AGEs

stimulate the secretion of VEGF and monocyte
chemoattractant protein-1, where AGE-2 shows the
strongest effects on the secretion.28 Sekido et al29

showed that cell viability and replication of
Schwann cells as well as their production of proin-
flammatory cytokines, tumor necrosis factor–α, and
interleukin-1β, were significantly affected by AGE-2
and AGE-3. Taken together, AGE-2 participates in
the development of diabetic complications in the
early phase by affecting the vascular wall and peri-
cytes. In this context, AGE-2 might take part in
development of dementia triggered by cerebral peri-
cyte loss for vascular dementia and neuronal cell
apoptosis for AD at the beginning of the disease.

Effect of AGEs on Primary Cortical
Neuronal Cells

Many available reports indicate that AGEs are
involved in diabetic complications33,82-85 and other
age-related diseases such as inflammation,86 athero-
sclerosis,87-90 and cancer.30,91-93 AGEs are also impli-
cated in the pathogenesis of AD.23,65,94-98 We
investigated which types of AGEs trigger the devel-
opment of AD pathology using primary cortical neu-
rons (Figure 2).26,99 Cell viability was dramatically
decreased by the addition of AGE-2, which is a
TAGE. Moreover, the neurotoxic effect of AGEs
fractions in the serum of diabetic patients undergo-
ing hemodialysis was recovered only upon preincu-
bation with anti–AGE-2 antibody, suggesting that
AGE-2 is toxic to cell viability and actually exists in
the serum of the diabetic patients. These results
indicated that TAGE might show drastic neurotoxic-
ity and cause development of the neurodegenerative
disease directly.

The role of glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) in apoptosis has been
described in neurodegenerative diseases, such as
Parkinson’s disease, Huntington’s disease, and
AD.100-102 Translocation of the enzyme from the
cytosol to the nucleus is a critical step in the induc-
tion of apoptosis in neuronal cells.103-106 We have
found that GAPDH activity is reduced by TAGE
without a change in caspase activity.26,99 Although
the mechanism of the reduction by TAGE is not
clear, the decrease of GAPDH activity leads to an
increase of intracellular glyceraldehyde concentra-
tion and AGE-2 produced in a vicious cycle. AGE-2
thus may be a general causative agent for develop-
ment of neurodegenerative disease. AGEs and their
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precursors (MGO and GO) may increase the aggre-
gation and cytotoxicity of intracellular Aβ carboxy-
terminal fragments.107 Taken together, these
considerations underscore the premise that AGEs
may be central to the exacerbation of dementia and
enhanced predilection of stroke. In this context,
both AGE-2 and Aβ are signal transduction ligands
of RAGE. So, the above discussed observations sug-
gest the possibility that AGEs, especially AGE-2, are
one of the missing links between AD and DM.

Accumulation of AGEs
in the Human Brain

The possibility of the involvement of glycation in
AD was first suggested in several reports published
successively between 1994 and 1995.23,25,108,109

Senile plaques and NFTs were positively stained
with antipyrraline and antipentosidine antibodies.108

Sasaki et al reported that senile plaques, even dif-
fuse or primitive ones, were positively stained by an
antiserum against glucose-derived AGEs (its anti-
serum could partially recognize protein-bound CML
structure).94,110 The most prominent species of AGEs
in tissues, CML adducts, are found at the highest
levels in the hippocampus, followed by the cornu
ammonis regions. Interestingly, AD patients with
DM showed enhanced formation of CML, possibly
because of increased levels of glucose and enhanced
oxidative stress.111,112 Many researchers have

reported that CML is the dominant epitope recog-
nized by several AGEs antibodies and have sug-
gested that CML is a major immunogenic structure
on the surface of AGE proteins. The fact that CML
is formed during both glycoxidation and lipoxidation
reactions raises some questions about the specificity
of many anti-AGEs antibodies and antisera. CML
can be formed from the precursors glyoxal and gly-
colaldehyde by an intramolecular Cannizzaro reac-
tion, a process that is largely independent of glucose
autoxidation.19 The concept that CML is a marker of
oxidation rather than glycation has recently received
support.

Recently, our studies have suggested that there
is a role for AGEs and RAGE, but not CML, in
AD.110 We showed that Aβ-, AGE-1–, and RAGE-
positive granules were present in the perikaryon of
hippocampal neurons in AD and DM patients. In
AD brains, most astrocytes (approximately 70%-
80%) contained both AGE-1– and RAGE-positive
granules, and their distribution was almost the
same, while fewer astrocytes contained Aβ-positive
granules (approximately 20%-30%). This finding
suggests the presence of glycated proteins other
than Aβ. Another of our studies showed that AGE-2
also exists in AD brains.113 The localization of AGE-
2 was mainly in the perikarya of neurons, and the
staining pattern was powdery, differing from the dot-
like pattern of AGE-1 staining. On the other hand,
astrocytes stained weakly with anti–AGE-2 antibody
when compared to anti–AGE-1 antibody. In AD
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Figure 2. Synthetic advanced glycation end products (AGEs) and serum AGEs from diabetic patients induce neuronal cell death in
cultured cortical neurons. (A) Cell viability of cortical neuronal cell after addition of BSA (open bar) or various types of AGEs (filled
bars). (B) Neutralization experiments in preincubation with various types of anti-AGEs antibodies and serum AGEs fractions pre-
pared from normal controls (open bars) or diabetic patients on hemodialysis (DM-HD; filled bars). Both experiments are examined
by the MTT assay. BSA = bovine serum albumin; Ab-1 = anti–AGE-1 antibody; Ab-2 = anti–AGE-2 antibody; Ab-3 = anti–AGE-3 anti-
body; Ab-4 = anti–AGE-4 antibody; Ab-5 = anti–AGE-5 antibody; Ab-6 = anti–AGE-6 antibody; MTT = 3-(4,5-dimethylthiazolyl-2-γ)-
2,5-diphenyltetrazolium bromide.



brains, many senile plaques were detected by Αβ
immunostaining. The AGE-1 antibody also reacted
with the senile plaques, mainly the amyloid core, but
the AGE-2 antibody showed no immunoreactivity
with the plaques. AGE-1 was present at both the
intracellular and extracellular sites, while AGE-2
was detected only intracellularly. Protein cross-link-
ing by AGEs structures results in the formation of
protease-resistant aggregates. Such protein aggre-
gates may interfere with both axonal transport and
intracellular protein traffic in neurons.

Production Route of TAGE In Vivo

As shown in Figure 3, glyceraldehyde is a precur-
sor of AGE-2 that is considered to form by 3 path-
ways22,99,114: (1) glycolytic pathway, (2) polyol pathway,
and (3) fructose metabolic pathway. (1) The glycolytic
intermediate glyceraldehyde-3-phosphate is normally
catabolized by the enzyme GAPDH. As mentioned
above, the addition of AGE-2 to neuronal cell cultures
caused a decrease in GAPDH activity. This suggests
that the intracellular concentration of glyceraldehyde
is increased and may further accelerate AGE-2 pro-
duction and enhance cytotoxicity by a feed-forward
mechanism. (2) In hyperglycemic conditions, an

increased intracellular glucose concentration stimu-
lates the polyol pathway to accelerate fructose pro-
duction in insulin-independent tissues such as brain
and nerve tissue, kidney, lens, and red blood cells. (3)
Another common sugar in the diet is fructose, which
is a component of sucrose, or table sugar. Fructose
may be metabolized by 2 pathways in cells. It may be
phosphorylated by hexokinase, an enzyme that is pres-
ent in all cells; however, hexokinase has a strong pref-
erence for glucose, and glucose, which is present at
about a 5 mM concentration in blood, is a strong
competitive inhibitor of the phosphorylation of fruc-
tose. The other pathway of fructose metabolism
involves fructokinase and is especially important in
the liver after a meal. In the liver, fructose is phos-
phorylated to fructose-1-phosphate (F-1-P) by a spe-
cific kinase, and liver aldolase, called aldolase B, can
cleave F-1-P. In this case, the products are dihydrox-
yacetone phosphate and glyceraldehyde. Since fruc-
tokinase is found in the liver, kidney, intestine, and
gut, but not in other tissues, glyceraldehyde might be
expected in these tissues.115 Newly synthesized glyc-
eraldehyde can be transported or can leak passively
across the plasma membrane. It can react nonenzy-
matically with proteins to lead to accelerated forma-
tion of AGE-2 in both intracellular and extracellular
regions.
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TAGE Theory in AD

It has been reported that nontoxic AGEs such as
CML, pyrraline, and pentosidine are colocalized in
Aβ plaques and NFTs, suggesting a role of AGEs in
the pathogenesis of AD.116,117 On the other hand,
TAGE, that is, AGE-2, is immunohistochemically
detected mainly in the cytosol of neurons of the hip-
pocampus and parahippocampal gyrus but not in the
senile plaques of brains in AD patients.113 Also,
TAGE are detected at both intracellular and extra-
cellular sites. These results indicate that the distri-
bution of TAGE differ from that of nontoxic AGEs.
The toxic effect of TAGE on neuronal cells is likely
a direct event by induction of apoptosis from the
early phase of AD development. It is possible that
accumulation of the nontoxic AGEs’ colocalization
with Aβ in senile plaques might inhibit internaliza-
tion of Aβ in the AD brain. Because nontoxic AGEs
have no direct effect on neural cells, they may accu-
mulate to appreciable degrees in healthy subjects.98

The direct neurotoxicity of TAGE, on the other
hand, will stimulate the development of AD.

These results indicate that of the various types of
AGEs structures that can form in vivo, TAGE, but not
nontoxic AGEs, are likely to play an important role in
the pathophysiological processes associated with
AGEs formation. TAGE are involved in the pathogen-
esis of diabetic retinopathy and nephropathy, espe-
cially at an early stage of disease development. In
retinal pericytes, the cytopathic effects of TAGE, but
not those of AGE-1 or CML, were significantly
enhanced by overexpression of the RAGE. TAGE
induction of apoptosis in Schwann cells may play a
critical role in the development of diabetic neuropa-
thy. We postulate that nontoxic AGEs structures may

be physiologically relevant mechanisms for averting
potentially damaging consequences of the advanced
glycation process.

Conclusion

TAGE have been shown to be involved in the
pathogenesis of AD. While the precise structure of
AGE-2 remains to be determined, our best evidence
to date is that AGE-2 forms by the rearrangement of
glyceraldehyde addition products.42 Recent studies
have demonstrated that glyceraldehyde-derived and
glycolaldehyde-derived AGEs have a pyridinium
moiety,118-120 suggesting that a specific and common
chemical scaffold may be responsible for the
cytotoxicity of TAGE. TAGE stimulate the growth
and migration of cancer cells,30,121 and they may also
cause other neurodegenerative disease (Figure 4).
Pathophysiological and structural studies of TAGE
will give us valuable information regarding the
development of age-related diseases and their
prevention.

Numerous blood and CSF tests have been pro-
posed for early detection of AD.122,123 However, not
all results are consistent.124 Given the multiple eti-
ologies and pathological process of AD, more than 1
biological marker will probably be necessary for the
early diagnosis of this disorder. We would like to
hypothesize that serum or CSF levels of TAGE could
become a promising biomarker for early detection of
AD. We also propose possible means of testing this
hypothesis. Are the concentrations of TAGE in
serum or CSF elevated early in the course of demen-
tia? Are these levels correlated with disease severity
and progression, especially in patients with DM?
These clinical studies may clarify the utility of serum
or CSF levels of TAGE as biomarkers for AD and
might enable more effective diagnosis and treatment
of patients with this devastating disorder.
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