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Abstract 

Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-spe-
cific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. 
Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved 
cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant 
cell–cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we iden-
tified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated 
with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein 
(SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary 
hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular 
senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics 
and therapeutic interventions for liver aging and associated diseases.

Keywords single-nucleus RNA sequencing, liver, hepatocytes, aging, senescence, SREBP2

Introduction
Medical care advances, improved hygiene, and better 
access to food and water have resulted in world-wide 

population aging, which in and of itself has unavoida-
ble global ramifications. Because a longer life span does 
not necessarily mean a longer healthy life, the number 

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9289-8177
https://orcid.org/0000-0002-3988-5067
https://orcid.org/0000-0002-8885-5104
mailto:zhangwq@big.ac.cn
mailto:qujing@ioz.ac.cn
mailto:ghliu@ioz.ac.cn


A single-nucleus transcriptomic atlas of primate liver aging | 99

Pr
ot

ei
n

 &
 C

el
l

of elderly individuals with chronic diseases, including 
metabolic and cardiovascular diseases, has increased 
dramatically (Costantino et al., 2016; Maeso-Díaz and 
Gracia-Sancho, 2020; Cai et al., 2022). As the largest solid 
and metabolic organ, the liver is a nexus for homeostatic 
maintenance throughout the human body (Rhyu and 
Yu, 2021). The liver performs a wide range of physiolog-
ical functions, such as energy metabolism and storage, 
molecular biosynthesis, and scavenging of xenobiotics 
(Hunt et al., 2019; He et al., 2022). Consequently, liver 
aging not only increases its vulnerability to acute injury 
and liver diseases but also promotes susceptibility to the 
inflammatory and fibrotic responses that are associated 
with systemic aging-related diseases, such as diabetes 
and aging-related cardiometabolic diseases (Ahmadieh 
and Azar, 2014; Kohsari et al., 2021; van der Meer et al., 
2022). Given these relationships, the field of liver aging 
research is actively growing.

Aging-associated changes in the liver include volume 
loss, decline of blood flow, increase in inflammatory 
response, accumulation of senescent cells, and progres-
sive organ dysfunction (Hunt et al., 2019; Shen et al., 
2022). Many extrinsic and intrinsic factors are known to 
contribute to liver aging, including genomic and epig-
enomic alterations as well as dysregulation in mitochon-
drial function or nutrient-sensing pathways (Sastre et 
al., 2007; Mann, 2014; Hunt et al., 2019). Based on studies 
in rodents, several aging-related pathophysiological phe-
notypes in the liver have been identified. These include 
the accumulation of polyploid nuclei and DNA damage 
marks in hepatocytes of aged mice (Maslov et al., 2013; 
Silva et al., 2018) and the increased thickness of the liver 
sinusoidal endothelial cells (LSEC) layer, with the num-
ber and size of fenestrations reduced (Le Couteur et al., 
2007; Poisson et al., 2017). At a cellular level, hepatic 
stellate cells (HSC) are hyperactivated, leading to the 
development of hepatic fibrosis with age (Krizhanovsky 
et al., 2008; Warren et al., 2011; Puche et al., 2013), and 
the number of resident macrophages in the liver, the 
Kupffer cells, also increases and becomes aberrantly 
activated during aging (Dixon et al., 2013; Stahl et al., 
2018). Thus, there is irrefutable evidence that aging has 
a profound impact on different cell types in the liver. 
However, the molecular mechanisms associated with the 
cell type-specific aging phenotypes in the liver and their 
mutual crosstalk remain poorly understood. Therefore, 
an in-depth exploration of liver aging stands to enhance 
our knowledge about how aging impacts liver cellular 
composition and gene expression.

Single-cell RNA sequencing (scRNA-seq) and sin-
gle-nucleus RNA sequencing (snRNA-seq) have been 
leveraged to elucidate the transcriptomic landscape for 
liver aging and its associated diseases, such as hepa-
tocellular carcinoma (HCC), cirrhosis, liver fibrosis, 
and non-alcoholic steatohepatitis (Krenkel et al., 2019; 

Ramachandran et al., 2019; Ho et al., 2021; Wang et al., 
2021b; Barreby et al., 2022; Hundertmark et al., 2022; 
Zhou et al., 2022; Zou et al., 2022). Rodents are com-
monly used as the canonical model for this kind of 
research. However, there are many profound differences 
between rodents and primates, including the presence 
of lobated architecture in the livers of rodents but not 
in primates, and a lower amount of connective tissue in 
the portal tracts of rodents compared to primates (Vons 
et al., 2009; Kruepunga et al., 2019). Rodents also have 
a higher percentage of polyploid hepatocytes than pri-
mates (Donne et al., 2021). Furthermore, large mammals 
are more dependent on the hepatic artery for lobular 
perfusion than rodents (Kruepunga et al., 2019). Finally, 
expression levels and catalytic activities, and isoform 
composition of drug-metabolizing enzymes are also 
species-specific (Danek et al., 1988; Martignoni et al., 
2006). For example, cytochrome P450 proteins (CYPs), 
the main enzymes involved in oxidative reactions and 
playing important roles as scavengers of xenobiotics, 
differ significantly between species (Villeneuve and 
Pichette, 2004; Martignoni et al., 2006). Thus, to inves-
tigate the biology of human liver aging, it is most rel-
evant to do so in non-human primates (NHPs), whose 
liver structures, cellular composition, and biochemical 
functions are more similar to those of humans than 
those of rodents.

Here, we performed snRNA-seq, which permitted an 
unbiased characterization of major cell types in frozen 
liver samples, to conduct a thorough analysis of tran-
scriptomic changes during liver aging at single-cell res-
olution. The hepatocyte itself was the main target cell 
type impacted by aging, as reflected by disordered glu-
cose and lipid metabolism in aged livers. During aging, 
the interactions between hepatocytes and niche cell 
types, such as hepatic stellate cells and Kupffer cells, 
became elevated, which was reflected in a mutual acti-
vation of series of signaling pathways, including trans-
forming growth factor-β (TGFβ) and interleukin (IL) 
signaling, likely to result in increased fibrosis, inflamma-
tion, and functional disorders in aged livers. As the fun-
damental driving force of changes in hepatocytes during 
liver aging, we identified sterol regulatory element-bind-
ing protein 2 (SREBP2, alias SREBF2), which functions as 
an upstream broad regulon for aging-associated differ-
entially expressed genes (DEGs) in all zonation subtypes 
of hepatocytes, as inferred by gene regulatory networks 
based on co-expression and motif enrichment analy-
sis. Furthermore, the activated form of SREBP2 protein 
was increased in aged livers. Consistently, in human pri-
mary hepatocytes, we demonstrated that the activated 
SREBP2 was capable of triggering senescence, mirroring 
our in vivo observations, and indicating its potential as 
an intervention target for liver aging and aging-related 
diseases.
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Results
Histological features of liver aging in cynomolgus 
monkeys
To determine aging-related changes in primates, we 
obtained liver tissues from eight young (4–6 years old) 
and eight aged (18–21 years old) cynomolgus monkeys, 
respectively, equivalent to teenagers and elderly adults 
(people in their seventies) (Figs. 1A and S1A) (Wang et 
al., 2020b; Zhang et al., 2020, 2021; Huang et al., 2022). 
Between the cohorts, body mass index (BMI) trended 
upward while the liver-to-body weight ratio decreased 
in elderly adult primates (Fig. S1B and S1C). By histo-
chemical analyses, we observed chronic inflammation 
manifested by increased infiltrating immune cells in 
aged livers (Fig. 1B). In addition, fibrosis in the parenchy-
mal regions of the aged liver was increased relative to 
that of its younger counterparts (Fig. 1C). Moreover, by 
using Sudan black B staining, we found that lipofuscin, 
a kind of oxidized lipid drops, accumulated both within 
and between cells in the liver tissues of aged monkeys 
(Fig. 1D). Lipofuscin is known to accumulate in senescent 
cells as a senescence indicator (Evangelou and Gorgoulis, 
2017). Consistently, we observed higher proportions of 
P21-positive cells and SPiDER-βGal-positive cells and 
attenuated signals for heterochromatin mark H3K9me3 
in aged livers (Fig. 1E–G), together indicating aggravated 
cellular senescence in aged livers (Ma et al., 2021; Zhang 
et al., 2021; Liu et al., 2023). In line with the increased 
accumulation of senescent cells, we also noticed that 
senescence-associated secretory phenotype (SASP)-
associated factors (Sun et al., 2022), including tumor 
necrosis factor alpha (TNFα), interleukin-6 (IL6) and 
interleukin-1β (IL1β), were specifically upregulated in 
aged livers (Fig. 1H–J). Taken together, although the over-
all appearance of aged livers was barely indistinguisha-
ble from that of young livers, their phenotype based on 
the histological analysis was degenerated.

Transcriptomic features of liver aging in 
cynomolgus monkeys
To generate a global view of the transcriptional response 
to aging in the liver, we conducted bulk RNA sequencing 
(bulk RNA-seq) in young and aged livers. In total, we iden-
tified 394 upregulated and 119 downregulated aging-as-
sociated DEGs (adjusted P value ≤ 0.05, | Log2 (fold change), 
Log2FC | ≥ 0.5) by bulk RNA-seq (Figs. 2A, S1D, S1E and 
Table S1). In aged livers, genes related to lipid and energy 
metabolism were downregulated, such as peroxisome 
proliferator-activated receptor α (PPARα) activated gene 
expression, and cellular lipid catabolic process (Fig. 2B). 
Dysfunction of the lipid and fatty acid catabolic process 
could lead to accumulation of lipid droplets (Zhou et al., 
2018; Shen et al., 2022), which was confirmed by Oil red 
O staining in monkey livers (Fig. 2C). Response to nutri-
tional stress is critical for the maintaining metabolic 

homeostasis and viability (Russell et al., 2014), its down-
regulation in the aged liver may induce homeostatic 
imbalance in hepatic metabolic function (Fig. 2B). In 
contrast, neutrophil chemotaxis, regulation of immune 
effector process, endopeptidase activity, and cholesterol 
biosynthesis by SREBP2, cell-substrate adhesion and 
positive regulation of apoptotic process were upregu-
lated (Fig. 2B). In line with the transcriptional changes, 
genes encoding alarmin S100A8/S100A9, a kind of dam-
age-associated molecular patterns (DAMP) factors, were 
upregulated in aged livers as indicated in immunohis-
tochemistry results (Fig. 2D and 2E). Concomitantly, we 
detected increased proportions of neutrophils by immu-
nostaining of their marker myeloperoxidase (MPO) (Fig. 
2F). Besides, the accumulation of macrophages was 
observed by immunostaining of their marker CD68 (Fig. 
2G), and a nearly 3-fold increase in immune cells was 
identified by CD45 immunostaining (Fig. 2H), both indi-
cations of an increased immune response in aged livers. 
In addition, levels of MMP9, an endopeptidase involved 
in remodeling of the extracellular matrix (ECM), were 
also increased and verified experimentally (Fig. 2I). And 
we detected aggregation of apoptotic cells, as indicated 
by TUNEL-positive cells, in aged livers, consistent with 
the upregulated apoptotic process in bulk RNA-seq (Fig. 
2J). Taken together, our comprehensive histological and 
transcriptomic analyses revealed remarkable aging-as-
sociated changes in primate livers.

Single-nucleus transcriptomics identifies major 
cell types in cynomolgus monkey livers
To comprehensively resolve cell-type-specific responses 
in liver aging, we isolated and purified 135,757 nuclei 
from snap-frozen liver samples of young and aged cyno-
molgus monkeys for snRNA sequencing. After quality 
control, we used principal component analysis (PCA) 
dimension reduction followed by graph-based clustering 
to assigned 81,679 nuclei into 26 clusters, which were 
visualized by uniform manifold approximation and pro-
jection (UMAP) (Fig. S1F–I). Of the nine cell types with 
distinct cellular transcriptomic signatures, we identified 
hepatocytes (Hep, 57.13%) and major non-parenchyma 
cells (NPCs, 42.87%), such as cholangiocytes (Cho, 0.90%), 
hepatic stellate cells (HSC, 18.96%), endothelial cells 
(EC, 8.07%), smooth muscle cells (SMC, 0.71%), myofi-
broblasts (Myof, 2.25%), and Kupffer cells (Kup, 5.30%), 
T cells (TC, 5.63%), and B cells (BC, 1.05%) (Fig. 3A–C; 
Table S2). Pathway enrichment analysis of DEGs across 
cell types showed properties that corresponded to their 
known biological functions and characteristics (Fig. 3D). 
Notably, cell identity was confirmed by expression score 
of cell type-specific marker genes, and we found that the 
cell identity of all the cell types were compromised dur-
ing liver aging except T cells (Fig. S1J). Consistent with an 
earlier study (Michalopoulos, 2017), we did not find any 
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Figure 1. Histological features of liver aging in cynomolgus monkeys. (A) Schematic diagram illustrating sample collection, 
data analyses and validation. “Young” denotes cynomolgus monkeys 4–6 years old; “Aged” denotes cynomolgus monkeys 18–21 
years old. Created with BioRender.com. (B) HE staining in liver tissues from young and aged monkeys. Representative images are 
shown on the left; quantitative data for the area of inflammatory focus are shown on the right. Scale bars, 25 μm. (C) Masson’s 
trichrome staining in liver tissues from young and aged monkeys. Representative images are shown on the left; quantitative data 
for the positive area of fibrosis are shown on the right. Scale bars, 25 μm. (D) Sudan Black B staining in liver tissues from young 
and aged monkeys. Representative images are shown on the left; quantitative data for the positive area of the Sudan Black B are 
shown on the right. Scale bars, 25 μm. (E) Immunohistochemistry staining of P21 in liver tissues from young and aged monkeys. 
Representative images are shown on the left; quantitative data for the percentage of P21-positive cells are shown on the right. 
Scale bars, 25 μm. (F) Immunofluorescence staining of SPiDER-βGal in liver tissues from young and aged monkeys. Representative 
images are shown on the left; quantitative data for the percentage of SPiDER-βGal-positive cells are shown on the right. Scale bars, 
20 μm. (G) Immunofluorescence staining of H3K9me3 in liver tissues from young and aged monkeys. Representative images are 
shown on the left; quantitative data for the mean fluorescence intensity of H3K9me3 are shown on the right. Scale bars, 20 μm. 
(H) Immunofluorescence staining of TNFα in liver tissues from young and aged monkeys. Representative images are shown on the 
left; quantitative data for the percentage of TNFα-positive cells are shown on the right. Scale bars, 20 μm. (I) Immunofluorescence 
staining of IL6 in liver tissues from young and aged monkeys. Representative images are shown on the left; quantitative data for the 
percentage of IL6-positive cells are shown on the right. Scale bars, 20 μm. (I) Immunofluorescence staining of IL1β in liver tissues 
from young and aged monkeys. Representative images are shown on the left; quantitative data for the percentage of IL1β-positive 
cells are shown on the right. Scale bars, 20 μm. (B–J) Data are quantified as fold changes and shown as means ± SEM. Young, n = 8 
monkeys; aged, n = 8 monkeys. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 2. Transcriptomic features of liver aging in cynomolgus monkeys. (A) Volcano plot shows differentially expressed 
genes (DEGs) of bulk RNA-seq between aged and young livers (aged/young). Red points represent upregulated DEGs; blue points 
represent downregulated DEGs; gray points represent unchanged genes. (B) Representative GO terms and pathways of upregulated 
and downregulated DEGs in aged and young monkey livers. (C) Oil red O staining in liver tissues from young and aged monkeys. 
Representative images are shown on the left; quantitative data for the positive area of the oil red O staining are shown on the right. 
Scale bars, 25 μm. (D) Immunohistochemistry staining of S100A8 in liver tissues from young and aged monkeys. Representative 
images are shown on the left; quantitative data for the percentage of S100A8-positive cells are shown on the right. Scale bars, 25 
μm. (E) Immunohistochemistry staining of S100A9 in liver tissues from young and aged monkeys. Representative images are 
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significant influence of aging on predicted hepatocyte 
cell-cycle activities (Fig. S1K), given that most hepato-
cytes in homeostasis are expected to be at rest in both 
young and aged livers. Consistently, the proportions of 
hepatocytes were not significantly altered during aging 
(Fig. 3E). In contrast, all proportions of immune cells 
tended to increase with age (Fig. 3E). When we performed 
immunofluorescence staining using antibodies for cell 
markers of Kupffer cells (Buonomo et al., 2022), T cells, 
and B cells, we verified their increases in the aged liver 
tissues (Fig. 3F–H), in line with the increased inflamma-
tory response shown at the bulk transcription level (Fig. 
2B).

To further analyze aging-related drift in the transcrip-
tome of aged livers, we measured transcriptional noise in 
different cell types and found the most perturbations in 
hepatocytes (Fig. 3I). We then identified the genes whose 
transcriptional fluctuation correlated with increased 
transcriptional noise in Hep (Fig. 3J). Pathway enrichment 
analysis showed that dominant genes with fluctuating 
expression patterns were related to liver homeostasis, 
such as regulation of telomere maintenance, histone 
modification, circadian clock, different metabolism-as-
sociated pathways (Fig. 3K). Notably, genes involved in 
important developmental signaling pathways, such as 
the Hedgehog and Hippo pathways, were the dominant 
genes underlying aging-related transcriptional noise (Fig. 
3K). Both Hippo signaling and Hedgehog signaling are 
required for liver homeostasis (Omenetti et al., 2011; Gao 
et al., 2018; Machado and Diehl, 2018; Driskill and Pan, 
2021; Russell and Camargo, 2022), and perturbations of 
downstream signaling pathways in the aged liver there-
fore reflect perturbed maintenance of metabolic capac-
ity and structural integrity.

Characterization of cell type-specific 
transcriptomic changes in liver aging
Next, we systemically characterized DEGs associated 
with liver aging (aging DEGs) in all cell types. Overall, 
we identified 2,404 aging DEGs (Log2FC ≥ 0.25, adjusted P 
value ≤ 0.05) that were presented in at least one cell type 
in young and aged livers (Fig. 4A; Table S3). The most 
affected cell types during aging included Hep, Kup, and 

EC, with aging DEG counts of 1,087, 550, and 415, respec-
tively (Fig. 4A).

When we focused on aging DEGs for each cell type, 
we found more specific upregulation of genes associated 
with cholesterol biosynthesis (HMGCR, SQLE, SREBP2, 
etc.), complement activation (APCS, C5, C6, etc.), cellu-
lar senescence (NFKB1, PTEN, RAF1, etc.) and ferroptosis 
(CP, ACSL4, TF, etc.), and downregulation of xenobiotic 
metabolic process (CYP2C18, FMO5, etc.), oxidation by 
cytochrome P450 (CYP2E1, CYP3A4, CYP17A1, etc.), nucle-
otide metabolic process (NAXD, OGDHL, AFMID, etc.), and 
amino acid metabolic process (ARG2, CPS1, SDS, etc.) in 
aged Hep (Figs. 4B and S2A). Notably, we detected activa-
tion of SREBP signaling (SREBP2, ACLY, CYP51A1, etc.) in 
aged Hep and Cho, and genes associated with phagocyto-
sis were upregulated in both aged Cho and immune cells 
(Figs. 4B and S2A). There were no apparent specific upreg-
ulated terms for aged Cho, but epithelial tube morpho-
genesis-related genes (ERBB4, ESR1, etc.) were specifically 
downregulated in aged Cho (Figs. 4B and S2A), suggest-
ing a potential disruption of the biliary tract structure in 
aged liver (Banales et al., 2019). In aged HSC, we found 
that a series of collagen-encoding genes were specifi-
cally upregulated, including COL1A2, COL4A1, COL4A2, 
etc., but that genes related to regulation of basement 
membrane organization (LAMA2, LAMB1, PHLDB1, etc.), 
which are critical for maintenance of hepatocyte quies-
cence (Rohn et al., 2018), were downregulated (Figs. 4B 
and S2A). Consistently, we noted specific upregulation of 
genes enriched in ALK signaling in aged Myof (CLTC, RPS6, 
STAT3, etc.), which is studied extensively in liver fibrosis 
(Figs. 4B and S2A). In line with the chronic inflammatory 
phenotypes, genes associated with Toll-like receptor cas-
cades (CUL1, TANK, TAB2, etc.) were activated in Kupffer 
cells, and positive regulation of T cell tolerance induc-
tion genes (CBLB, TGFBR2, ITCH, etc.) were upregulated 
in TC (Figs. 4B and S2A). “Signaling by NOTCH1” pathway 
genes (EP300, NCOR1, etc.) were in general found to be 
enriched in EC from aged livers, consistent with compen-
satory and adaptive vascular niche remodeling in aged 
livers (Figs. 4B and S2A).

Even though expression of aging DEGs varied across dif-
ferent cell types, some common genes were shared across 
the major cell types. Upregulated DEGs were associated 

shown on the left; quantitative data for the percentage of S100A9-positive cells are shown on the right. Scale bars, 25 μm. (F) 
Immunohistochemistry staining of MPO in liver tissues from young and aged monkeys. Representative images are shown on the 
left; quantitative data for the percentage of MPO-positive cells are shown on the right. Scale bars, 25 μm. (G) Immunofluorescence 
staining of CD68 in liver tissues from young and aged monkeys. Representative images are shown on the left; quantitative data for 
the percentage of CD68-positive cells are shown on the right. Scale bars, 20 μm. (H) Immunofluorescence staining of CD45 in liver 
tissues from young and aged monkeys. Representative images are shown on the left; quantitative data for the percentage of CD45-
positive cells are shown on the right. Scale bars, 20 μm. (I) Immunofluorescence staining of MMP9 in liver tissues from young and 
aged monkeys. Representative images are shown on the left; quantitative data for the percentage of MMP9-positive cells are shown 
on the right. Scale bars, 20 μm. (J) TUNEL staining in liver tissues from young and aged monkeys. Representative images are shown 
on the left; quantitative data for the percentage of TUNEL-positive cells are shown on the right. Scale bars, 20 μm. (C–J) Data are 
quantified as fold changes and shown as means ± SEM. Young, n = 8 monkeys; aged, n = 8 monkeys. *P < 0.05, **P < 0.01, ***P < 0.001.

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
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Figure 3. Single-nucleus transcriptomics identifies major cell types in cynomolgus monkey livers. (A) UMAP plot showing the 
distribution of different cell types in liver from young and aged monkeys. (B) Feature plots showing the expression profiles of indicated 
cell-type-specific marker genes in monkey liver. The color key from gray to red indicates low to high gene expression levels. (C) Dot 
plot showing the expression level of representative marker genes across cell types. The color key from gray to red presents low to high 
gene expression levels. The size of dots indicates the percentage of cells with gene expression greater than zero. (D) Heatmap showing 
the expression profiles of the top 50 cell-type-specific marker genes for each cell type in monkey livers, with corresponding functional 
annotations on the right. The color key from blue to red represents low to high gene expression levels. (E) Sankey plots showing the 
cell number of each cell type and the proportion in young and aged monkey livers. The length of the bar indicates the cell number of 
each cell type, and the number was marked above the pie plot. The pie chart at bottom showing the ratios of each cell type in young 
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with diseases of signal transduction by growth factor 
receptors and second messengers (CAMK2D, ESR1, SMAD4, 
etc.) and cytokine signaling in the immune system (ANXA3, 
IFNGR1, IL6R, etc.), whereas, common downregulated aging 
DEGs were enriched in regulation of organelle localization 
(ATM, ACTN4, etc.), positive regulation of catabolic process 
(APOC2, PPARA, LRP1, etc.), and response to hormone (CPS1, 
CTSB, FOXO3, etc.) (Figs. 4B and S2A). In line with the anno-
tated upregulated pathway, HLA-B, a member of the Class I 
major histocompatibility complex that presents antigens to 
T cells, was upregulated in seven of the nine cell types (Fig. 
4C). In addition, DDX5, a key regulator of the IFN response 
dynamics that is also related to the immune response, was 
upregulated in four cell types (Fig. 4C). In contrast, ZBTB16, 
a pleiotropic transcription factor associated with regula-
tion of adipogenesis, lipid levels, and insulin sensitivity, was 
downregulated in most liver cell types (Fig. 4C) (Šeda et al., 
2017). To untangle the transcription connectivity between 
core nodes and targets altered during liver aging, we per-
formed single-cell regulatory network inference and clus-
tering (SCENIC) analysis and predicted core transcription 
factors regulating aging DEGs across different cell types 
(Fig. 4D). We identified upregulated regulons for liver aging 
DEGs, such as STAT3 and IRF2, well-known nodal genes for 
immune response regulation and tumorigenesis (Guo et al., 
2021). We also noticed that TEAD1, which plays a key role 
in the Hippo signaling pathway, was downregulated in aged 
livers. In addition, four genes were identified as core nodes 
for liver aging DEGs in a cell-type-dependent manner (Fig. 
4D). Among them, SREBP2, which plays a crucial role in cho-
lesterol and lipid biosynthesis, was upregulated specifically 
in Hep but downregulated in HSC and TC (Fig. 4D) (Eberlé et 
al., 2004; Hillmer et al., 2016; Zhao et al., 2021). Collectively, 
these data provide insights into the cell-type-specific tran-
scription regulatory network for primate liver aging.

Aberrant cell–cell communications and 
expression of disease-related hotspot genes in 
the aged liver
To understand whether aging leads to an altered 
microenvironment in primate livers, we constructed 
a cell–cell interaction network with weighted edges 

reflecting fold changes in ligand-receptor expression. In 
all, we identified 211 aged group-specific cell–cell inter-
actions and 253 young group-specific cell–cell interac-
tions, among which Hep appeared to communicate more 
with HSC, SMC and Kup cells, besides, SMC also exhib-
ited a stronger interaction with HSC in aged liver (Figs. 
4E and S2B; Table S4). Top-weighted interactions among 
these cell types in aged liver were driven mostly by col-
lagens, including COL4A6, and TGFβ signals, including 
TGFB3, consistent with reported interactions promot-
ing tissue fibrosis in various disease conditions (Figs. 
4E and S2B, S2C) (Branton and Kopp, 1999; Fabregat et 
al., 2016; Karsdal et al., 2017; Kim et al., 2018). Notably, 
ligand-receptor pairs that activate Notch signaling and 
mTOR pathway, that help regulate sugar and fat metab-
olism (Adams and Jafar-Nejad, 2019; Byles et al., 2021), 
were decreased in aged HSC and Myof, etc (Fig. S2B and 
S2C). These identified interactions are consistent with an 
impaired metabolic function in the aged liver.

Aging is recognized as a major risk factor for chronic 
diseases, including various liver diseases (Schmucker, 
2005). Using the Aging Atlas (2021) and databases com-
prising hotspot genes for liver diseases or their related 
complications (Piñero et al., 2021), including fatty liver, 
liver fibrosis, liver cirrhosis, hepatocellular carcinoma, and 
metabolic syndrome X, we found that many aging DEGs 
of liver overlapped with the genes in the above-mentioned 
databases (Fig. 4F; Tables S5 and S6). Among them, hepat-
ocyte function-related genes, such as ALB and CYP3A4, as 
liver-disease risk factors, were downregulated in aged liver 
(Fig. 4F; Table S5). Whereas the gene CRP, which encodes 
the C-reactive protein, a marker of chronic inflammation 
(Gorabi et al., 2022) that has been associated with liver 
diseases, was upregulated in aged liver (Fig. 4F; Table S5). 
Moreover, α1-antitrypsin (encoded by SERPINA1), an inhib-
itor of neutrophil elastase, whose gene variants are asso-
ciated with severity of fatty liver disease, liver fibrosis and 
cirrhosis (Basyte-Bacevice et al., 2019; Semmler et al., 2021), 
was also upregulated in aged liver (Fig. 4F; Table S5).

Since the liver is a unique organ that holds more than 
10% of total human blood supply and secretes a vari-
ety of proteins into the blood to support a wide range of 

and aged monkey livers. (F) Immunofluorescence staining of CD163 in liver tissues from young and aged monkeys. Representative 
images are shown on the left; quantitative data for the percentage of CD163-positive cells are shown on the right. Scale bars, 20 μm. 
(G) Immunofluorescence staining of CD247 in liver tissues from young and aged monkeys. Representative images are shown on the 
left; quantitative data for the percentage of CD247-positive cells are shown on the right. Scale bars, 20 μm. (H) Immunofluorescence 
staining of CD79B in liver tissues from young and aged monkeys. Representative images are shown on the left; quantitative data for 
the percentage of CD79B-positive cells are shown on the right. Scale bars, 20 μm. (I) Dot plot showing the log2 ratio of transcriptional 
noise between aged and young samples. The color key from gray to red corresponds to Log10 (adjusted P value) of transcriptional noise 
ratio from low to high. The size of dots indicates the number of genes with aging-related transcriptional noise. (J) Heatmap showing 
the row scaled expression levels of genes with high Pearson’s correlation coefficients (correlation coefficient > 0.6 and FDR < 0.05) 
between transcriptional noise and expression profiles in hepatocytes from young and aged monkeys. The bins are arranged based on 
the transcriptional noise ranking in each group. (K) Bar chart showing the enriched GO terms and pathways of genes with increased 
transcriptional noise during aging in hepatocytes. (F–H) Data are quantified as fold changes and shown as means ± SEM. Young, n = 
8 monkeys; aged, n = 8 monkeys. *P < 0.05.

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
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https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
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Figure 4. Characterization of cell-type-specific transcriptomic changes in liver aging. (A) Circos plots showing aging-related 
upregulated and downregulated DEGs (adjusted P value ≤ 0.05, |Log2FC | ≥ 0.25) in different cell types from monkey livers. Each 
connecting curve represents an upregulated or downregulated DEG shared by two cell types. (B) Network visualizing representative GO 
terms and pathways of aging-related upregulated (left) and downregulated (right) DEGs in each cell type of monkey liver during aging. 
The nodes representing GO terms or pathways, the pie plots showing the proportion of gene number that hit the certain GO term or 
pathway across cell types. Any two nodes with similarity score > 0.3 are connected by a line. (C) Radial plots showing upregulated (left) 
and downregulated (right) DEGs shared by at least three cell types. (D) Network visualizing the aging-related upregulated (left) and 
downregulated (right) core regulatory transcription factors (TFs) of each cell type. The hexagon nodes and the circle nodes represent 
cell types and TFs, respectively. Color keys from light to dark indicate the frequency of TFs from low to high. The pie charts in the 
middle represent TFs that are both upregulated and downregulated in different cell types. (E) Network showing the changes in ligand–
receptor interaction events between different cell types in the aged/young comparison group. Cell–cell communication is indicated 
by the connected line. The thickness of the lines is positively correlated with the number of ligand–receptor interaction events. Red 
and blue lines represent increased and decreased interaction events between different cell types. (F) Network visualizing the overlap 
between aging-related DEGs and liver disease-related genes. The hexagon nodes and the circle nodes represent the types and genes of 
liver disease database, respectively. The size of gene nodes indicates the frequency of occurrences in liver disease database. The pie-
donut charts show the number ratio of aging-associated upregulated (red) and downregulated (blue) genes across cell types. Genes in 
Aging Atlas database are marked with gray background. (G) Ring heatmap showing the co-upregulated and co-downregulated genes 
between snRNA-seq and aging-related human plasma proteome dataset. The circles represent the aging-related proteins and the size 
of circles shows the coefficient of aging-related proteins. The colors of circle (red and blue) represent positive and negative correlation 
with aging, respectively. The color key of heatmap from blue to red indicates the Log2FC of DEGs in snRNA-seq from low to high.
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Figure 5. Zonation-specific transcriptional alterations in aged cynomolgus monkey livers. (A) Arc plot showing prioritization of 
the cell types responsive to aging. (B) Schematic diagram showing the structure and functions of liver lobules. (C) tSNE plot showing 
the distribution of hepatocyte subtypes (left) and the expression levels for cell-type-specific marker genes of each subtype (right). 
The color key from gray to blue indicates low to high gene expression levels. (D) Violin plots showing the score of gene sets related 
to zonation-specific functions across three hepatocyte subtypes. (E) Heatmap (left) showing the aging-related DEGs across three 
hepatocyte subtypes. DEGs are classified into 14 modules according to the overlap among three subtypes. Heatmap (right) showing 
the GO terms and pathways of modules. (F) Network visualizing aging-related upregulated and downregulated core regulatory TFs 
(nodes) and their target genes (points) among three hepatocyte subtypes, with TFs arranging in the middle and target genes arranging 
on the outer ring. The size of the node indicates the number of target genes regulated by the TFs. The colors of node represent the 
average Log2FC of TFs during aging in different hepatocyte subtypes. Red and blue points represent upregulated and downregulated 
target genes during aging respectively. The pie-donut chart shows the number ratio of target genes regulated by the TFs across all
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physiological functions (Stefan and Häring, 2013; Jensen-
Cody and Potthoff, 2021), we integrated the analysis of 
our snRNA-seq dataset with a previously published 
serum proteomic dataset across the lifespan (Lehallier et 
al., 2019) and identified a total of 112 overlapped factors 
between aging DEGs and aging-associated differentially 
expressed serum proteins (Fig. 4G; Table S7). Among 
them, CHI3L1, a previously reported noninvasive bio-
marker for stage diagnosis of hepatic fibrosis, was spe-
cifically upregulated in the aged Hep and serum (Wang 
et al., 2020a). Similarly, hnRNPK, which is encoded by 
HNRNPA2B1 and used as a biomarker in early HCC, was 
also upregulated in most of the cell types of aged liver 
(Fig. 4G; Table S7). Based on our analysis, the complement 
protein C9 was also highlighted as being increased in the 
aged liver and plasma (Fig. 4G; Table S7). Interestingly, we 
also found that CRP was upregulated in both aged Hep 
and plasma (Fig. 4G; Table S7). Further pathway enrich-
ment analysis for overlapping factors revealed that the 
upregulated ones were functionally enriched in interleu-
kin and TGFβ signaling (Fig. S3A). In contrast, downregu-
lated genes were enriched for factors required for blood 
vessel development and response to hormone (Fig. S3A). 
Taken together, our results delineate how cell-type spe-
cific gene expression and abnormal cell–cell interactions 
intersect in aged liver.

Zonation-specific transcriptional alterations in 
aged cynomolgus monkey livers
Through the use of Augur analysis, a bioinformat-
ics toolkit that enables users to track evolution from 
sequence and serological data (Skinnider et al., 2021), we 
identified that Hep was the cell type most responsive to 
aging in the single-nucleus data (Fig. 5A). We also noticed 
that most of the aging DEGs detected at bulk RNA-seq 
level were in Heps, consistent with important implica-
tions for liver aging (Fig. S3B and S3C). Thus, these results 
highlighted that, hepatocytes, the main functional cells 
in liver, were highly vulnerable to aging. Hepatocytes 
line different zonation along the portal–central axis in 
liver lobules, defined by differences in gene expression, 
enzyme activity, and metabolic functions (Fig. 5B) (Ben-
Moshe and Itzkovitz, 2019). To precisely unravel such 
zonation-specific aging-related changes in hepatocytes, 
we further characterized the transcriptomic data for the 
hepatocyte population using defined maker genes asso-
ciated with liver zonations (Torre et al., 2010; Ben-Moshe 
and Itzkovitz, 2019; Annunziato and Tchorz, 2021; Paris 
and Henderson, 2022).

We identified three cell clusters in Hep, of which clus-
ter 1 was assigned as periportal hepatocytes (PP Hep), 

which specifically express SDS; cluster 2 was desig-
nated as pericentral hepatocytes (PC Hep), which highly 
express ADH4 and SLC6A2; and cluster 3 was designated 
as middle zone hepatocytes (MZ Hep) (Figs. 5C and S3D; 
Table S8). There were relatively few highly expressed 
marker genes in MZ Hep, but instead we detected a 
transcriptional gradient from PP Hep to PC Hep (Figs. 
5C and S3D). The three hepatocyte subtypes had their 
own well-recognized zonation-specific metabolic prop-
erties; for example, genes related to amino acid catab-
olism and urea cycle associated pathways were highly 
expressed in PP Hep, whereas genes related to response 
to xenobiotic stimulus and primary bile acid biosyn-
thesis were more strongly expressed in PC Hep (Fig. 5D; 
Table S9) (Braeuning et al., 2006; Schleicher et al., 2015; 
Kietzmann, 2017). Overall, the molecular traits of PP Hep, 
and PC Hep were consistent with their reported physio-
logical functions in the metabolism of amino acids and 
xenobiotics, respectively.

Next, we further characterized whether the aging-as-
sociated changes in hepatocytes depended on their par-
tition location. All Hep subtypes showed a comparable 
number of aging DEGs (Fig. 5E; Table S10); accordingly, 
Augur analysis (Skinnider et al., 2021) showed minor 
differences across these three hepatocyte subtypes 
(Fig. S3E). Although more than half of aging DEGs were 
shared in at least two zonation subtypes, each Hep sub-
type had its own specific aging signature (Fig. 5E; Table 
S10). Aging DEGs of PP Hep included upregulation in the 
collagen-activated signaling pathway and suppression in 
the tricarboxylic acid (TCA) cycle and respiratory elec-
tron transport, while upregulation of genes involved in 
protein processing in the endoplasmic reticulum and 
downregulation of regulatory members of circadian 
rhyme were features in MZ Hep (Fig. 5E; Table S10). On 
the other hand, aged PC Hep showed enriched gene 
expression related to complement and coagulation cas-
cades, but less in genes related to response to insulin 
(Fig. 5E; Table S10). Although metabolic pathway-related 
genes were commonly downregulated in all three hepat-
ocyte subtypes during aging (Fig. 5E), each subtype of 
hepatocytes had a well-maintained gene expression pat-
tern associated with region-specific metabolic features; 
genes related to amino acid catabolism and urea cycle 
associated metabolic functions were relatively highly 
expressed in PP Hep, and genes responsive to xenobiotic 
stimulus and primary bile acid biosynthesis were highly 
expressed in PC Hep (Fig. S3F), suggesting that even 
though hepatic aging was accompanied by downregu-
lation of metabolism-related genes, their zonation iden-
tity was preserved. Taken together, we here partitioned 

hepatocyte subtypes. (G) Network visualizing the enriched GO terms and pathways of upregulated SREBP2 target genes among three 
hepatocyte subtypes. The nodes representing GO terms and pathways, the pie plots showing the proportion of gene number that hit 
the certain term or pathway across three hepatocyte subtypes. Any two terms with similarity score > 0.3 are connected by a line.
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Figure 6. SREBP2 mediates senescence and metabolic dysfunction in hepatocytes. (A) RT-qPCR analysis of SREBP2 mRNA level in 
liver tissues from young and aged monkeys. (B) RT-qPCR analysis for mRNA levels of classical target genes of SREBP2 in liver tissues 
from young and aged monkeys. (C) Western blot for protein level of SREBP2 (N) in liver tissues from young and aged monkeys. SREBP2 
(P), precursor SREBP2 protein; SREBP2 (N), nuclear SREBP2 protein. Representative images are shown on the left; quantitative data for 
the SREBP2 (N) protein level are shown on the right. (D) SA-β-gal staining was performed on human primary hepatocytes cultured in 
vitro on Day 1 and Day 15 respectively. Representative images are shown on the left; quantitative data for the percentage of SA-β-gal 
positive cells are shown on the right. Scale bars, 100 μm. (E) RT-qPCR analysis of SREBP2 mRNA level in human primary hepatocytes 
cultured in vitro on Day 1 and Day 15, respectively. (F) Schematic of experiments in human primary hepatocytes transduced with 
lentiviruses expressing SREBP2 or luciferase (Luc, used as control). Created with BioRender.com. (G) RT-qPCR analysis of SREBP2 
mRNA level in human primary hepatocytes transduced with lentiviruses expressing SREBP2 or Luc. (H) Western blot for protein level 
of SREBP2 (N) in human primary hepatocytes transduced with lentiviruses expressing SREBP2 or Luc. SREBP2 (P), precursor SREBP2 
protein; SREBP2 (N), nuclear SREBP2 protein. Representative images are shown on the left; quantitative data for the protein level 
of SREBP2 (N) are shown on the right. (I) SA-β-gal staining in human primary hepatocytes transduced with lentiviruses expressing 
SREBP2 or Luc. Representative images are shown on the left; quantitative data for the percentage of SA-β-gal-positive cells are shown 
on the right. Scale bars, 100 μm. (J) RT-qPCR analysis for mRNA levels of liver function-related genes in human primary hepatocytes 
transduced with lentiviruses expressing SREBP2 or Luc. (K) Western blot of CYP1A2 protein level in human primary hepatocytes 
transduced with lentiviruses expressing SREBP2 or Luc. Representative images are shown on the left; quantitative data for the 
protein level of CYP1A2 are shown on the right. (L) Schematic diagram showing the signatures of primate liver aging. Created with 
BioRender.com. Data are quantified as fold changes (excluding D and I) and shown as means ± SEM. For (A–C), young, n = 8 monkeys; 
aged, n = 8 monkeys. For (D, E and G–K), n = 3 biological replicates. *P < 0.05, **P < 0.01, ***P < 0.001
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hepatocytes into three zonation subtypes based on their 
transcriptomic features and identified their common 
and specific aging-related gene expression changes.

To discover key regulons for the gene expression 
changes in aged Hep subtypes, we used SCENIC to 
analyze core TFs for all the Hep subtypes or each sub-
type within them. Each subtype was predicted to have 
its own regulatory TFs, such as SMAD4 for upregulated 
aging DEGs in PC Hep, NR3C1 for upregulated aging DEGs 
in MZ Hep, and XRCC4 for PP Heps (Fig. 5F). Notably, we 
identified 14 upregulated and 7 downregulated TFs that 
were involved in gene regulation of all three Hep subtypes 
(Fig. 5F). Of these, SREBP2 functioned as the upstream 
hub most broadly regulating aging DEGs (524) in all three 
Hep subtypes (Fig. 5F). Pathway enrichment analysis of 
SREBP2-upregulated target DEGs revealed potential roles 
in cholesterol and lipid biosynthetic processes, unfolded 
protein response (UPR), TGFβ signaling and mesenchyme 
development, and immune system development, which 
encompass nearly all major changes associated with 
liver aging (Figs. 5G and S3G), suggesting that SREBP2 is 
a core regulator of liver aging. In conclusion, our analy-
sis points to an important role for SREBP2 and its down-
stream target genes in Hep aging, and therefore, targeting 
this gene and related signaling pathways holds potential 
for interventions in liver aging.

SREBP2 mediates senescence and metabolic 
dysfunction in hepatocytes
In line with the snRNA-seq analysis, we validated that 
transcript levels of SREBP2 and several of its down-
stream target genes (HMGCS1, SQLE, CYP51A1, ACLY, 
PANK3) were all elevated in aged livers (Fig. 6A and 6B). 
Accordingly, based on western blotting, elevated levels 
of nuclear SREBP2 protein, the activated form of SREBP2, 
were detected in aged livers (Fig. 6C). Taken together, 
these data indicate that activation of SREBP2 and its 
downstream signaling may be a main feature of hepatic 
aging.

To further verify the involvement of SREBP2 in hepat-
ocyte aging, we established an in vitro senescence model 
of human primary hepatocytes in which the proportion 
of senescence-associated β-galactosidase (SA-β-gal) 
positive cells was gradually increased during prolonged 
in vitro culture (Fig. 6D). Consistent with the in vivo 
observation in aged hepatocytes, the transcript level of 
SREBP2 was also upregulated in senescent hepatocyte 
in vitro (Fig. 6E). Next, we investigated the functional 
role of SREBP2 by transducing human primary hepat-
ocytes with lentiviruses expressing SREBP2 (Fig. 6F). 
Quantitative RT-PCR analysis and western blot assay 
confirmed that the expression of SREBP2 was increased 
after lentiviral transduction (Fig. 6G and 6H). In line 
with the above-mentioned results, SREBP2 target genes 
that are related to cholesterol biosynthesis (HMGCS1, 

SQLE, CYP51A1, ACLY) were also upregulated in human 
hepatocytes with ectopic expression of SREBP2 (Fig. 
S3H). Compared to the control group, SREBP2-transduced 
hepatocytes exhibited accelerated senescence, as evi-
denced by increased SA-β-gal positive cells (Fig. 6I), and 
compromised expression of CYP family genes (CYP1A2), 
lipid and cholesterol metabolism genes (APOC3), and 
xenobiotic metabolism genes (UGT2B7, CAR) (Fig. 6J and 
6K). Altogether, these results support a mechanistic role 
for SREBP2 in driving senescence and functional decline 
in human hepatocytes during aging and are consistent 
with our observations in monkey livers (Fig. 6L).

Discussion
In this study, we presented a transcriptomic atlas of 
young and aged livers from healthy cynomolgus mon-
keys at a single-cell resolution, and interrogated cell 
type-specific gene expression changes and the microen-
vironmental circuitry underling the hepatic aging phe-
notypes. From the derived comprehensive landscape 
for liver aging, we revealed that all three liver zonations 
were highly sensitive to aging, and identified SREBP2 as 
a hub regulon whose activation triggered hepatocyte 
senescence and dysfunction. Our data shed light on the 
molecular basis of liver aging, which might guide the 
development of evaluation and intervention strategies 
for liver aging to benefit a wide range of people.

Hepatocytes in the liver, even in adulthood, possess 
strong regenerative capacity (Gadd et al., 2020; Campana 
et al., 2021; He et al., 2021; Ben-Moshe et al., 2022), and 
as a result, the liver is generally considered to be a rel-
atively “aging-resistant”  organ. In our study, we found 
that the liver underwent marked changes during aging, 
both at the level of tissue structure and function as well 
as in cell proportions and molecular changes. At the 
tissue level, accumulation of senescent cells, increased 
chronic inflammation, impaired metabolism and detox-
ification, and aggravated fibrosis were hallmarks of the 
aged liver. Furthermore, at the transcriptional level, 
expression of cell-identity genes associated with certain 
cell types, especially cholangiocytes, EC and SMC, was 
decreased. And transcription fluctuation in hepatocytes 
was dramatically increased. Given the above-mentioned 
changes, hepatocytes appeared to be the cell type most 
affected by aging. Thus, despite their intrinsic regenera-
tive capacity, hepatocytes gradually lose cellular home-
ostasis and enter senescence as the body ages, which in 
turn compromises detoxification and liver metabolism 
functions. Because the liver maintains the metabolic and 
detoxification homeostasis of the entire body, aging-as-
sociated impaired liver function is closely linked with 
whole-body aging and may even be the main driving 
force of aging. Indeed, in a recent study in mice, delay-
ing the senescence of hepatocytes largely improved liver 

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
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function, thereby slowing down the aging of the whole 
body and extending the healthy lifespan of mice (Wang 
et al., 2021a). These functional observations, in combi-
nation with our work, support the idea that hepatocyte 
senescence drives liver aging and even systematic aging, 
and therefore, rejuvenation of the senescent hepatocytes 
may be a potent intervention strategy in both liver and 
systemic aging.

The single-cell transcriptomic approach is changing 
our understanding of the cellular and molecular diver-
sity of complex tissues in both health and disease con-
ditions (Potter, 2018; Stark et al., 2019; Saviano et al., 
2020; Leng and Pawelec, 2022; Fang et al., 2022). With the 
advent of these powerful techniques, previous seminal 
work studying liver physiology and pathobiology has 
been completed (Ramachandran et al., 2020). However, 
due to ethical issues and clinical limitations, primate 
liver studies, especially aging studies, using single-cell 
techniques have remained outstanding. MacParland et 
al. (2018) published scRNA-seq profiling for liver grafts 
from five neurologically deceased donors and first iden-
tified hepatocyte subtypes correlated with human liver 
zonation. Next, Aizarani et al. (2019) performed scR-
NA-seq analysis of livers from patients who underwent 
liver resection due to cancer metastasis and reported 
limited evolutionary conservation on gene expression 
between humans and mice. Here, we analyzed cellular 
and spatial heterogeneity during primate liver aging. 
Using single-nucleus RNA-seq, which recapitulates cell 
proportions better than scRNA-seq, and is superior for 
an unbiased dissection of all cell types present in the 
liver (Bakken et al., 2018; He et al., 2020), we interro-
gated the contribution of different cell types to primate 
liver aging. Our work provided important insights that 
will help reshape our understanding of aging-associated 
changes occurring in hepatocyte subtypes, and which 
might become pivotal for the identification of cell-spe-
cific intervention targets in liver aging.

Senescent cells accumulate in various tissues with 
age, including the liver (O’Hara and La Russo, 2017; 
Ogrodnik et al., 2017; Ma et al., 2020). These senescent 
cells arise in the liver under pathological conditions that 
adversely affect liver function and tissue regeneration 
(Aravinthan et al., 2013; He and Sharpless, 2017; Bird 
et al., 2018; Sun et al., 2022). Based on mouse models, 
oxidative stress was suggested as a link to DNA dam-
age that caused hepatocyte senescence in chronically 
injured livers (Xiao et al., 2018). In addition, a recent 
study reported that suppression of autophagic activ-
ity via mTORC1/TFEB signaling exacerbate hepatocyte 
senescence via growth differentiation factor 11 (GDF11) 
(Sun et al., 2022). Moreover, the accumulation of lipid 
droplets in hepatocytes is known from earlier work to 
promote telomere shortening and DNA damage, which 
may induce senescence in hepatocytes (Campisi and 

di Fagagna, 2007; Huda et al., 2019). These aforemen-
tioned dysregulated molecular events in hepatocytes 
have mainly been reported in injury or disease condi-
tions, but in our study, we observed the above-men-
tioned oxidative stress, compromised mTOR signaling, 
and the accumulation of lipid droplets in the livers of 
aged monkeys.

It has been widely reported that SREBPs promote 
the synthesis of fatty acids, triglycerides and choles-
terol to support lipid metabolism (Eberlé et al., 2004). In 
our study, SREBP2, a member of the SREBP family that 
primarily regulates genes involved in cellular choles-
terol homeostasis (Shimano, 2009; Soyal et al., 2015), 
was found to be highly expressed in the aged liver. The 
activated SREBP2 is reported to increase hepatic cho-
lesterol levels by promoting cholesterol influx (Maxfield 
and Tabas, 2005; Van Rooyen and Farrell, 2011; Shao 
and Espenshade, 2012), thereby leading to cytoplasmic 
lipid droplets (Horton et al., 2002; Maxfield and Tabas, 
2005). However, the regulatory role of SREBP2 in cel-
lular senescence, especially hepatocyte senescence, 
is barely recognized. A previous study linked the lon-
gevity gene SIRT6 to SREBP through deacetylation of 
AMPK and subsequent phosphorylation and inhibition 
of SREBP, suggesting a potential role for SREBP linking 
energy homeostasis and aging (Elhanati et al., 2013). 
More recently, mature SREBP2 was recognized as a tran-
scription factor activating the expression of a series of 
inflammatory cytokines and profibrotic factors, includ-
ing IL1β and collagen V1 (Dorotea et al., 2020; Lee et 
al., 2020), which coincided with aggravated inflamma-
tion and fibrosis in aged monkey livers. In our study, we 
identified SREBP2 as an upstream hub regulon for most 
of the transcriptomic changes in all zonation subtypes 
of hepatocytes from aged monkeys. Most importantly, 
overexpression of SREBP2 in human primary hepato-
cytes recapitulated aging phenotypes observed in aged 
monkey livers, as manifested by induction of cellular 
senescence and decreased expression of genes related 
to metabolism and detoxification function. Our work 
demonstrated, the important driving role of SREBP2 
in liver aging, linking its activity to increased cellular 
senescence and impaired liver functions in the aged 
liver, thereby highlighting its potential as a key target 
for aging interventions.

Our study brings to light the little-understood mech-
anisms of liver aging in primates. Because many tissues 
and organs depend closely on liver function, liver aging 
has both direct and indirect impacts, making it a cru-
cial area for understanding systemic aging. Therefore, 
our findings are of importance, as our comprehensive 
study of liver aging helps us uncover key cellular and 
molecular targets with potential to serve as biomarkers 
to predict and monitor liver or body aging. Conversely, 
we also identified SREBP2 as an important driving force 
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of hepatocyte senescence, whose manipulation would be 
expected to slow the aging process and delay the onset of 
aging-related diseases.

Materials and methods
Animals
The cynomolgus monkeys used in this study are eight 
young monkeys (4–6 years old) and eight aged mon-
keys (18–21 years old), both groups of which have been 
approved by the Ethical Review Committee of the Institute 
of Zoology, Chinese Academy of Sciences (Zhang et al., 
2020). They were raised at facility in Xieerxin Biology 
Resource (a certified primate research center in Beijing) 
at 25°C with a 12-h light and dark cycle. Before the start 
of the experiment, it was confirmed that all animals 
used had no clinical disease, experimental experience, 
or history of pregnancy. The detailed information of the 
animals used is shown in Fig. S1A.

Tissue sampling
The cynomolgus monkeys were fully anesthetized and 
perfused with phosphate buffer. Liver tissue was then 
intactly isolated according to histological anatomy with 
attached fat tissue being removed. Then the liver tissue 
was cut to nearly uniform size and stored in liquid nitro-
gen for subsequent sequencing analysis, as well as other 
biochemical and molecular analyses.

Hematoxylin–eosin staining
Hematoxylin–eosin staining (HE staining) was performed 
as described earlier (Zou et al., 2021). The sections were 
dehydrated in gradient alcohol (70%–100%) and soaked 
in 4% paraformaldehyde (PFA). The sections were then 
embedded in paraffin and sectioned at a thickness of 5 
μm using a rotary microtome, sections placed on a glass 
slide, allowed to dry at 56°C for 2 h, and then stored at 
room temperature (RT) for later use. During staining, the 
sections were deparaffinized in xylene, rehydrated in 
gradient alcohol (100%, 100%, 95%, 80%, 75%), and rinsed 
briefly in distilled water, and then incubated in hema-
toxylin solution until the required degree of staining was 
achieved, assessed under microscope (Servicebio, China), 
and then rinsed in running water to remove excess 
hematoxylin solution. Slices were then differentiated in 
1% acidified alcohol for 1 s and rinsed in running water 
for 1 min. Finally, the sections were stained with eosin 
until achieving the desired pink color, dehydrated in gra-
dient alcohol and xylene, and mounted with cytoseal-60 
(Stephens Scientific). Images were taken by PerkinElmer 
Vectro Polaris and the inflammation area was quantified 
using Image J.

Masson-trichrome staining
Masson-trichrome staining was performed as previ-
ously described (Lei et al., 2021). Paraffin-embedded 

sections with a 5 μm thickness were deparaffinized in 
xylene and rehydrated in gradient ethanol (100%, 100%, 
95%, 80%, 75%). Sections were then rinsed with distilled 
water and stained with potassium dichromate solution 
at 60°C for 1 h. After rinsing in running water for 5–10 
min, sections were stained with iron hematoxylin work-
ing solution for 10 min, and rinsed again in warm run-
ning water for 10 min. Then, sections were stained with 
Ponceau-acid fuchsin solution for 5–10 min and rinsed 
in distilled water, differentiated in the phosphomolyb-
dic-phosphotungstic acid solution for 10–15 min or until 
the red color on the tissue disappeared. Rinsing was no 
longer necessary at this time, and sections were stained 
directly in aniline blue solution for 5–10 min, then rinsed 
briefly in distilled water and differentiated in 1% acetic 
acid solution for 2–5 min. Finally, after washing in dis-
tilled water several times, sections were quickly dehy-
drated with 95% ethanol and absolute ethanol, cleared 
in xylene, and mounted with a resin mounting agent. 
Images were taken by PerkinElmer Vectro Polaris and the 
fibrotic area of liver parenchyma excluding vascular area 
was quantified using Image Pro plus.

Sudan Black B staining
Sudan Black B staining (SBB staining) was performed 
using a previously published protocol (Georgakopoulou 
et al., 2013). In short, OCT-embedded and snap-frozen 
tissues were cryosectioned at a thickness of 10 μm with 
a Leica CM3050S cryomicrotome. Frozen sections were 
taken out of the refrigerator at −80°C, placed at RT for a 
few minutes and fixed in 1% (w/v) formaldehyde/PBS for 
5 min at RT, and then rinsed gently with distilled water 
three times, incubated in 50% ethanol and 70% ethanol 
for 5 min each in turn. Next, frozen sections were stained 
in Sudan Black B solution (0.7 g SBB in 100 mL 70% eth-
anol) for 5 min at RT, and then rinsed quickly in 75% 
ethanol to remove excess staining solution, rinsed with 
distilled water three times. Finally, sections were left to 
stain in nuclear fast red solution for 3 min, washed in 
distilled water and mounted with glycerol. Images were 
taken with Olympus CKX41 microscope imaging system, 
and Image Pro Plus was used to quantify the Sudan Black 
B positive area.

Immunohistochemistry staining
Immunohistochemistry staining was performed as previ-
ously described (Wang et al., 2020b). Paraffin-embedded 
sections were first deparaffinized in xylene and then 
hydrated with gradient alcohol (100%, 100%, 90%, 80%, 
70%, 50%). After rinsing in distilled water for a while, 
slices were microwave-heated in sodium citrate buffer 
(pH 6.0) three times for antigen retrieval, each for 4 min. 
After cooling to RT, sections were permeabilized with 0.4% 
Triton X-100 in PBS for 1 h and incubated with 3% H2O2 at 
RT for 20 min to inactivate endogenous peroxidase. Next, 

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
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sections were blocked with 10% donkey serum for 1 h at 
RT and incubated with the primary antibody overnight 
at 4°C. On the second day, sections were incubated with 
HRP-conjugated secondary antibody for 1 h at RT. Next, 
sections were colorimetrically detected using DAB and 
counterstained with hematoxylin, followed by dehydra-
tion in a series of graded alcohols (50%, 70%, 80%, 90%, 
100%, and 100%) and transfered in xylene before being 
mounted in the neutral resinous mounting medium. 
Images were captured by PerkinElmer Vectro Polaris or 
Leica Aperio VESA8, and statistically quantified of the 
percentage of positive cells using Image J. The antibodies 
used for immunohistochemistry staining in this study 
are listed as follows: anti-P21 (Cell Signaling Technology, 
2947S, 1:100), anti-S100A8 (Abcam, ab180735, 1:300), 
anti-S100A9 (Abcam, ab92507, 1:300), anti-myeloperox-
idase (MPO) (Abcam, ab9535, 1:200).

Immunofluorescence staining
Immunofluorescence staining was performed as pre-
viously described (Wang et al., 2020b; Ma et al., 2021). 
Paraffin-embedded sections were first deparaffinized in 
xylene and then hydrated with gradient alcohol (100%, 
100%, 90%, 80%, 70%, 50%). After rinsing in distilled 
water for a while, the slices were microwave-heated in 
sodium citrate buffer (pH 6.0) three times for antigen 
retrieval, each for 4 min. After cooling to RT, the sec-
tions were rinsed in PBS three times, 5 min each time, 
and permeabilized with 0.4% Triton X-100 in PBS for 1 h. 
Sections were rinsed again three times in PBS and then 
blocked with blocking buffer (10% donkey serum in PBS), 
incubated for 1 h at RT. Then sections were incubated 
with the primary antibody overnight at 4°C, followed by 
incubation with fluorescence-labeled secondary anti-
bodies and Hoechst 33342 (Thermo Fisher Scientific) for 
1 h at RT in the dark. Finally, sections were mounted in 
VECTERSHIELD® anti-fading mounting medium (Vector 
Laboratories, h-1000), and images were obtained using a 
confocal laser scanning microscope (Zeiss LSM900). For 
most of immunofluorescence staining in this study, the 
results were quantified by calculating the percentage of 
positive cells using Image J. The result of immunofluo-
rescence staining for H3K9me3 performed with quantifi-
cation of the immunofluorescence intensity for each cell 
using Image J.

The antibodies used for immunofluorescence stain-
ing in this study are as follows: anti-H3K9me3 (Abcam, 
ab8898, 1:400), anti-TNFα (Abcam, ab1793, 1:100), 
anti-IL6 (Abcam, ab6672, 1:100), anti-IL1β (Santa Cruz, 
sc-52012, 1:100), anti-CD68 (Abcam, ab955, 1:300), 
anti-CD45 (Abcam, ab10558, 1:300), anti-MMP9 (Abcam, 
ab38898, 1:100), anti-CD163 (Abcam, ab182422, 1:200), 
anti-CD79B (Cell Signaling Technology, 96024S, 1:200), 
anti-CD247 (ABclonal, A2058, 1:200). Secondary antibod-
ies used were the following: donkey anti-mouse-AF488 

(Thermo Fisher, A21202, 1:500), donkey anti-
mouse-AF568 (Thermo Fisher, A10037, 1:500), donkey 
anti-rabbit-AF488 (Thermo Fisher, A21206, 1:500), don-
key anti-rabbit-AF568 (Thermo Fisher, A10042, 1:500).

SPiDER-βGal staining
Senescence-associated β-galactosidase (SA-β-gal) 
staining was performed according to the instructions 
provided by the manufacturer (DojindoMolecular 
Technologies, Inc., Kumamoto, Japan). First, OCT-
embedded liver tissues were cryosected at a thickness 
of 10 μm using a Leica CM3050S cryosectioner. Then sec-
tions were fixed in 4% paraformaldehyde for 20 min at 
RT and washed in PBS three times. SPiDER-βGal stain-
ing working solution was diluted to 20 μmol/L (Dojindo 
Molecular Technologies, SG03, 1:2,000) with McIlvaine 
buffer (pH 6.0) and sections were incubated with this 
working solution overnight at 4°C. Sections were then 
counterstained with Hoechst33342 (Thermo Fisher, 
H3570, 1:1000) at RT, washed with PBS three times, 
and mounted in VECTERSHIELD® Anti-Fade Mounting 
Medium (Neobioscience, H-1000). Image acquisition was 
performed using a Zeiss LSM900 confocal system, and 
data analysis of the percentage of SPiDER-βGal positive 
cells was performed using image J.

Oil Red O staining
Oil Red O staining was performed using a previously 
published protocol (Huang et al., 2022). In short, OCT-
embedded and snap-frozen tissues were cryosectioned 
at a thickness of 10 μm with a Leica CM3050S cryomi-
crotome. Frozen sections were taken out of the refriger-
ator at −80°C, placed at RT for a few minutes and soaked 
in the PBS solution for 5 min. After filtering Oil Red O 
staining solution (Sigma-Aldrich) through a 100 μm filter, 
frozen sections were stained in 60% Oil Red O solution 
for 8–10 min. To avoid background staining, wash the 
slides with 70% ethanol for a moment, and then rinsed 
with running tap water and counterstained with hema-
toxylin. Images were taken with Olympus CKX41 micro-
scope imaging system, and Image Pro plus was used to 
quantify the oil red O positive area.

TUNEL staining
In brief, we used the One Step TUNEL Apoptosis Assay 
Kit (Beyotime, C1088) according to the instruction pro-
vided by the manufacturer. Paraffin-embedded sections 
were deparaffinized in xylene and rehydrated in gradi-
ent ethanol (100%, 100%, 95%, 80%, 75%). Proteinase K 
was diluted with 10 mmol/L Tris-HCl (1:1000), then sec-
tions were incubated at RT for 30 min and rinsed with 
PBS. Next, the sections were stained with TUNEL work-
ing solution at 37°C for 1 h, followed by incubation with 
Hoechst 33342 (Thermo Fisher, H3570, 1:1000) to visu-
alize the nucleus. Finally, the sections were mounted in 
VECTERSHIELD® anti-fading mounting medium (Vector 
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Laboratories, h-1000), and images were obtained using 
Zeiss LSM900 confocal system. Image J was used to 
quantify the percentage of TUNEL-positive cells.

RNA isolation and RT-qPCR
RNA isolation from cultured cells and frozen tissues in 
liquid nitrogen was performed as previously described 
(Wu et al., 2020). The total RNA was extracted with 
TRIzol (Life Technologies, 15596018). 2 μg of total RNA 
was taken as a reverse transcription template, and 
GoScript™ Reverse Transcription System (Promega) was 
used to reverse transcription to obtain cDNA. RT-qPCR 
was performed on the CFX384 real-time PCR system 
(Bio-Rad) using iTaq Universal SYBR Green SuperMix 
(Bio-Rad). After normalizing the relative mRNA expres-
sion level of each detected gene to GAPDH expression, 
it was calculated using the ΔΔCq method. At least three 
independent samples for each RT-qPCR detection experi-
ment. Analyze the difference between the two groups by 
independent sample t-test. The RT-qPCR primers used in 
this study were listed in Table S11.

Western blot analysis
Western blot analysis was performed as described previ-
ously (Ma et al., 2022). Both tissues and cells were lysed 
in RIPA buffer (Beyotime, P0013B) that had been supple-
mented with protease inhibitors (Roche, 4693159001). 
After sufficient lysis, the mixture was centrifuged. The 
supernatant was left for quantification with a BCA kit 
(Dingguo biotechnology, BCA02). SDS-PAGE electropho-
resis and semi-dry membrane transfer were then per-
formed sequentially. PVDF membranes (Merck Millpore) 
were blocked with 5% skim milk for 1 h at RT and then 
incubated with primary antibody overnight at 4°C. The 
next day, PVDF membranes were washed with TBST 
buffer and incubated HRP-conjugated secondary anti-
bodies for 1 h at RT depending on the source of the pri-
mary antibody. Data were obtained using the ChemiDoc 
XRS+ system (Bio-Rad Laboratories). The band intensi-
ties were quantified using Image J. Antibodies used for 
western blot analysis in this study are as follows: anti-
GAPDH (Santa Cruz, sc-365062, 1:3,000), anti-SREBP2 
(ImmunoWay, YN0037, 1:1000), anti-SREBP2 (Abcam, 
ab30682, 1:1000), anti-CYP1A2 (Santa Cruz, sc-53614, 
1:1000), goat anti-Rabbit IgG (ZSGB-bio, ZB-2307, 1:5,000), 
goat anti-Mouse IgG (ZSGB-bio, ZB-2305, 1:500).

Cell culture
Human primary hepatocytes (Lonza, HUCPI) were cul-
tured as described previously (Xiang et al., 2019). In brief, 
five chemicals (5C) were added to serum-free medium 
for long-term hepatocyte culture. The condition con-
tained Williams’ medium E containing B27 (50×, Gibco), 
Glutamax (Gibco), Pen Strep (Gibco) and five chemi-
cals. Five chemicals: Forskolin (20 μmol/L), SB431542 
(10 μmol/L), IWP2 (0.5 μmol/L), DAPT (5 μmol/L), and 

LDN193189 (0.1 μmol/L). After a period of 5-7 days, the 
medium was depleted of 5C, followed by a prolonged 
culture of hepatocytes for 5-8 days, resulting in cellu-
lar senescence. No mycoplasma contamination was 
detected during cell culture.

Plasmid construction
To generate plasmids encoding SREBP2, cDNA was gen-
erated from the pcDNA3.1-2xFLAG-SREBP-2 plasmid 
(Addgene #26807) by PCR amplification and then cloned 
into the pLE4 vector (a kind gift from Dr. Tomoaki Hishida) 
that had been pre-cleaved by BamH1 and MluI (Deng et al., 
2019). The pLE4 vector expressing luciferase (Luc) was used 
as control. The primer information was listed in Table S11.

Lentivirus packaging
HEK293T cells were transfected with lentiviral over-
expression plasmid and lentiviral packaging vec-
tors psPAX2 (Addgene #12260) and pMD2.G (Addgene 
#12259). The viral particles were then collected at 48 and 
72 h post-transfection, respectively, and concentrated by 
ultracentrifugation at 19,400×g for 2.5 h.

SA-β-gal staining
For SA-β-gal staining, primary human hepatocytes were 
fixed in 2% formaldehyde and 0.2% glutaraldehyde for 
5 min at RT, washed in PBS, and stained with freshly 
prepared staining solution until the appropriate time at 
37°C (X-gal was purchased from Amresco, all other rea-
gents were from Sigma-Aldrich) (Ren et al., 2019).

Nucleus isolation and snRNA-seq on the 10× 
genomics platform
Nucleus isolation was performed using a previously 
published protocol (Krishnaswami et al., 2016; Ma et al., 
2021; Zhang et al., 2021). In short, frozen primate tissue 
were fully pestled and 1.5 mL lysis buffer were added, 
which contained 250 mmol/L sucrose, 25 mmol/L KCl, 5 
mmol/L MgCl2, 10 mmol/L Tris buffer, 1 μmol/L DTT, 1× 
protease inhibitor, 0.4 U/μL RNaseIn, 0.2 U/μL Superasin, 
0.1% Triton X-100, 1 μmol/L propidium iodide (PI), and 
10 ng/mL Hoechst 33342 in nuclease-free water. Samples 
and lysis buffer were gently shaken and mixed, placed 
on ice for a while, then filtered through a 40 μm cell filter 
(BD Falcon), centrifuged at 1000 ×g for 8 min at 4°C, fol-
lowed by resuspension in PBS supplemented with 0.3% 
BSA, 0.4 U/μL RNaseIn and 0.2 U/μL Superasin. Nuclei 
were labeled using Hoechst 33342 and PI, sorted by 
FACS (BD Influx), and counted using a dual fluorescence 
cell counter (Luna-FLTM, Logos Biosystems). The 10× 
Genomics single-cell 3ʹ system was used for mononu-
clear capture. Approximately 6,000 nuclei were captured 
for each sample following the standard 10× capture 
and library preparation protocol (10× Genomics) and 
then sequenced in a NovaSeq 6000 sequencing system 
(Illumina, 20012866).

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
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Processing of raw data from snRNA-seq and 
reducing ambient RNA bias
Cell Ranger Single-Cell Software Suite (version 4.0.0) was 
used for create pre-mRNA reference of Macaca fascicula-
ris 6.0 and calculate gene expression matrices for down-
stream analyses through the “count” function and the 
default parameters. CellBender (version 0.2.0) (Fleming 
et al., 2022) software was used to remove possible back-
ground RNA bias with default parameters. 2 samples 
with too much cell number (expected 10,000 but more 
than 20,000) and high expression level of background 
RNA were removed from downstream analyses.

Filtering of low-quality cells, integration, 
clustering, and identification of cell types
The R package Seurat (version 4.0.2) (Hao et al., 2021) 
was used for downstream analyses of filtering low-qual-
ity cells, data normalization, dimensionality reduction, 
clustering, and gene differential expression analysis. 
Cells with fewer than 200 genes or with mitochondrial 
gene ratio more than 5% were excluded as low-quality 
cells. DoubletFinder (version 2.0.3) (McGinnis et al., 2019) 
software was used for detection and deletion of possible 
doublets from the technical artifact. After normalization 
and scaling of the expression matrix for each sample by 
the function “SCTransfrom”, the “PrepSCTIntegration” 
and “FindIntegrationAnchors” functions were used to 
select the features and anchors for downstream inte-
gration. All valuable samples were then integrated 
by function “IntegrateData” according to the features 
and anchors above-mentioned and scaled by function 
“ScaleData”. After data integration and scaling, the 
functions of “RunPCA” and “FindClusters” were used for 
performing the principle component analysis and clus-
tering. Dimensionality reduction was then performed 
through the “RunUMAP” function. Cell clustering was 
performed by “FindNeighbors” and “FindClusters” func-
tions. The function “FindAllMarkers” (avg_log2FC ≥ 0.5 
and P_val_adj ≤ 0.05) was used to calculate marker genes 
for each cluster. Three clusters in the liver snRNA-seq 
data, without specific marker genes and have high mito-
chondrial gene ratios or relatively low gene numbers, 
were removed due to low quality. By the end of the above 
steps, 23 clusters of 81,679 nuclei were considered to be 
of high quality and used for downstream analyses. Nine 
cell types in liver were identified according to the expres-
sion of classical marker genes of each cluster (Table 
S2). PCA of cell-type-specific markers was analyzed by 
metascape (Zhou et al., 2019).

Cell identity score analysis
Gene set represent cell identity of each cell type were 
calculated by using the function “FindAllMarkers” (avg_
log2FC ≥ 0.5 and P_val_adj ≤ 0.05) of Seurat to compute 
top 50 marker genes of each cell type in young group. 

The function “AddModuleScore” was then used to cal-
culate cell identity score of each cell type in young and 
aged groups.

Gene transcriptional noise analysis
To detect the transcriptional fluctuation during aging, 
the aging-related transcriptional noise in each cell type 
was analyzed following the previous work (Angelidis et 
al., 2019). Briefly, cells were down-sampled to equal UMI 
count size and each cell type were down-sampled to 
same number of young and aged cells to eliminate the 
differences of total UMI counts and cell type frequency, 
respectively. The Euclidean distance between each cell 
and the corresponding cell type mean within each age 
group was then calculated and used to measure the 
transcriptional noise of each cell.

Aging-related differential expression analysis 
from snRNA-seq data
Aging-related differentially expressed genes (aging DEGs) 
between aged and young groups (Aged/Young) were cal-
culated using the Seurat function “FindMarkers” with the 
Wilcoxon signed-rank test. Genes with | avg_log2FC | ≥ 
0.25 and P_val_adj ≤ 0.05 were identified as aging DEGs 
(Table S3).

Pathway enrichment analysis
Gene Ontology (GO) process and pathway enrichment 
analysis of aging DEGs were performed by metascape. 
Kappa-test score (Cohen, 1960) were calculated between 
each two representative terms selected from the metas-
cape results (P value ≤ 0.05) and set as similarity score 
between terms. Cytoscape (version 3.9.1) was used for 
visualization of representative GO terms, terms were set 
as nodes and similarity scores that more than 0.3 were 
set as edges.

Gene set score analysis
Gene sets were downloaded from KEGG and GO data-
bases. Gene sets expression scores were calculated using 
the function “AddModuleScore” of Seurat and visualized 
through R package ggplot2. Genes in each gene set are 
listed in Table S9.

Transcriptional regulatory network analysis
The upstream transcriptional regulatory networks of 
aging DEGs were analyzed through R packages GENIE3 
(version 1.12.0) and RcisTarget (version 1.10.0) of the R 
package SCENIC (version 1.2.4) (Aibar et al., 2017) work-
flow with default parameters. Transcription factors (TFs) 
of hg19 genome was downloaded from RcisTarget data-
base and used as reference. Briefly, TF-genes co-expres-
sion networks were firstly constructed through GENIE3 
based on the gene expression matrix, where each row 
represents an aging DEG and each column represents 
a nucleus, of each cell type, respectively. The enriched 

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad039#supplementary-data
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transcription factor-binding motifs and their target 
genes (regulons) were then inferred through RcisTarget. 
The transcriptional regulatory module network was vis-
ualized through Cytoscape (version 3.9.1).

Cell–cell communication analysis
CellPhoneDB software (version 1.1.0) (Efremova et al., 
2020) was used to infer the intercellular communication 
network from the snRNA-seq data. Only receptors and 
ligands expressed in more than 10% of cells of a certain 
cell type from the young or aged groups were retained 
in further analysis. The average expression of each 
ligand-receptor pair was calculated between each pair of 
cell types, and only those with P values ≤ 0.05 were con-
sidered as the available prediction of the cell–cell com-
munications (Table S4).

Aging sensibility analysis
The prioritization of the most responsive cell types dur-
ing monkey liver aging was calculated using the func-
tion “calculate_auc” of R package Augur (version 1.0.3) 
by inputting the seurat object with “cell type” and “age 
group” labels.

Bulk RNA-seq data processing
Fastp (version 0.23.2) software was used for quality con-
trol, adapter trimming, quality filtering of raw bulk RNA-
seq reads. HISAT2 (version 2.0.4) (Kim et al., 2015) was 
then used for mapping the trimmed reads to the Macaca 
fascicularis 6.0 genome. The generated sam files were 
then converted to bam files through SAMtools (version 
1.6). The read count of each gene was calculated through 
the featureCounts (version 2.0.3) software. R package 
DESeq2 (version 1.2.4) (Love et al., 2014) was used to 
identify DEGs between aged and young samples (Aged/
Young) with the cutoff values of adjusted P value ≤ 0.05 
and |Log2FC | ≥ 0.5.

Statistical analysis
The statistical analysis was performed and analyzed by 
two-tailed Student’s t-test in Graphpad Prism 8.0 soft-
ware. Data are presented as the mean ± SEM. Differences 
were considered significant when P < 0.05. *P < 0.05, **P < 
0.01, ***P < 0.001.

Supplementary information
The online version contains supplementary material 
available at https://doi.org/10.1093/procel/pwad039.
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