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Abstract

Intraoperative identification of head and neck cancer tissue is essential to achieve complete tumor 

resection and mitigate tumor recurrence. Mesoscopic fluorescence lifetime imaging (FLIm) of 

intrinsic tissue fluorophores emission has demonstrated the potential to demarcate the extent of 

the tumor in patients undergoing surgical procedures of the oral cavity and the oropharynx. Here, 

we report FLIm-based classification methods using standard machine learning models that account 

for the diverse anatomical and biochemical composition across the head and neck anatomy to 

Corresponding Author Laura Marcu (lmarcu@ucdavis.edu). 

HHS Public Access
Author manuscript
IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 October 01.

Published in final edited form as:
IEEE Trans Biomed Eng. 2023 October ; 70(10): 2863–2873. doi:10.1109/TBME.2023.3266678.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



improve tumor region identification. Three anatomy-specific binary classification models were 

developed (i.e., “base of tongue,” “palatine tonsil,” and “oral tongue”). FLIm data from patients 

(N=85) undergoing upper aerodigestive oncologic surgery were used to train and validate the 

classification models using a leave-one-patient-out cross-validation method. These models were 

evaluated for two classification tasks: (1) to discriminate between healthy and cancer tissue, and 

(2) to apply the binary classification model trained on healthy and cancer to discriminate dysplasia 

through transfer learning. This approach achieved superior classification performance compared 

to models that are anatomy-agnostic; specifically, a ROC-AUC of 0.94 was for the first task and 

0.92 for the second. Furthermore, the model demonstrated detection of dysplasia, highlighting 

the generalization of the FLIm-based classifier. Current findings demonstrate that a classifier that 

accounts for tumor location can improve the ability to accurately identify surgical margins and 

underscore FLIm’s potential as a tool for surgical guidance in head and neck cancer patients, 

including those subjects of robotic surgery.
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I. INTRODUCTION

IN 2021, approximately 54000 new cases of head and neck cancer (HNC) were diagnosed 

in the United States; representing 2.8% of all new cancer cases [1], [2]. HNC comprises the 

3rd highest rate of positive surgical margins (PSMs) across all oncology fields [2]. Currently, 

20–30% of patients present with PSMs at final histopathology (reported within a week of 

surgery) [3]. The sustained prevalence of PSMs has prompted the development of new tools 

for cancer margin discrimination during surgical procedures. Intraoperative identification of 

surgical margins during HNC procedures is key to ensure that both gross and microscopic 

complete tumor resection is achieved [4]. The HNC surgical margin is the edge or border of 

the tissue removed in cancer surgery [5]. When successfully resected, this border encloses 

the cancerous tissue with the rim of normal surrounding tissue.

Intraoperative margin assessment is currently based on preoperative imaging and visual/

tactile identification of tumor tissue by the surgeon. Several factors limit the effectiveness 

of this approach. These include the inherent complexity of head and neck anatomy, the 

diversity of cancer types and locations, and limitations of standard histopathology (e.g., 

waiting time and sampling error). To quantify the extent of the tumor and minimize PSM, 

new techniques capable of providing real-time tumor-specific feedback to quantify the 

extent of the tumor are needed. These should mitigate cancer recurrence and enable more 

conservative tissue resection practices, thereby preserving uninvolved healthy tissue.

Label-free mesoscopic fluorescence lifetime imaging (FLIm) has demonstrated promise 

for identifying primary tumors of the oral cavity and the oropharynx [6] in addition 

to occult primary tumors of the oropharynx [7]. FLIm relies on tissue endogenous 

fluorophores emission upon ultraviolet light excitation; where collagen, nicotinamide 

adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), and porphyrins are 
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recognized as the main contributors to head and neck autofluorescence emission due to their 

high quantum yield and their prevalence in the oral cavity and oropharynx.[8] The radiative 

decay (lifetime) of endogenous fluorophores is influenced by numerous biochemical and 

physical factors such as pH, oxygenation, temperature, solvent polarity, and molecular 

binding. By taking advantage of alterations in biochemical and metabolic characteristics 

related to neoplastic processes [9], [10], FLIm measurements can provide contrast between 

healthy tissue, dysplasia, and neoplasms.

Previously, we reported [6] a FLIm-based classifier (N=53 patients) for margins assessment 

of tumor in the oral cavity and oropharynx. The model was agnostic to the anatomic location 

of the tumor, combined FLIm data obtained from various anatomies (i.e., pooled anatomies), 

and did not account for the inherent structural and biochemical differences within the diverse 

anatomies in the head and neck. Intrinsic differences such as the presence of lymphoid 

tissue in the base of tongue and tonsils of the oropharynx, stratified skeletal muscle and 

keratinization of the oral tongue pose a challenge for tissue types classification [11]. We 

hypothesized that anatomy-specific classification models would better account for the tumor 

environment within each anatomic location, hence improving the discriminatory power of 

the proposed classification model.

Intraoperative margin assessment requires identifying the correct tissue types in the tumor 

area and its surroundings. A model that aims to classify healthy from cancer tissue presumes 

a first approximation to the problem. However, incorporating dysplastic tissue (low- and 

high-grade dysplasia) with healthy and cancer could improve the overall reliability of the 

classification model, since from a clinical standpoint, high-grade dysplasia is typically 

resected while low-grade dysplasia is not. Dysplasia is the presence of abnormal cells within 

the tissue that may or may not become cancer. Due to its transitional state, dysplastic tissue 

can be found between the border of the tumor and the normal tissue, that is the resection 

margin. Hence, a classification model that incorporates healthy tissue, cancer, and dysplasia 

may more accurately represent the tissue type involved in tumor margins providing clinically 

relevant information to the surgeons.

An additional endpoint of interest is differentiating HPV-associated cancer (p16+ HNC) 

from neoplasms that do not exhibit HPV (p16- HNC). HPV-associated carcinogenesis is 

clinically assessed by p16 immunohistochemistry, and is important as the involvement of 

HPV is known to modulate tumor molecular signatures, immune responses, and result in 

different clinical prognosis [7]. The goals of this study are as follows: (1) to evaluate the 

effectiveness of the anatomy-specific training on classification performance (2) to optimize 

the anatomy-specific classifier to differentiate between dysplasia states (i.e., low-grade 

dysplasia (LGD), and high-grade dysplasia (HGD), (3) to investigate the effect of HPV 

involvement on classification performance.

II. METHODS

The classification model reported here leverages the inherent structural and metabolic tissue 

characteristics assessed from tissue autofluorescence. Three anatomy-specific classifiers 

were modeled as follows: (1) oral tongue [oral cavity], (2) base of tongue [oropharynx], and 
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(3) palatine tonsil [oropharynx] (see Fig. 1). The model classifies healthy and cancer tissue, 

along with LGD and HGD, as a probability of the tissue being cancer; where 1% indicates a 

low probability of cancer (i.e., healthy), and 99% indicates a high probability of cancer.

A. Description of FLIm Hardware and Data Acquisition

A custom-built, fiber-based, point-scanning mesoscopic FLIm instrument was used to 

acquire data for this study. The hardware[12] and the processing [13] of data are described 

extensively elsewhere. Briefly, a 355 nm pulsed excitation laser (120 Hz repetition rate) was 

used to induce tissue autofluorescence. All measurements are averaged 4 times (to account 

for potential erroneous readings), resulting in 30 averaged measurements per second. The 

instrument operates with four spectral channels: CH1: 390±20 nm, CH2: 470±14 nm, CH3: 

542±25 nm, and CH4: 629±26.5 nm, which are designed to match the autofluorescence 

emission maxima of collagen, NAD(P)H, FAD, and porphyrins, respectively. The signal 

from each channel was time-multiplexed onto a single microchannel plate photomultiplier 

tube, amplified, and time-resolved by a high sampling frequency digitizer at 80 ps intervals 

[8]. A separate visible 445 nm continuous-wave diode laser was integrated into the 

wavelength selection module to highlight the location where FLIm point measurements were 

acquired [14].

FLIm data was acquired during two distinct surgical situations: (1) Transoral robotic surgical 

procedures (TORS) using the da Vinci SP (for oropharyngeal cancer), and (2) non-TORS 

procedures performed by hand (oral cavity cancer). The average FLIm scan duration 

was approximately 45 seconds, therefore resulting in approximately 1,350 averaged point 

measurements per surgical field scanned. All scans were performed prior to commencing 

surgical excision of tissue. Typically, in such situation no- or limited-amount of blood is 

present in the operative field. For a small subset of patients that had bleeding due to tongue 

retractors or bleeding from nasal intubation the region of interest for FLIm scanning was 

rinsed with isotonic saline followed by aspiration prior to optical scan.

The method for acquiring and visualizing the data was adapted to distinct surgical scenarios. 

For example, the non-TORS approach combines a hand-held fiber probe (Omniguide Laser 

Handpiece) and endoscopic camera (Stryker), whereas TORS involved the actuation of the 

fiber optic probe using the robotic instruments, where the surgical field was visualized using 

the integrated da Vinci camera.

A fiber probe was used for TORS procedures; in the latter setup, a 3D printed stainless 

steel grasper tab was added to the distal end of the fiber probe to enable grasping and 

maneuvering by the da Vinci instruments [15]. The FLIm parameters were overlaid on the 

endoscopic/robotic video of the surgical field at the position of each point measurement 

to generate a parametric map of the surgical area. Real-time implementation of this visual 

augmentation aided the surgeon in comprehensively sampling the surgical field during the 

data collection process.

B. FLIm Pre-processing and Feature Extraction

Spectral channels 1–3 were used for analysis in this study. Channel 4, attributed to the 

emission maximum of porphyrins, was not used in the present investigation due to low 
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signal-to-noise ratio (SNR). A threshold of ≥30 dB was applied as a filtering criterion 

to select FLIm points with good SNR. The raw FLIm waveform was pre-processed for 

background subtraction. Then, two non-parametric methods (Laguerre - based deconvolution 

[13] and lifetime and spectral phasors [16]) were used to retrieve the fluorescence decay 

characteristics for each spectral channel. Each method generated a set of features that were 

used in further analysis,

For simplicity, in this paper, the average lifetime, spectral intensity ratio and 12 Laguerre 

coefficients derived from the former method are referred to as Laguerre features (LG). While 

the 3 harmonics of the lifetime phasors and spectral phasors derived from the latter method 

are referred as phasors-based features (PH).

C. Description of the Patient Cohort & Tumor Type

Eligible patients were recruited in the study over a 5-year period from 2016 – 2021. The 

research was performed under the approval of the UC Davis Institutional Review Board 

(IRB) and with the patient’s informed consent. FLIm was performed on a total of 100 

patients. Only patients with a newly diagnosed preoperative diagnosis of HNC of either the 

oral cavity or oropharynx were enrolled in this study. FLIm data from 15 patients were 

excluded from the analysis for the following reasons. Data from 8 patients were unable to 

be analyzed due to either accurate registration with tissue histopathology or instrumentation 

issues (e.g., malfunctioning software or damaged fiber optic probe) during procedure. Data 

from 7 additional patients with tumor presenting limited-to no-mucosal involvement (i.e., 

the extent of tumor comprised only the lamina propria or deeper into the submucosa, see 

limitation section).

Accordingly, data from only N=85 patients (49 TORS and 36 non-TORS) with distinct 

anatomies (Table I) were used for classifier training and testing. The ‘other’ anatomy 

label included glossotonsillar sulcus, pharynx, floor of the mouth, lip, retromolar trigone, 

gingivae, palate, and vallecula. Among these patients, N=40 patients presented with HPV 

mediated oropharyngeal cancer confirmed by immunohistochemistry. Where, p16+ is used 

as nomenclature for HPV-mediated tumor and p16- for tumor uninvolved with HPV [17].

Tumor type confirmed by pathology included squamous cell carcinoma (N=73), basaloid 

carcinoma (N=4), polymorphous adenocarcinoma (N=2), and verrucous carcinoma (N=1).

D. FLIm data labeling from Histology

Each FLIm datapoint used in classification was linked to ground-truth pathology labels 

(i.e., healthy tissue, lymphoid tissue, LGD, HGD, and cancer) using a process described 

in our work [18]. In brief, FLIm scan was performed prior to the surgical removal of a 

patient’s cancer. Following tumor removal, the resulting tissue specimen was transferred 

to a surgical pathology grossing room where the tissue was serially grossed to generate 

tissue slices, which were then formalin-fixed, paraffin embedded, sectioned, and stained 

with Hematoxylin and Eosin (H&E). A pathologist (DG), blind to FLIm data, digitally 

annotated the H&E slides using Aperio Imagescope (Leica Biosystems, United States) and 

assigned the pathology labels according to histologic features observed within 250 μm of 

the tissue’s epithelial surface. This thickness represents an estimate of the excitation light 
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penetration depth [19]. The annotation labels were used to group tissue as follows: healthy 

tissue, LGD, HGD, lymphoid tissue, and cancer. For p16+ tumors of the oropharynx, no 

dysplasia was marked by the pathologist in concordance with the American Joint Committee 

on Cancer (AJCC), due to the lack of a basement membrane in Waldeyer’s ring [20]. 

Dysplasia however was designated by the pathologist for p16- tumors of the oropharynx, and 

tumors of the oral cavity.

After annotation, tissue labels were overlaid onto grossed specimen slices (Fig. 1 (c)). 

Changes in morphology (i.e., compression, expansion, bending) between the H&E section 

and gross slice were considered to ensure accuracy when registering tissue labels from H&E 

onto the gross slice. The same process was then performed to overlay tissue labels from the 

gross slice onto the original intact excised specimen. Then, labels from the excised specimen 

were overlaid in vivo video images. To perform this overlay, first, an in vivo recording of 

the surgical excision process was used to determine the boundaries of the excised specimen, 

and landmarks (identifying clear visible features) were used to facilitate registration of the 

ex vivo specimen in vivo. Next, labels from the ex vivo specimen were transferred to the in 
vivo image. To account for motion between the TORS surgical/endoscopic camera and the 

evaluated tissue, a motion compensation algorithm was applied [21]. Training and evaluation 

of the classifier were based only on regions with directly registered histopathology, and 

regions outside of the surgical margins that displayed the absence of cancer based on patient 

radiology scans (PET, CT, MRI).

The distribution of FLIm data points associated to pathology labels for the 85 patients 

included in this study is tabulated in Table I. Among the set of five tissue histopathology 

labels generated by the pathologist, lymphoid tissue was not investigated and was therefore 

omitted in classifier training and computations due to its low occurrence. In total, lymphoid 

tissue represented 0.7% of the acquired FLIm data. Lymphoid tissue presents with unique 

FLIm optical signatures [11] which requires further investigation due to its disparate 

histological and physiological composition relative to the mucosa of oral cavity and 

oropharynx [11].

E. Training Data

The classifier was trained based on FLIm data labeled using the binary classes of “healthy” 

and “cancer” (i.e., “0”, “1”). A binary probabilistic classification model was developed to 

predict the probability ‘f’ for each FLIm point (see Eq. 1) labeled as healthy or cancer. 

The ‘healthy’ class comprised epithelium of varying thicknesses, in addition to keratinized 

mucosa, inflammation, and reactive tissue. The cancer class consisted of squamous cell 

carcinoma (SCC), basaloid carcinoma, and verrucous carcinoma. Dysplasia was categorized 

as LGD and HGD. The LGD was grouped with healthy tissue, whereas HGD was grouped 

with cancer (in concordance with malignant transformation potential).

D = xi, fi ∣ xi ∈ ℝd, fi ∈ 0, 1
i = 1

n

(1)
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The training dataset ‘D’ contains the labeled class variable 0,1 for the iit sample 

corresponding to the features vector ‘xi’. ‘d’ is the dimension of the features vector and 

‘n’ is the number of optical point measurements in the training dataset. The training dataset 

‘D’ was separated into three main training datasets: (1) pooled anatomy (i.e., data from 

all patients, irrespective of anatomy), (2) anatomy specific (i.e., data of only a specific 

anatomy such as base of tongue), and (3) anatomic region-specific (data from a combination 

of anatomies with similar tissue composition and structure such as oropharynx comprising 

lymphoid components).

Distinct training sets (Table II) were configured for the base of the tongue, oral tongue, 

and palatine tonsil. The anatomy-specific training dataset yielded superior classification 

performance for the oral tongue. Whereas the pooled anatomy training dataset yielded 

superior performance for the base of the tongue, and the anatomic region training dataset 

consisting of palatine tonsil and lingual tonsil yielded superior performance for the palatine 

tonsil anatomy.

F. Anatomy-Specific Classification Model

Handcrafted and non-handcrafted feature models are investigated. The models ‘H’ were 

evaluated on multiple combinations of features ‘x’ from the FLIm data (Eq. 2) based on the 

ROC-AUC performance metric.

f = H(x)

(2)

Forty-two LG features (1 average lifetime, 1 intensity ratio, and 12 Laguerre coefficients 

for each of the 3 channels) were used, in addition to 4 PH features per channel (12 total). 

Combining LG and PH, referred to as LGPH, created 54 features. One non-handcrafted 

feature ‘x’-based classification model was also evaluated on both the fluorescence decay 

waveform and the reconstructed deconvolved waveform. The anatomy-specific classification 

model was developed in two steps: (1) Modeling classifiers for each anatomy based on the 

dataset consisting of healthy and cancer (Healthy vs. Cancer) labels while excluding LGD 

and HGD labels. (2) The best-performing classification model for each of the anatomies 

are tested on LGD and HGD labels. The model was tested for dysplasia labels under two 

configurations (a) transfer learning model classifying unseen dysplasia labels (Dysplasia 
Tested) and (b) classifying on retrained model with dysplasia labels (Dysplasia Trained/
Tested).

1) Handcrafted Feature-Based Classification Model—Decision tree (DT), support 

vector machine (SVM), multi-layer perception model (MLP), and applying bootstrap 

aggregation of the best performing models to generate an ensemble learning model. The 

DT model used an adaptive boosting for binary classification with 100 estimators, each with 

a maximum depth of 10 and a learning rate of 0.01. The SVM model used a linear kernel 

with a sequential minimal optimization, the regularization parameter (i.e., C parameter) was 

set to 1.0. The MLP model consisted of a feedforward and fully connected neural network 
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with 10 fully connected layers. ReLU activation functions were used at the output of each 

layer while using SoftMax as the final classification layer.

2) Non-Handcrafted Feature-Based Classification Model—Two non-handcrafted-

based feature classification were studied; specifically, convolutional neural network (CNN) 

and optimal transport (OT). The CNN model followed the model and training strategy 

reported in previous work [6]. The raw FLIm signals and FLIm decay curves were 

utilized for model development. The OT model was chosen due to its ability to perform 

accurate classification while training with limited labeled data [22]. This model involved 

transforming the FLIm signal to an orthogonal space using cumulative distribution transform 

and applying a near subspace classifier to perform classification based on the nearest 

distance. The normalized difference of the nearest distance between the two classes was 

taken as the probability score of the prediction (Eq. 3–5).

The assigned class (i.e., cancer and healthy) is denoted by ‘k’ Term ‘d’ denoted the distance 

between the subspaces, ‘s’ is the transform space, and Ak is the orthogonal projection 

matrix. The OT-based classification was formulated in two strategies: First, an ensemble 

learning model consisting of OT models for the of the three FLIm spectral channels. Second, 

OT model which concatenates the three FLIm channels across time dimension.

d(k) = ∥ s − A(k)s ∥2

(3)

dδ = d(1) − d(2)

(4)

f = dδ − min dδ
max dδ − min dδ

(5)

G. Tissue Region-Based Prediction Refinement

A region-based prediction was defined to increase the classification accuracy by refining the 

point-level classifier prediction score ‘f’ across the tissue region. For this, we leveraged 

the high number of point measurements obtained from an area of interest by spatial 

averaging each FLIm point measurement with both inverse distance and SNR weighting. 

The spatial averaging of point measurements allowed rectification of isolated point-level 

misclassifications (see Fig. 2). To preserve the lateral resolution of the prediction map, 

the averaging was limited to a 15-pixel radius (approximately 0.55 mm) of at least five 

point-measurement centers.
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H. Evaluation Metrics

Evaluation of the classification model was performed for both point-measurement level and 

tissue region level. The latter enables assessment of the performance of the method over 

an entire tissue surface. A leave-one-patient-out cross-validation approach was adopted. 

The classification model was first validated by the area-under-receiver operator curve (ROC-

AUC). The ROC-AUC was computed at the point-measurement level for cases in which at 

least 100 data points from healthy regions and 100 from cancer regions were acquired to 

prevent misleading patient-level scores caused by highly imbalanced data. A threshold of 

0.5 was applied as the decision boundary to compute the sensitivity and specificity using all 

patients in which cancer or healthy point measurements were acquired, respectively.

III. RESULTS

A. Classification Performance for Healthy vs. Cancer

Figure 4 presents the classification performance of the anatomy-specific classifier for 

healthy vs. cancer for all tissue types: base of the tongue (red), oral tongue (blue), 

and palatine tonsil (green). The sensitivity, specificity, and AUC obtained from the best-

performing classification model among the various classifiers tested are presented in Fig. 3 

(a). The DT model trained with LG features reported the highest performance for the base of 

the tongue. While the ensemble learning model (DT-LG+SVM-LGPH) reported the highest 

classification performance for the oral tongue and palatine tonsil (Table. III).

For the base of the tongue, the SVM and DT models based on Laguerre features reported 

similar classification performances; with the DT model reporting a slightly higher ROC-

AUC (0.94±0.09) when compared to the SVM. The MLP and ensemble learning models 

reported lower performance. For the oral tongue, the DT, SVM, and MLP showed similar 

performance. The highest performance was reported for the ensemble learning model. For 

palatine tonsils, the DT, SVM, and MLP reported similar performance. The ensemble 

learning model based on DT and SVM achieving the highest performance (Fig. 3 (a)).

The ensemble learning model based on DT and SVM provided the strongest discrimination 

compared to the DT, SVM, MLP, and OT for the oral tongue and palatine tonsil anatomy 

sites. The CNN-based classification approach reported the lowest classification performance: 

ROC-AUC of 0.64±0.6, 0.63±0.11, and 0.62±0.8 for the base of the tongue, oral tongue, 

and palatine tonsil, respectively. The OT model based on concatenating FLIm decay curves 

enabled the model to discriminate healthy tissue from cancer (see Fig. 3 (a)). In contrast, the 

ensemble learning OT models failed to generalize. Indicating that the concatenating FLIm 

decay curves maximize the signal correlation across all three channels of FLIm compared to 

using separate channels to generate meaningful information.

The point-level and region-level classification performance for anatomy-specific classifiers 

are reported in Table. III. The region-level refinement improves the point-level classification 

performance of the anatomy-specific classification model by ~7–12%. The tissue region-

based prediction takes advantage of multiple closely located point measurements to improve 

the accuracy of the predictor. This refinement increases tissue prediction for all anatomies 
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with the greatest impact observed for the oropharynx (i.e., the base of the tongue and 

palatine tonsil).

Figure 3 (b) illustrates the characteristic of the anatomy-specific classifiers through the 

overall prediction probability for each site. Oral tongue, and palatine tonsil models were 

trained on specific anatomy data and combined-specific anatomy data (i.e., oral tongue 

model was trained on oral tongue data, and the palatine tonsil model on palatine tonsil and 

lingual tonsil). These two models reported a higher density of prediction probability closer 

to ‘0’ and ‘1’, compared to the base of tongue model that was trained on pooled anatomy 

data (i.e., data from all eighty-five patients irrespective of anatomy). The pooled training 

strategy contributed to the lower density of prediction probability close to ‘0’ and ‘1’.

B. Classification Performance for Healthy vs. Cancer vs. Dysplasia

From a surgical standpoint, dysplasia is subjective and somewhat difficult diagnosis, and 

is considered a precancerous lesion. In otolaryngology, LGD is generally observed closely 

due to lower rates of progression to cancer, whereas HGD is resected due to the risk of 

cancer progression. Thus, the highest performing anatomy-specific classification model for 

healthy vs. cancer is applied to classify healthy vs. cancer vs. dysplasia (see Fig. 5). The 

transfer learning model for dysplasia (Dysplasia Tested) reported a higher ROC-AUC of 

0.92±0.08 compared to retrained model (Dysplasia Trained/Tested). The “Dysplasia Tested” 

model specificity improved by ~3% while diminishing the sensitivity by ~5% compared to 

the “Healthy vs. Cancer” model (Table. IV). The “Dysplasia Tested” model maintained the 

classification model performance compared to the “Healthy vs. Cancer” model with a ~ 1% 

drop in sensitivity and specificity. The better tradeoff between sensitivity and specificity 

achieved by “Dysplasia Tested” were best in classifying healthy, cancer, dysplasia tissue 

types (see Fig. 5(b)).

Figure 6(a) illustrates the prediction probability of the anatomy-specific classifier “Dysplasia 
Tested” compared to the histological co-registration (i.e., ground truth) while predicting 

healthy, LGD, HGD, and cancer tissues. The prediction probability of the classifier indicates 

a high confidence while predicting most cancer and healthy tissue. While most dysplasia 

tissues were predicted at the boundary between healthy and cancerous tissue (Fig. 6). LGD 

tissues were predicted with a low probability of cancer and HGD tissue was predicted with a 

relatively high probability of cancer.

C. Classification Performance for p16+ Patients

Tumors with p16+ HNC exhibit unique molecular signatures, immune responses, and 

disparate clinical prognosis from p16-HNC tumors. Hence, we investigated the effect of 

p16+ clinical characteristics data on optimizing classifier performance. The patient cohort 

used for this analysis included 31 p16+ patients distributed across the three anatomies as 

follows: 10 base of the tongue, 1 oral tongue, and 20 palatine tonsil. We investigated palatine 

tonsil anatomy since the patient distribution presented the least imbalance of p16+ patients 

and p16- patients. Table V shows how the classifier performance diminishes for p16+ 

patients compared to p16-patients. The same classifier (with the same boundary) reported 

an improved sensitivity of ~24% for p16-patients compared to the sensitivity reported for 
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p16+ patients. We used patient HPV clinical characteristics data to improve the sensitivity of 

the classifier for the p16+ patients by further optimizing the classification boundary with a 

threshold of 0.4. The optimized classifier reported a sensitivity of 0.88±0.18 and specificity 

of 0.81±21 for p16+ patients, therefore improving the probability of classifying cancer tissue 

types for p16+ patients by ~14% sensitivity.

IV. DISCUSSION

In this work, we demonstrated the performance of probabilistic classifiers for head and neck 

squamous cell carcinomas delineation at the resection margins which account for tumor 

anatomic location (i.e., oral and oropharynx). Also, we investigated the effectiveness of 

the classification models in discriminating dysplastic tissue. Moreover, the study examined 

the relative contributions of various FLIm parameters and machine learning models to 

the classification performance. Current results demonstrate improved performance when 

compared to previously reported optical cancer detection approaches for HNC [6], [23]–

[25].

A. Anatomy-specific classifier

We demonstrated that developing an anatomy-specific classifier to increase the homogeneity 

of the training set can improve the classification performance. Both oral tongue and palatine 

tonsil models for which training data is abundant benefited from the increased homogeneity. 

In contrast, the best classification performance for the base of the tongue, where limited data 

were available, was obtained from the pooled model. This underscores the need to strike a 

balance between the training set size and its homogeneity.

B. Dysplasia

The low representation of dysplasia tissue in the head and neck poses a challenge for 

modeling a dysplasia classifier. Grouping dysplasia subtypes to the main classes resolved 

the imbalance in the dataset. Due to the different likelihood of LGD and HGD evolving 

into cancer [26], LGD was grouped with healthy tissue and HGD was grouped with 

cancer tissue. The generalization of the FLIm-based classification model to low- and high-

grade dysplasia is a promising outcome for general tissue region classification and margin 

assessment. The probability of cancer assigned by the model (see Fig. 5 (a) and Fig. 6) 

implies the ability of FLIm to capture the evolving tissue changes associated with dysplasia. 

These findings are very relevant from a clinical standpoint as HGD is typically resected 

while LGD is not.

C. Impact of Machine Learning

The hand-crafted FLIm features contributed to achieving the highest discrimination. The 

LG features exhibit a similar trend to our previously reported work. The combination of 

the average lifetime, intensity ratio, and Laguerre coefficients yields the highest and most 

consistent discriminatory power. The phasors, as an individual set of features, reported low 

classification performance. However, the combination of phasors and LG features positively 

affected the classification performance for the current patient cohort. This grants the need 

for further evaluation of the added value of phasors-based features.
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The classification performance of the hand-crafted feature models was sensitive to feature 

dimension. The increased dimensionality (i.e., combining Laguerre and phasors) positively 

affects the performance of SVM and MLP models, but did not improve the DT model 

performance. This suggests that the high-dimensional hyper-rectangles of the DT model may 

not be able to transform the input feature space efficiently.

The comparison of the discriminatory power between handcrafted models and non-

handcrafted models (i.e., OT and CNN) emphasizes that the features generated from domain 

knowledge are superior in extracting meaningful information from FLIm. Nevertheless, the 

classification performance of the optimal transport model is promising. Further investigation 

to improve non-handcrafted feature generation while leveraging domain knowledge may 

result in much more desirable classification performance.

D. Comparison with the State-of-the-Art

Most recent instruments (optical spectroscopy and imaging-based) used for HNC margin 

assessment [27]–[29] were validated on ex-vivo post-resection tissue specimens. Although 

the evaluation of the cancer resection margins on excised specimens holds its own merits; 

the ability to perform margin assessment in-vivo (in situ) enables direct identification 

of remaining cancer tissue which greatly facilitates surgical workflow. A few studies 

reported methods enabling in vivo assessment of surgical margins based on both exogenous 

fluorescence, endogenous fluorescence, or other source of endogenous optical contrast.

Tumor assessments by near-infrared imaging of exogenous fluorescence [30]–[33] require 

injecting a molecular contrast agent. While promising, the clinical translation of these 

fluorescent molecular probes is hindered by the difficulties of regulatory approval, and none 

have received regulatory approval for clinical use [34]. In contrast, autofluorescence imaging 

approaches [6], [23]–[25], narrow-band imaging systems [35], [36], and hyperspectral 

imaging [37] do not require the addition of any exogenous markers, and are thus much 

easier to use in clinics.

Narrow-band imaging uses the absorption spectrum of hemoglobin to determine 

the neoangiogenic patterns inside and surrounding the tumor. However, determining 

neoangiogenic patterns is challenging due to the varying tissue characteristics and only 

applies to the epithelial surface, leading to low-diagnostic accuracy [38]. Hyperspectral 

imaging [37] uses surface reflectance to identify the tumor. These approaches are time-

consuming requires controlled lighting environment, which has impacted their clinical 

adaptation [38].

Autofluorescence imaging (AFI) leverages the endogenous fluorescence properties of 

biomolecules in tissue and cells. VELscope, a commercially available AFI technique, 

is widely used as an early detection screening tool for the oral cavity. Facilitated by 

the commercial availability, multiple studies have investigated this device’s performance 

with mixed results; a systematic review [25] reported HNC detection varying from the 

sensitivity of ~0.2 – 1 and specificity of ~0.08 – 1. However, no difference in local 

recurrence rate for the patient undergoing fluorescence visualization-guided surgery, and 

non-fluorescence visualization-guided surgery was observed [39]. The lack of improvement 

Abul Hassan et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in local recurrence reduction may also be due to the fact that the device is only able to map 

the lateral extent of the tumor and not the residual tumor that may be present in the surgical 

cavity. This limitation is also valid for the narrow-band imaging systems [38].

As shown in this study, another approach to improve the performance of fluorescence-based 

imaging is based on time-resolved measurements that provide an additional source of 

contrast [8]. Earlier studies, performed on a small number of patients undergoing HNC 

resection surgery, employing both point scanning [40] and endoscopic imaging [41], have 

reported the added value of lifetime information. More recent studies using advanced FLIm 

research instrumentation, performed on a larger patient population, have further underscored 

the earlier finding; e.g. HNC classification performance of AUC 0.88 [6] and AUC 0.81 [23] 

were reported. While in the current study, we adopted a method similar machine-learning 

model as in previous reports, the implementation of domain-specific features (e.g., LG) 

and anatomy-specific have contributed to superior HNC detection (AUC 0.94) compared 

to earlier anatomy-agnostic models. In addition, the AUC reported in [23] is computed 

by averaging the image-level predictions while in present study the AUC is computed 

from each point. The prediction from each individual point allows for a more accurate 

delineation of the surgical margins. Moreover, the classification model reported in [23] 

considers precancerous and cancerous oral lesions such as LGD, moderate dysplasia, HGD, 

and SCC as HNC. The model developed in the current study considers LGD as healthy and 

HGD as cancerous since, from a clinical standpoint, HGD is typically resected while LGD is 

not [42].

A significant subset of HNC is located in the oropharynx, where tumor assessment is 

challenging due to the limitations of visual and tactile identification of the tumor [43]. 

Therefore, surgical guidance tools suitable for imaging of the oropharynx are needed. 

This cannot be achieved with a rigid forward-viewing endoscope design AFI [23], [41] 

or handheld-camera-based AFI techniques [36] that are limited to the interrogation of the 

oral cavity. The freehand scanning FLIm approach employed in current study utilizes a 

flexible fiber optic probe and continuous tracking of the probe’s location enabling image 

reconstruction [12] from all head and neck anatomies regardless of their location. As 

demonstrated here, when combined with TORS, this point-scanning approach allows for 

interrogation of HNC in the oropharynx. In addition, the cancer probability map generated 

by the system could provide the surgeon with visual identification of the tumor and 

surrounding healthy regions overlaid on the surgical field including display on the robot’s 

console. Such implementation will enable real-time guidance of surgical resection.

E. Limitations

The development and validation of classifiers rely on the availability of accurate tissue 

labels. As seen in Fig. 1, labeling of in vivo data is a multi-step process prone to errors 

due to, among other sources, misregistration between the ex vivo specimen and the surgical 

field. This was partially addressed by implementing an exclusion radius to reject points that 

were close to the tumor boundary. But this limits the data obtained from the tumor margin 

and may lead to an underestimation of the FLIm’s performance. The retrospective classifier 

development and validation methods reported here are well-suited to the investigation of 

Abul Hassan et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



various classifier types and training sets. In future work, a more accurate estimation of the 

classifier will be performed in a prospective study where the classifier’s output, reported on 

tissue at the time of surgery, can be directly compared with histological findings.

This study presents an HNC margin assessment approach within approximately a ~150–250 

μm of the tissue’s epithelial surface, which corresponds to the penetration depth of the 

laser’s excitation wavelength used in this study (335 nm). While this could be perceived 

as a limitation, in the context of the current study the shallow penetration depth of FLIm 

maximizes the signal that can be obtained from a small amount of residual tumor tissue. 

The epithelial thickness of the H&N anatomy is on average between 100 to 200 μm and 

more than 90% of all HNC is present in the mucosa [7]. Thus, FLIm is well-suited for the 

interrogation of these surface-presenting tumors for surgical guidance.

The current dataset demonstrates an imbalanced ratio of p16- vs. p16+ patients, where 

p16- cancers are predominantly represented. It is understood that the proportion of p16+ 

tumors are increasing in the United States population, and that p16+ tumors present with 

distinct clinical, histological, molecular, and prognostic characteristics from p16- tumors. 

On average, patients with p16+ tumors tend to be younger than patients with classical p16- 

HNC, and p16+ patients often do not exhibit the classical risk factors for HNC, such as 

alcohol and tobacco abuse. It is conceivable that the reduced classifier performance for 

p16+ patients may be related to the reduced training data available. This may make an 

impact on the results as a greater proportion of the training data for p16- HNC comes from 

an older patient population on average. Correspondingly, as the database is expanded, it 

will be important to revisit this aspect given the increasing incidence of this p16+ patient 

population. It will also be impactful to evaluate if FLIm can predict p16 status in our future 

work, as this information may better guide surgeons in their approach to patient treatment 

from a radiosensitivity and prognostic standpoint.

V. CONCLUSION

Intraoperative tumor assessment is essential for the surgeon to quantify the extent of 

resection and mitigate cancer recurrence. This work demonstrated that label-free FLIm has 

the ability to provide meaningful information for machine learning used to identify the 

extent of the tumor. The results reported herein establishes the importance of accounting 

for the anatomic site when developing the classifier. The free-hand scanning approach used 

by our FLIm system allows the surgeon to scan the desired region of interest within the 

surgical field, including areas with a complex tissue geometry only accessible with TORS. 

The superior discrimination observed for the anatomy-specific classification model based on 

FLIm-derived parameters provides the surgeon with a cancer probability map that identifies 

the tumor region and underscores FLIm’s potential as a label-free margin assessment tool in 

the operating room.

Acknowledgment

The authors thank our clinical research coordinators Angela Beliveau, M.P.H., CCRP and Randev Sandhu, CCRP 
at the University of California, Davis Medical Center Department of Otolaryngology for their many contributions 
to enroll and consent patients in our study, maintain patient files and medical history documents, and disseminate 

Abul Hassan et al. Page 14

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



research study information to our team. We would like to also thank Dr. Xiangnan Zhou for improving the 
visualization software, data processing, and stability of the FLIm system software. We are grateful to Dr. Alba 
Alfonso Garcia for providing technical feedback on manuscript and contributing to the figures. We would like 
to acknowledge Dr. Jonathan Sorger (Intuitive Surgical, Sunnyvale CA) for his support for our ongoing industry 
collaboration; key areas of his industry support include FLIm visualization aspects and integration of FLIm fiber 
optic probes into the da Vinci SP TORS platform. Finally, we are grateful for Roberto P. Frusciante’s involvement 
with data collection and performing histopathology registration for part of the dataset featured in this manuscript. 
The authors declare no conflict of interest for the research.

This work was supported by the National Institutes of Health under Grant 2R01CA187427 in collaboration with 
Intuitive Surgical, Inc; and P41 - EB032840-01.

REFERENCES

[1]. “Oral Cavity and Pharynx Cancer — Cancer Stat Facts,” NIH National Cancer Institute, 
Surveillance, Epidemiology, and End Results Program (SEER), 2021. [Online]. Available: 
https://seer.cancer.gov/statfacts/html/oralcav.html. [Accessed: 18-Mar-2021].

[2]. Orosco RK et al. , “Positive Surgical Margins in the 10 Most Common Solid Cancers,” Sci. 
Reports 2018 81, vol. 8, no. 1, pp. 1–9, Apr. 2018.

[3]. van Keulen S. et al. , “Intraoperative Tumor Assessment Using Real-Time Molecular Imaging in 
Head and Neck Cancer Patients,” J. Am. Coll. Surg, vol. 229, no. 6, pp. 560–567.e1, Dec. 2019. 
[PubMed: 31568855] 

[4]. Tringale KR, Pang J, and Nguyen QT, “Image-guided surgery in cancer: A strategy to reduce 
incidence of positive surgical margins,” Wiley Interdisciplinary Reviews: Systems Biology and 
Medicine, vol. 10, no. 3. Wiley-Blackwell, 01-May-2018.

[5]. Meier JD, Oliver DA, and Varvares MA, “Surgical margin determination in head and neck 
oncology: Current clinical practice. The results of an International American Head and Neck 
Society Member Survey,” Head Neck, vol. 27, no. 11, pp. 952–958, Nov. 2005. [PubMed: 
16127669] 

[6]. Marsden M. et al. , “Intraoperative Margin Assessment in Oral and Oropharyngeal Cancer Using 
Label-Free Fluorescence Lifetime Imaging and Machine Learning,” IEEE Trans. Biomed. Eng, 
vol. 68, no. 3, pp. 857–868, 2021. [PubMed: 32746066] 

[7]. Weyers BW et al. , “Intraoperative delineation of p16+ oropharyngeal carcinoma of unknown 
primary origin with fluorescence lifetime imaging: Preliminary report,” Head Neck, May 2022.

[8]. Marcu L, French PMW, and Elson DS, Fluorescence lifetime spectroscopy and imaging : 
principles and applications in biomedical diagnostics. CRC Press, 2014.

[9]. Suhling K. et al., “Fluorescence Lifetime Imaging,” in Handbook of Photonics for Biomedical 
Engineering, Dordrecht: Springer Netherlands, 2014, pp. 1–50.

[10]. Berezin MY and Achilefu S, “Fluorescence lifetime measurements and biological imaging,” 
Chem. Rev, vol. 110, no. 5, pp. 2641–2684, May 2010. [PubMed: 20356094] 

[11]. Weyers BW et al., “Investigating sources of FLIm data variability in head & neck cancer,” 
10.1117/12.2609864, vol. PC11949, p. PC1194902, Mar. 2022.

[12]. Gorpas D. et al. , “Autofluorescence lifetime augmented reality as a means for real-time robotic 
surgery guidance in human patients,” Sci. Rep, vol. 9, no. 1, Dec. 2019.

[13]. Liu J, Sun Y, Qi J, and Marcu L, “A novel method for fast and robust estimation of fluorescence 
decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. 
Med. Biol, vol. 57, no. 4, pp. 843–865, Feb. 2012. [PubMed: 22290334] 

[14]. Yankelevich DR et al. , “Design and evaluation of a device for fast multispectral time-resolved 
fluorescence spectroscopy and imaging,” Rev. Sci. Instrum, vol. 85, no. 3, 2014.

[15]. Gorpas D, Ma D, Bec J, Yankelevich DR, and Marcu L, “Real-Time Visualization of Tissue 
Surface Biochemical Features Derived from Fluorescence Lifetime Measurements,” IEEE Trans. 
Med. Imaging, vol. 35, no. 8, pp. 1802–1811, Aug. 2016. [PubMed: 26890641] 

[16]. Fereidouni F, Gorpas D, Ma D, Fatakdawala H, and Marcu L, “Rapid fluorescence lifetime 
estimation with modified phasor approach and Laguerre deconvolution: a comparative study,” 
Methods Appl. Fluoresc, vol. 5, no. 3, p. 035003, Sep. 2017. [PubMed: 28644150] 

Abul Hassan et al. Page 15

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://seer.cancer.gov/statfacts/html/oralcav.html


[17]. Lewis JS, Shelton J, Kuhs KL, and Smith DK, “p16 Immunohistochemistry in Oropharyngeal 
Squamous Cell Carcinoma Using the E6H4 Antibody Clone: A Technical Method Study for 
Optimal Dilution,” Head Neck Pathol., vol. 12, no. 4, pp. 440–447, Dec. 2018. [PubMed: 
29190003] 

[18]. Weyers BW et al. , “Procedure for Histopathology Labeling of Intraoperative Optical Imaging 
Data,” (under review), Jan. 2023.

[19]. Avci P. et al., “Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring,” 
2013.

[20]. Amin MB et al. , “The Eighth Edition AJCC Cancer Staging Manual: Continuing to build 
a bridge from a population-based to a more ‘personalized’ approach to cancer staging,” CA. 
Cancer J. Clin, vol. 67, no. 2, pp. 93–99, Mar. 2017. [PubMed: 28094848] 

[21]. Marsden M. et al. , “FLImBrush: dynamic visualization of intraoperative free-hand fiber-based 
fluorescence lifetime imaging,” Biomed. Opt. Express, vol. 11, no. 9, p. 5166, Sep. 2020. 
[PubMed: 33014606] 

[22]. Shifat-E-Rabbi M. et al. , “Radon Cumulative Distribution Transform Subspace Modeling for 
Image Classification,” J. Math. Imaging Vis, vol. 63, pp. 1185–1203, 2021. [PubMed: 35464640] 

[23]. Duran-Sierra E. et al. , “Machine-learning assisted discrimination of precancerous and cancerous 
from healthy oral tissue based on multispectral autofluorescence lifetime imaging endoscopy,” 
Cancers (Basel)., vol. 13, no. 19, Oct. 2021.

[24]. Awais M. et al. , “Healthcare professional in the loop (HPIL): Classification of standard 
and oral cancer-causing anomalous regions of oral cavity using textural analysis technique in 
autofluorescence imaging,” Sensors (Switzerland), vol. 20, no. 20, pp. 1–25, Oct. 2020.

[25]. Cicciù M. et al. , “Early Diagnosis on Oral and Potentially Oral Malignant Lesions: A Systematic 
Review on the VELscope® Fluorescence Method,” Dent. J, vol. 7, no. 3, p. 93, Sep. 2019.

[26]. Yang Y, xiu Li Y, Yang X, Jiang L, jun Zhou Z, and qin Zhu Y, “Progress risk assessment of oral 
premalignant lesions with saliva miRNA analysis,” BMC Cancer, vol. 13, Mar. 2013.

[27]. Matthies L. et al. , “Optical diagnosis of oral cavity lesions by label-free Raman spectroscopy,” 
Biomed. Opt. Express, vol. 12, no. 2, p. 836, Feb. 2021. [PubMed: 33680545] 

[28]. Hurskainen MO, Sarin JK, Myllymaa S, González-Arriagada WA, Kullaa A, and Lappalainen 
R, “Feasibility of near-infrared spectroscopy for identification of l-fucose and l-proline-towards 
detecting cancer biomarkers from saliva,” Appl. Sci, vol. 11, no. 20, Oct. 2021.

[29]. Ma L. et al. , “Pixel-level tumor margin assessment of surgical specimen in hyperspectral 
imaging and deep learning classification,” in Medical Imaging 2021: Image-Guided Procedures, 
Robotic Interventions, and Modeling, 2021, p. 34.

[30]. van Keulen S. et al. , “Rapid, non-invasive fluorescence margin assessment: Optical specimen 
mapping in oral squamous cell carcinoma,” Oral Oncol., vol. 88, pp. 58–65, Jan. 2019. [PubMed: 
30616798] 

[31]. Krishnan G. et al. , “Fluorescent Molecular Imaging Can Improve Intraoperative Sentinel Margin 
Detection in Oral Squamous Cell Carcinoma,” J. Nucl. Med, vol. 63, no. 8, pp. 1162–1168, Aug. 
2022. [PubMed: 35027369] 

[32]. Wang J. et al. , “A c-MET-Targeted Topical Fluorescent Probe cMBP-ICG Improves Oral 
Squamous Cell Carcinoma Detection in Humans,” Ann. Surg. Oncol, 2022.

[33]. Zhang RR et al. , “Beyond the margins: Real-time detection of cancer using targeted 
fluorophores,” Nature Reviews Clinical Oncology, vol. 14, no. 6. Nature Publishing Group, pp. 
347–364, 01-Jun-2017.

[34]. Lee YJ et al. , “Intraoperative Fluorescence-Guided Surgery in Head and Neck Squamous 
Cell Carcinoma,” Laryngoscope, vol. 131, no. 3. John Wiley and Sons Inc, pp. 529–534, 01-
Mar-2021. [PubMed: 33593036] 

[35]. Guida A. et al. , “Oral lichen planus and other confounding factors in narrow band imaging (NBI) 
during routine inspection of oral cavity for early detection of oral squamous cell carcinoma: A 
retrospective pilot study,” BMC Oral Health, vol. 19, no. 1, Apr. 2019.

[36]. Ota A, Miyamoto I, Ohashi Y, Chiba T, Takeda Y, and Yamada H, “Diagnostic Accuracy 
of High-Grade Intraepithelial Papillary Capillary Loops by Narrow Band Imaging for Early 

Abul Hassan et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Detection of Oral Malignancy: A Cross-Sectional Clinicopathological Imaging Study,” Cancers 
(Basel)., vol. 14, no. 10, May 2022.

[37]. Eggert D. et al. , “In vivo detection of head and neck tumors by hyperspectral imaging combined 
with deep learning methods,” J. Biophotonics, vol. 15, no. 3, Mar. 2022.

[38]. Wu C, Gleysteen J, Teraphongphom NT, Li Y, and Rosenthal E, “In-vivo optical imaging in head 
and neck oncology: Basic principles, clinical applications and future directions review-Article,” 
International Journal of Oral Science, vol. 10, no. 2. Sichuan University Press, 2018.

[39]. Durham JS et al. , “Effect of Fluorescence Visualization-Guided Surgery on Local Recurrence 
of Oral Squamous Cell Carcinoma: A Randomized Clinical Trial,” JAMA Otolaryngol. - Head 
Neck Surg, vol. 146, no. 12, pp. 1149–1155, Dec. 2020. [PubMed: 33034628] 

[40]. Meier JD et al. , “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic 
instrument in head and neck carcinoma,” Otolaryngol. - Head Neck Surg, vol. 142, no. 6, pp. 
838–844, Jun. 2010. [PubMed: 20493355] 

[41]. Sun Y. et al. , “Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of 
oral carcinoma,” in Microscopy and Microanalysis, 2013, vol. 19, no. 4, pp. 791–798. [PubMed: 
23702007] 

[42]. Lorini L. et al. , “Clinical and Histological Prognostic Factors of Recurrence and Malignant 
Transformation in a Large Series of Oral Potentially Malignant Disorders,” Front. Oncol, vol. 12, 
Apr. 2022.

[43]. Turner L, Mupparapu M, and Akintoye SO, “Review of the complications associated with 
treatment of oropharyngeal cancer: a guide for the dental practitioner.,” Quintessence Int., vol. 
44, no. 3, pp. 267–79, Mar. 2013. [PubMed: 23444208] 

Abul Hassan et al. Page 17

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Overview methodology of the label-free FLIm based intraoperative surgical guidance, data 

collection, histopathology registration, and data processing. (a) Schematic of the In-vivo 

FLIm scan acquisition during surgical procedure. (b) Depiction of the FLIm fluorescence 

decay waveforms, extracted parameters, incorporation into the classifier, and associated 

visualization of probability of cancer. The application of anatomy-specific classification 

model to classify tissue regions based on the FLIm features (i.e., LG: Laguerre features and 

PH: Phasor based features). (c) The labels for classifier training and testing were derived 

directly from histopathology evaluated and annotated by a clinical pathologist (DG). Each 

annotated H&E section was registered with the image of the ex vivo and in vivo FLIm scan. 

The red annotations correspond to cancer labels, green annotations correspond to healthy, 

and orange corresponds to dysplasia.
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Fig. 2. 
Depiction of the tissue region-based prediction refinement from the point-level prediction 

using interpolation approach based on inverse distance weighting and SNR weighting, The 

label “probability of cancer (%)” is defined by the prediction probability of the classification 

model
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Fig. 3. 
Region-level classification performance of the anatomy-specific classifier in discriminating 

healthy vs. cancer for the base of the tongue (red), oral tongue (blue), and palatine tonsil 

(green). (a) Sensitivity, specificity, and AUC were obtained from the best-performing 

classifiers for handcrafted and non-handcrafted-based models. The highlighted row indicates 

the best-performing classification model for each anatomy. (b) Prediction probability 

histogram of the three anatomy-specific classifiers, the base of the tongue (DT-LG), the 

oral tongue (DT-LG + SVM-LGPH), and the palatine tonsil (DT-LG + SVM-LGPH) 

illustrating the confidence of the model while making predictions. The prediction probability 

closer to ‘0’ and ‘1’ infers very confident predictions of either cancer or healthy tissue, 

whereas the prediction probability between ‘0.25’ and ‘0.75’ represents a prediction with 

less confidence. (c) Patient-level ROC curves for healthy vs. cancer classification. Each 

curve is color-coded by anatomy. Patients with a minimum acquisition of 100 healthy 

points and 100 cancer point measurements were included in the ROC curves. Abbreviations: 

DT-LG = Decision Tree & Laguerre Features, MLP-LGPH = Multi-Layer Perception Model, 

Laguerre, & Phasor-Based Features, SVM-LG = Support Vector Machine & Laguerre 

Features, OT: Optimal Transport.
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Fig. 4. 
Classifier visualizations of “Healthy vs. Cancer” over the healthy and cancer boundary from 

the histological slice annotations for in vivo patient scan for the base of the tongue, oral 

tongue, and palatine tonsil anatomies for healthy (green) and cancer (red) tissue. The semi-

transparent classification probability map is overlaid on the grayscale image of the in vivo 

tissue. The green and red dotted lines highlight the healthy and cancer boundary derived 

from the histopathology via annotated H&E staining images. The classification probability 

map is visualized as a spectrum of cancer probability to aid the surgeon with intraoperative 

cancer margin. The label “probability of cancer (%)” is defined by the prediction probability 

of the classification model
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Fig. 5. 
Classification performance of the anatomy-specific classifier in discriminating healthy vs. 

cancer vs. dysplasia for head and neck patients. (a) Prediction probability histogram 

of the anatomy-specific classifier “Dysplasia Tested” while predicting healthy, low-grade 

dysplasia, high-grade dysplasia, and cancer tissues. (b) Average ROC-curve of the anatomy-

specific classifiers. “Healthy vs. Cancer” is the average ROC-curve of the anatomy-specific 

classifier trained on healthy vs. cancer and tested on healthy vs. cancer “Dysplasia Tested” 

is the average ROC-curve of the anatomy-specific classifier trained on healthy vs. cancer 

and tested on healthy vs. cancer vs. dysplasia. “Dysplasia Trained/Tested” is the average 

ROC-curve of the anatomy-specific classifier trained on vs. cancer vs. dysplasia and tested 

on healthy vs. cancer vs. dysplasia.
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Fig. 6. 
Classifier visualizations of “Dysplasia Tested” over the healthy, LGD, HGD, and cancer 

boundary from the histological slice annotations for in vivo patient scans with (a) low-grade 

dysplasia and (b) high-grade dysplasia. The semi-transparent classification probability map 

is overlaid on the grayscale image of the in vivo tissue. The green and red dotted lines 

highlight the healthy and cancer boundary, while the yellow and brown dotted lines highlight 

the LGD and HGD boundary derived from the histopathology via annotated H&E staining 

images. The classified tissue is visualized as a spectrum of cancer probability to aid 

the surgeon with intraoperative cancer margin assessment. The ROI on the tissue sample 

illustrates the probability of cancer assigned for dysplasia tissue as the “gray area” between 

healthy and cancerous tissue types. The label “probability of cancer (%)” is defined by the 

prediction probability of the classification model
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TABLE I

ANATOMY AND TISSUE LABEL BREAKDOWN FOR THE 85 PATIENTS

Anatomy No. Patient (N) Tissue Label FLIm Point (n)

Palatine tonsil 27 Healthy 54,762

Oral tongue 26 LGD 4844

Base of tongue 17 HGD 969

Other anatomy 15 Lymphoid 1510

Cancer 36,316

Abbreviations: LGD = Low-Grade Dysplasia, HGD = High-Grade Dysplasia
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TABLE II

TRAINING SET SELECTION FOR ANATOMY-SPECIFIC CLASSIFICATION MODEL DEVELOPMENT. DIFFERENT TRAINING SET 

GROUPINGS ARE TESTED USING THE DECISION TREE (DT) MODEL BASED ON LAGUERRE (LG) FEATURES. THE 

CONFIGURATION WITH BOLD TEXT INDICATES THE BEST-PERFORMING TRAINING SET USED FOR DEVELOPING THE CLASSIFICATION 

MODEL

Training Set Configuration Testing

Pooled anatomy BOT+OT+PT+OA

Anatomy specific BOT Base of Tongue

Anatomic region BOT+PT

Pooled anatomy Anatomy specific BOT+OT+PT+OA
OT Oral Tongue

Pooled anatomy BOT+OT+PT+OA

Palatine Tonsil
Anatomy specific PT

Anatomic region PT+LT*
BOT+PT

*
Two patients from the ‘base of the tongue’ subset represent ‘lingual tonsil.’ Abbreviations: BOT = Base of Tongue, OT = Oral Tongue, PT = 

Palatine Tonsil, LT = Lingual Tonsil, OA = Other Anatomy.
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TABLE IV

REGION-LEVEL HEALTHY VS. CANCER VS. DYSPLASIA CLASSIFICATION PERFORMANCE FOR ANATOMY-SPECIFIC CLASSIFIER ON 

FLIM SCANS, MEAN(SD).

Classifier Sensitivity Specificity AUC

Healthy vs. Cancer 0.90(0.18) 0.88(0.19) 0.94(0.10)

Dysplasia Tested 0.89(0.17) 0.87(0.17) 0.92(0.08)

Dysplasia Trained/Tested 0.85(0.20) 0.91(0.15) 0.91(0.09)
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TABLE V

REGION-LEVEL HEALTHY VS. CANCER CLASSIFICATION PERFORMANCE FOR HPV+ PATIENTS OF PALATINE TONSIL, MEAN (SD).

Condition Sensitivity Specificity

p16- (Boundary = 0.5) 0.98(0.03) 0.85(0.29)

p16+ (Boundary = 0.5) 0.74(0.29) 0.90(0.16)

p16+ (Boundary = 0.4) 0.88(0.18) 0.81(0.21)

Abbreviations: p16+ SCC = HPV-Positive Squamous Cell Carcinoma, p16- SCC = HPV-Negative Squamous Cell Carcinoma
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