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Abstract
Background and Objectives
Corticobasal syndrome (CBS) with underlying 4-repeat tauopathy is a progressive neurode-
generative disease characterized by declining cognitive and motor functions. Biomarkers for
assessing pathologic brain changes in CBS including tau-PET, 18 kDa translocator protein
(TSPO)-PET, structural MRI, neurofilament light chain (NfL), or glial fibrillary acidic protein
(GFAP) have recently been evaluated for differential diagnosis and disease staging, yet their
association with disease trajectories remains unclear. Therefore, we performed a head-to-head
comparison of neuroimaging (tau-PET, TSPO-PET, structural MRI) and plasma biomarkers
(NfL, GFAP) as prognostic tools for longitudinal clinical trajectories in β-amyloid (Aβ)–
negative CBS.

Methods
We included patients with clinically diagnosed Aβ-negative CBS with clinical follow-up data
who underwent baseline structural MRI and plasma-NfL analysis for assessing neuro-
degeneration, [18F]PI-2620-PET for assessing tau pathology, [18F]GE-180-PET for assessing
microglia activation, and plasma-GFAP analysis for assessing astrocytosis. To quantify tau and
microglia load, we assessed summary scores of whole-brain, cortical, and subcortical PET signal.
For structural MRI analysis, we quantified subcortical and cortical gray matter volume. Plasma
NfL and GFAP values were assessed using Simoa-based immunoassays. Symptom progression
was determined using a battery of cognitive and motor tests (i.e., Progressive Supranuclear
Palsy Rating Scale [PSPRS]). Using linear mixed models, we tested whether the assessed
biomarkers at baseline were associated with faster symptom progression over time (i.e., time ×
biomarker interaction).

Results
Overall, 21 patients with Aβ-negative CBS with;2-year clinical follow-up data were included.
Patients with CBS with more widespread global tau-PET signal showed faster clinical pro-
gression (PSPRS: B/SE = 0.001/0.0005, p = 0.025), driven by cortical rather than subcortical
tau-PET. By contrast, patients with higher global [18F]GE-180-PET readouts showed slower
clinical progression (PSPRS: B/SE = −0.056/0.023, p = 0.019). No association was found
between gray matter volume and clinical progression. Concerning fluid biomarkers, only higher
plasma-NfL (PSPRS: B/SE = 0.176/0.046, p < 0.001) but not GFAP was associated with faster
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clinical deterioration. In a subsequent sensitivity analysis, we found that tau-PET, TSPO-PET, and plasma-NfL showed
significant interaction effects with time on clinical trajectories when tested in the same model.

Discussion
[18F]PI-2620 tau-PET, [18F]GE-180 TSPO-PET, and plasma-NfL show prognostic potential for clinical progression in patients
with Aβ-negative CBS with probable 4-repeat tauopathy, which can be useful for clinical decision-making and stratifying patients
in clinical trials.

Introduction
Corticobasal syndrome (CBS) with underlying 4-repeat (4R)
tau pathology, characterized by intracellular neuronal and glial
4R tau aggregates, is a progressive neurodegenerative disorder
characterized by declining cognitive and motor functions.1-3 4R
tauopathies are subclassifiedmainly as corticobasal degeneration
(CBD) or progressive supranuclear palsy (PSP),1 which most
commonly manifest as atypical Parkinson syndrome CBS2,3 or
PSP Richardson syndrome (PSP-RS), depending on the ex-
pression of cortical and subcortical symptoms.3,4 The clinical
phenotypes of 4R tauopathies are potentially driven by het-
erogeneous 4R tau deposition patterns, with predominant
brainstem and subcortical tau accumulation and only late-stage
cortical tau in PSP-RS5 vs more widespread cortical tau aggre-
gation in patients presenting as CBS.6,7 Clinically, β-amyloid
peptide (Aβ)–negative CBS can be diagnosed using the
Movement Disorders Society (MDS) criteria for PSP3 or CBD
criteria.1

Various biomarkers for assessing the underlying pathologic
brain changes in patients with Aβ-negative CBS have recently
been evaluated for differential diagnosis and disease staging, yet
the prognostic accuracy of these biomarkers for predicting fu-
ture disease trajectories remains unclear. The next-generation
tau-PET tracer [18F]PI-2620 has shown a discrimination of
CBS and PSP vs healthy controls as imaging biomarker to
detect 4R tauopathies in vivo.4-7 The [18F]PI-2620 PET signal
patterns were congruent with the histopathologically expected
4R tau accumulation, showing a shift toward cortical tau in
CBS.4,6Microglial activation, measured with [18F]GE-180 PET
tracer targeting the 18 kDa translocator protein (TSPO), has
been apparent in 4R tauopathies PSP and Aβ-negative CBS8

as well as in Alzheimer disease (AD).9 As fluid biomarker,
levels of neurofilament light chain (NfL) have been identified
to be a surrogate for neuroaxonal injury in various neurologic

diseases,10-12 besides structural MRI as an imaging-based
marker of neurodegeneration. Belonging to the family of
class IV intermediate filaments, NfL is a component of the
neuronal cytoskeleton in both central and peripheral neu-
rons. In case of neurodegeneration or axonal damage, NfL
can be released from neurons into the CSF and blood.13

Elevation of glial fibrillary acid protein (GFAP), a struc-
tural component of fibrillary astrocytes, has been sug-
gested as a marker for reactive astrogliosis in blood and
CSF in various neurodegenerative diseases.14 In cohorts
with clinical diagnosis of 4R tauopathies, levels of NfL and
GFAP in both blood and CSF have been shown to be
elevated in comparison with idiopathic Parkinson disease
(PD) and healthy controls.15-17 High NfL levels have been
associated with shorter survival in a retrospective study
with patients with PSP-RS 18 and with predicting disease
progression in PSP.19,20 However, the role of NfL for
predicting disease progression in CBS is still unclear. The
identification of prognostic biomarkers is crucial both for
patient care itself and for the development of interven-
tional trials. To address this, we performed a head-to-head
comparison of neuroimaging (i.e., tau-PET, TSPO-PET,
structural MRI) and plasma (i.e., NfL, GFAP) biomarkers
to evaluate their impact on future clinical trajectories in 21
patients with Aβ-negative CBS with clinical diagnosis of a
probable 4R tauopathy.3

Methods
Participants and Clinical Evaluation
Patients were recruited and clinically tracked at the De-
partment of Neurology at Ludwig-Maximilians-Universität
(LMU) Munich between February 2018 and March 2022.
They were diagnosed by a movement disorder specialist as
PSP-CBS phenotype with probable underlying 4R tauopathy

Glossary
4R = 4-repeat; Aβ = β-amyloid; AD = Alzheimer disease; BMI = body mass index; CBD = corticobasal degeneration; CBS =
corticobasal syndrome;GFAP = glial fibrillary acidic protein; LMU = Ludwig-Maximilians-Universität;MBq = megabecquerel;
MDS = Movement Disorders Society;MNI = Montreal Neurology Institute;MoCA = Montreal Cognitive Assessment;NfL =
neurofilament light chain;PD = Parkinson disease; PSP = progressive supranuclear palsy;PSP-RS = PSP Richardson syndrome;
PSPRS = PSP Rating Scale; SEADL = Schwab and England Activities of Daily Living; SUVR = standardized uptake value ratio;
TSPO = 18 kDa translocator protein; VOI = volume-of-interest.
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according to the MDS-PSP criteria.3 They also fulfilled the
Armstrong criteria of probable or possible CBD-CBS.1 In-
clusion criteria were (1) stable pharmacotherapy for at least 1
week before PET examination; (2) a negative family history
for PD, frontotemporal dementia, and AD; (3) no severe
neurologic or psychiatric disorders other than CBS; and (4)
negative Aβ status as determined using standardized di-
agnostic procedures at the LMU to rule out confounding AD
pathology. Specifically, negative Aβ status was determined
using CSF (i.e., Aβ42/40 ratio >5.5% or Aβ1-42 >375 pg/mL)
or negative [18F]flutemetamol-PET visual read.5,6,8

At baseline, all patients underwent detailed clinical assess-
ment, MRI, blood sampling, and [18F]PI-2620 PET. A
subset also underwent baseline [18F]GE-180 TSPO-PET.
Because binding properties of this TSPO tracer have been
found to depend on genetic polymorphism of the TSPO
gene,21 all individuals underwent rs6971 single-nucleotide
polymorphism genotyping as described previously.8

Clinical assessments at baseline and follow-up were performed
by a movement disorder specialist at the LMU outpatient’s
clinic formovement disorders. Two experts performed baseline
visits, whereas all follow-up visits were conducted by the same
movement disorder specialist to reduce interrater variability. All
experts were specifically trained for all study procedures before
patient inclusion. Assessments included the PSP Rating Scale
(PSPRS),22 Unified Parkinson’s Disease Rating Scale—Motor
Part including the modified Hoehn and Yahr score,23 and the
PSP-Clinical Deficits Scale.24 Functional independence was
measured using the Schwab and England Activities of Daily
Living (SEADL) scale.25 Global cognitive status was assessed
with Montreal Cognitive Assessment (MoCA) scale.26 For
follow-up visits, different versions of the MoCA were used to
avoid training effects. Disease durationwas classified as the time
between reported symptom onset and baseline clinical assess-
ment. For all participants, clinical diagnosis was reviewed and
confirmed at follow-up visits. By the time of the data cutoff for
this study, 8 patients had died. Autopsies were not available.

Standard Protocol Approvals, Registrations,
and Patient Consents
All patients were recruited within the Activity of Cerebral
Networks, Amyloid and Microglia in Aging and Alzheimer’s
Disease (ActiGliA) study, a prospective cohort study of the
Munich Cluster for Systems Neurology (SyNergy) at LMU.
The study and data analyses were approved by the local ethics
committee LMU (ethics-applications: 17-569, 17-755 and 19-
022) and the German radiation protection authorities (BfS-
application: Z 5 − 22464/2017-047-K-G). Written informed
consent was obtained from all participants in accordance with
the Declaration of Helsinki. Patients did not receive com-
pensation for study participation.

Neuroimaging, Acquisition, and Processing
All PET procedures, including radiochemistry, acquisition and
preprocessing, were conducted using established standardized

protocols.5,8,27-29 All patients were scanned at the De-
partment of Nuclear Medicine, LMU, using a Biograph 64
PET/CT scanner or a harmonized Biograph mCT (Siemens,
Erlangen, Germany). For detection of microglial activation,
[18F]GE-180 TSPO-PET recordings (average dose: 179 ±
13 megabecquerels [MBq]) with an emission window of
60–80 minutes after injection were performed.8 Dynamic
[18F]PI-2620 tau-PET (average dose: 188 ± 15 MBq) with
emission recording 0–60 minutes after injection was
obtained to assess tau aggregation. Static frames of the late
phase (20–40 minutes)30 were reconstructed for assessing
tau binding.

All PET data analyses were performed using PMOD (version
3.9; PMOD Technologies LLC, Zurich, Switzerland). For
primary analysis, static emission recordings which were
coregistered to the Montreal Neurology Institute (MNI)
space using nonlinear warping (16 iterations, frequency
cutoff 25, transient input smoothing 8 × 8 × 8mm3) to tracer-
specific templates acquired in previous in-house studies were
used.5,8,27,28 For TSPO-PET, a late-phase template, consist-
ing of cognitively unimpaired controls with intact motor
function was used (nt = 11, 60–80 minutes p.i.). Tau-PET
images were coregistered to a late-phase template, consisting
of a mixed population of healthy controls and patients with
4R-tauopathies without distinction of tau-PET positivity
(nt = 28, 20–40 minutes p.i.). Intensity normalization of all
PET images was assessed by calculation of standardized
uptake value ratios (SUVRs). Therefore, the cerebellum was
used as a pseudo-reference tissue for microglia-PET.31 The
cerebellum was chosen as a unified pseudo-reference tissue
because it was also used for tau-PET analysis. The dentate
nucleus and superior and posterior layers of the cerebellum
were excluded to account for potential tau-PET positivity in
cerebellar areas and in adjacent extracerebral structures.
Using the Brainnetome atlas,32 the brain was divided into 210
cortical and 36 subcortical volume of interests (VOIs), and
SUVRs were calculated. Per patient, the standardized re-
gional deviation of SUVR (z-score) was computed vs the
readouts of already established age-matched and sex-
matched control cohorts for [18F]GE-180 (nc = 1333) and
[18F]PI-2620 (nc = 146).

Because patterns of abnormal tau-PET or TSPO-PET can be
heterogeneous in patients with Aβ-negative CBS, we com-
puted summary measures of brain-wide PET abnormality.
Specifically, we determined number of VOIs of the Brainne-
tome atlas in which PET SUVRs fell above a z-score of 1.5.
This cutoff of 1.5 SD is based on experience on a sample of
healthy controls without any evidence for neurologic disease
or cognitive deficits, increasing the sensitivity to detect early
PET abnormalities in patients with suspected 4R tauopathies.
Summary measures of PET abnormality were determined
for the whole brain, as well as for the cortex and subcortex
separately, to determine whether subcortical and/or cortical
tau-PET or TSPO-PET abnormalities were associated with
clinical CBS trajectories.
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For structural MRI, 3-dimensional T1 MRI data (repetition
time = 2,060 milliseconds, 0.8 mm isotropic voxel size)
recorded on a 3T SIEMENS Magnetom Prisma system
(SiemensHealthineers, Erlangen, Germany) were nonlinearly
spatially normalized to MNI standard space using PNEURO
tool (version 3.9; PMODTechnologies LLC) and segmented
into tissue-specific probability maps. Regional gray matter
density as a proxy of gray matter volume was extracted for
each of the Brainnetome VOI.

Assessment of a CBS Clinical Composite Score
Because there was no consensus on a single clinical scale that
captures CBS symptom severity at the beginning of the study in
2018, we composed a CBS clinical composite across available
clinical scales including PSPRS, MoCA, and SEADL. We spe-
cifically selected these scales to summarize global clinical status,
including cognitive symptom severity (i.e., MoCA), subcortical
symptom severity (i.e., PSPRS), and impaired activities of daily
living (i.e., SEADL). Specifically, MoCA, PSPRS, and SEADL
scores were fed into principal component analyses (i.e., prcomp
command of the stats package in R statistical software). The first
principal component that captured most of the variance across
MoCA, PSPRS, and SEADL scores was extracted as a summary
measure of clinical disease severity (i.e., CBS clinical compos-
ite). The variance explained for the first principal component
was 89.11%, suggesting that this component captures a large
proportion of the variance across the clinical measures. For
future clinical studies in CBS, the Cortical Basal Ganglia
Functional Scale, published in 2020,34,35 may be implemented
as an additional single clinical scale for CBS symptoms.

Plasma Biomarker Assessment
NfL and GFAP levels were quantitatively determined in
plasma samples using a commercial SIMOA kit (#103345;
Quanterix, Billerica, MA) following the manufacturer’s in-
structions. All samples were analyzed in the same plate blin-
ded to clinical information and were measured on the same
day. The used aliquot underwent only 1 thaw/freeze cycle.
NfL concentrations were measured using the Simoa HD-X
analyzer (Quanterix).

Statistical Analyses
First, we assessed whether patients with Aβ-negative CBS de-
clined during the follow-up period. To this end, we used linear
mixed-effects models using the time from baseline as a predictor
of the clinical composite or PSPRS, controlling for age, sex,
education, body mass index (BMI), disease duration, and ran-
dom slope and intercept. We then determined whether baseline
tau-PET, TSPO-PET, structural MRI, NfL, or GFAP levels
moderated clinical trajectories. Specifically, we tested the in-
teraction effect of each baseline biomarker (i.e., tau-PET, TSPO-
PET, structural MRI abnormality, NfL, GFAP) with time on the
clinical composite or PSPRS. Again, models were controlled for
age, sex, education, BMI, disease duration, and random slope and
intercept. For tau-PET or TSPO-PET abnormality, analyses
were conducted using global PET abnormality scores and sub-
cortical and cortical PET abnormality scores, to determine the

effect of either cortical or subcortical PET abnormality on clinical
trajectories. In addition, we performed simulated interventions
to determine whether baseline PET or fluid biomarkers can help
select patients at high risk of clinical progression to reduce
sample sizes for potential intervention effects. To this end, we
determined patient-specific annual change rates in the clinical
composite and PSPRS using linear mixed-effects models. Using
these subject-specific change rates, we ran simulated interven-
tions with hypothetical intervention effects of 20%/30%/40%
using the R-package pwr (settings: 2-sample t test, 2-tailed, type I
error rate = 0.05, power = 0.8). Simulated interventions were
performed for the whole CBS sample and stratified by high and
low biomarker groups (i.e., tau-PET, TSPO-PET, structural
MRI, NfL, GFAP) determined bymedian split. All analyses were
computed using R statistical software. Linear mixedmodels were
run using the lmer package.

Data Availability
Ethics approvals do not allow unrestricted and open-source
sharing of patient-specific data with third-parties. Anonymized
data that support the findings of this study are available on
reasonable request from the corresponding author.

Table 1 Demographic and Clinical Sample Characteristics
at Baseline

Variable Aβ-negative CBS (n = 21)

Sex (male/female) 9/12

Age, y 68.7 ± 12.0

Education, y 12.8 ± 2.8

Disease duration, y 2.69 ± 1.35

Follow-up, y, median (range) 1.95 (0.75–2.72)

PSPRS scores 22.2 ± 13.7

SEADL scores 69.0 ± 19.2

MoCA scores 23.7 ± 4.1

CBS clinical composite scores 15.3 ± 22.9

Global PI-2620 tau-PET summary
score

107.28 ± 69.88 (median = 105)

Cortical PI-2620 tau-PET summary
score

90.94 ± 63.9 (median = 88)

Subcortical PI-2620 tau-PET summary
score

16.34 ± 10.03 (median = 16)

Global TSPO-PET summary score 49.12 ± 36.98 (median = 32)

Cortical TSPO-PET summary score 40.14 ± 31.06 (median = 21)

Subcortical TSPO-PET summary score 8.98 ± 7.51 (median = 7)

Abbreviations: Aβ = β-amyloid; CBS = corticobasal syndrome; MoCA =
Montreal Cognitive Assessment; PSPRS = Progressive Supranuclear Palsy
Rating Scale; SEADL = Schwab and England Activities of Daily Living; TSPO =
18 kDa translocator protein.
Data are presented as mean ± SD, unless indicated otherwise. The CBS
clinical composite score is defined by a principal component analysis using
MoCA, PSPRS, and SEADL scores.
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Results
Overall, 21 patients with Aβ-negative CBS with longitudinal
clinical data were included in this study (see Table 1 for
demographic and clinical characteristics). At baseline, all pa-
tients underwent detailed clinical assessment, MRI, blood
sampling, and [18F]PI-2620 PET. A subset of n = 16 patients
also underwent baseline [18F]GE-180 TSPO-PET. All in-
cluded patients were medium or high affinity binder for [18F]
GE-180 TSPO-PET. Cross-sectional analysis of [18F]PI-2620
PET and [18F]GE-180-PET8 of parts of the cohort has been
reported before.4-6 The median clinical follow-up times were
1.95 years ranging between 0.75 and 2.72 years with an
average of 3.1 ± 0.7 visits. As expected, we found a significant
effect of clinical follow-up time on the CBS clinical com-
posite scores (B/SE = −12.126/2.279, p < 0.001) and PSPRS
(B/SE = 7.847/1.240, p < 0.001). Baseline z-score maps
of [18F]PI-2620 tau-PET and [18F]GE-180 TSPO-PET are
shown in Figure 1, showing widespread elevations of sub-
cortical and cortical [18F]PI-2620 tau-PET signals and limited
cortical and moderate subcortical [18F]GE-180 TSPO-PET
signal increases. The PET summary scores for global, cortical
and subcortical assessments are summarized in Table 1.

More Widespread Cortical Tau-PET Is
Associated With Faster Clinical Deterioration
In a first step, we tested whether baseline [18F]PI-2620 tau-
PET predicted speed of clinical progression in Aβ-negative
CBS. We hypothesized that higher [18F]PI-26260 tau-PET

readouts are associated with faster clinical progression. To test
this, we assessed the interaction effect between [18F]PI-2620
tau-PET and follow-up time on trajectories in the CBS clinical
composite score and PSPRS using linear mixed models
adjusting for age, sex, education, BMI, disease duration, and
random slope and intercept. For global [18F]PI-2620 tau-PET
abnormality (i.e., number of Brainnetome regions of interest
with a z-score >1.5), we found a significant time by [18F]PI-
2620 tau-PET interaction on the CBS clinical composite score
(B/SE = −0.059/0.025, p = 0.021, Figure 2A) and PSPRS (B/
SE = 0.001/0.0005, p = 0.025, Figure 2B), supporting the
hypothesis that faster clinical deterioration in patients with Aβ-
negative CBS is associated with more widespread global [18F]
PI-2620 tau-PET signal. When stratifying this analysis by [18F]
PI-2620 tau-PET abnormality in the cortex vs subcortex, cor-
tical [18F]PI-2620 tau-PET was associated with faster decline
on the CBS clinical composite score (B/SE = −0.063/0.027,
p = 0.024) and PSPRS (B/SE = 0.001/0.0005, p = 0.026) while
subcortical [18F]PI-2620 tau-PET abnormality was not (CBS
clinical composite: B/SE = −0.286/0.184, p = 0.127; PSPRS:
B/SE = 0.005/0.004, p = 0.191). This suggests that specifically
the elevation of [18F]PI-2620 tau-PET in the cortex is associ-
ated with faster clinical progression in Aβ-negative CBS. Linear
mixed model statistics are summarized in Table 2.

Plasma NfL but Not GFAP Predicts
Clinical Progression
Next, we assessed whether plasma NfL and GFAP are asso-
ciated with faster clinical worsening. For NfL, we found a

Figure 1 Group-Average PET Abnormality in Aβ-Negative CBS

Surface and subcortical renderings of
elevated group-level for PI-2620 tau-
PET z-scores (left panels) and TSPO-
PET z-scores (right-panels) that were
referenced against PET images
obtained in healthy controls. Z-scores
greater than 1.5 are considered path-
ologic and are highlighted by white
margins. Aβ = β-amyloid; CBS = corti-
cobasal syndrome; TSPO = 18 kDa
translocator protein.
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significant interaction with time on worsening in the clinical
composite (B/SE = −0.230/0.111, p = 0.044, Figure 3A) and
PSPRS (B/SE = 0.176/0.046, p < 0.001, Figure 3B), in-
dicating that stronger neurodegeneration is associated with

faster clinical worsening. Yet, no time by biomarker abnor-
mality interaction was found for GFAP, neither for the clinical
composite (B/SE = −0.020/0.027, p = 0.455, Figure 3C) nor
for PSPRS (B/SE = −0.007/0.0127, p = 0.574, Figure 3D).

Figure 2 Neuroimaging-Based Prediction of Clinical Trajectories in Aβ-Negative CBS

Line plots illustrating clinical trajectories on the CBS clinical composite score (A, C, E) and PSPRS (B, D, F) stratified by abnormality in global PI-2620 tau-PET
(A, B), global TSPO-PET (C, D) or globalMRI-based graymatter atrophy (E, F). For visualization, regression fits were split into above and belowmedian groups to
illustrated disease trajectories relative to imaging signal abnormality; however, interactions were computed using continuousmeasures. Statistics are based
on linearmixedmodels controlling for age, sex, education, bodymass index, disease duration, and random slope and intercept. CBS clinical composite score
is defined by a principal component analysis using MoCA, PSPRS, and SEADL scores. A decrease in score value of the CBS clinical composite score indicates a
clinical deterioration while in PSPRS an increase in score value indicates clinical worsening. Linear model fits (i.e., least squares line) are indicated together
with 95% CIs. Aβ = β-amyloid; CBS = corticobasal syndrome; MoCA = Montreal Cognitive Assessment; PSPRS = Progressive Supranuclear Palsy Rating Scale;
SEADL = Schwab and England Activities of Daily Living; TSPO = 18 kDa translocator protein.
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This suggests that GFAP as a marker of abnormal astrocyte
function is not associated with subsequent clinical worsening
in Aβ-negative CBS. A summary of linear mixed model sta-
tistics can be found in Table 2.

More Widespread TSPO-PET Readout Is
Associated With Slower Clinical Progression
For TSPO-PET, we found that more widespread global signal
was associated with slower worsening both on the clinical
composite (B/SE = 0.109/0.050, p = 0.037, Figure 3C) and
PSPRS (B/SE = −0.056/0.023, p = 0.019, Figure 3D). In
contrast to tau-PET, this effect was stronger for subcortical
TSPO-PET (clinical composite: B/SE = 0.660/0.243, p =
0.011; PSPRS: B/SE = −0.369/0.106, p = 0.002) rather than
cortical TSPO-PET abnormality (clinical composite: B/SE =
0.118/0.060, p = 0.057; PSPRS: B/SE = −0.059/0.028, p =
0.040). These findings suggest that more widespreadmicroglial

activation is associated with attenuated clinical progression in
Aβ-negative CBS. For summary statistics, refer to Table 2.

MRI-Based Volumetry Is Not Predictive of
Clinical Progression
When assessing the number of VOIs falling below an atrophy
z-score cutoff of −1.5 on structural MRI, we did not find
any association with faster decline in the clinical CBS com-
posite score or PSPRS, neither for global (clinical composite:
B/SE = 0.040/0.031, p = 0.209; Figure 3E; PSPRS: B/SE =
−0.039/0.020, p = 0.072, Figure 3F) nor for cortical (clinical
composite: B/SE = 0.044/0.033, p = 0.190; PSPRS: B/SE =
−0.041/0.021, p = 0.076) or subcortical VOIs (clinical com-
posite: B/SE = 0.171/0.351, p = 0.628; PSPRS: B/SE =
−0.403/0.231, p = 0.103). Detailed statistics are summarized
in Table 2. As we did not find that pronounced brain atrophy
was associated with faster clinical disease progression, we do

Table 2 Linear Mixed Model Statistics for Time by Biomarker Interactions on Clinical Trajectories

Dependent variable Biomarker No. (subjects/observations) B/SE T p Value

CBS clinical composite score Global PI-2620 tau-PET 21/64 −0.059/0.025 −2.395 0.021

Cortical PI-2620 tau-PET −0.063/0.027 −2.352 0.024

Subcortical PI-2620 tau-PET −0.286/0.184 −1.577 0.127

Global TSPO-PET 16/51 0.109/0.050 2.185 0.036

Cortical TSPO-PET 0.118/0.060 1.971 0.057

Subcortical TSPO-PET 0.660/0.243 2.716 0.011

Global gray matter volume 17/53 0.040/0.031 1.282 0.209

Cortical gray matter volume 0.044/0.033 1.336 0.190

Subcortical gray matter volume 0.171/0.351 0.488 0.628

NfL 20/62 −0.230/0.111 −2.073 0.044

GFAP 19/59 −0.020/0.027 −0.755 0.455

PSPRS Global PI-2620 tau-PET 21/64 0.001/0.0005 2.329 0.025

Cortical PI-2620 tau-PET 0.001/0.0005 2.318 0.026

Subcortical PI-2620 tau-PET 0.005/0.004 1.331 0.191

Global TSPO-PET 16/51 −0.056/0.023 −2.462 0.019

Cortical TSPO-PET −0.059/0.028 −2.138 0.040

Subcortical TSPO-PET −0.369/0.106 −3.470 0.002

Global gray matter volume 17/53 −0.039/0.020 −1.950 0.072

Cortical gray matter volume −0.041/0.021 −1.925 0.076

Subcortical gray matter volume −0.403/0.231 −1.747 0.103

NfL 20/62 0.176/0.046 3.842 0.0004

GFAP 19/59 −0.007/0.013 −0.567 0.574

Abbreviations: CBS = corticobasal syndrome; GFAP = glial fibrillary acidic protein; NfL = neurofilament light chain; MoCA = Montreal Cognitive Assessment;
PSPRS = Progressive Supranuclear Palsy Rating Scale; SEADL = Schwab and England Activities of Daily Living; TSPO = 18 kDa translocator protein.
Linear mixed model statistics were adjusted for age, sex, education, body mass index, disease duration, as well as random slope and intercept. The CBS
clinical composite score is defined by a principal component analysis using MoCA, PSPRS, and SEADL scores.
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not expect systematic confounding effects of gray matter at-
rophy on the respective PET study results.

Sample Size Estimation for Clinical Trials
Finally, we assessed whether [18F]PI-2620 tau-PET, [18F]GE-
180 TSPO-PET, or NfL, all of which have been shown to
predict clinical trajectories in Aβ-negative CBS individually,
can help identifying patients at risk of clinical progression.
This would help in the future with reducing (as compared
with solely relying on the clinical diagnosis) sample sizes re-
quired for detecting intervention effects in clinical trials. To
this end, we performed simulated interventions (i.e., 10/20/
30% attenuation of annualized change rates on the clinical
composite or PSPRS) using either the whole CBS sample or
patients above or below median biomarker abnormalities
(i.e., global [18F]PI-2620 tau-PET, global [18F]GE-180
TSPO-PET, NfL). Based on these samples, we determined
the minimum sample size required for detecting intervention
effects at a significance level of 0.05 and a power of 80%. We
found that selecting patients with Aβ-negative CBS with [18F]
PI-2620 tau-PET signals above median reduced the number

of patients required to detect simulated intervention effects by
50%. Similarly, selecting patients with [18F]GE-180 TSPO-
PET signals below-median reduced required sample sizes by
24%. Strongest sample size reductions capacities were found
for plasma NfL: Selecting patients with above-median plasma
NfL levels reduced sample sizes by 60%. Detailed sample size
estimates for different intervention strengths and biomarker
selection criteria are summarized in Table 3.

Discussion
Our major aim was to test the impact of neuroimaging and
plasma biomarkers on disease progression in patients with
Aβ-negative CBS of the clinical category “with probable
underlying 4R tauopathy.” Our head-to-head-comparison
included biomarkers concerning neurodegeneration (NfL and
structural MRI), pathology (tau-PET), neuroinflammation
(TSPO-PET), and astrogliosis (GFAP). To our knowledge,
this study is the first to investigate the impact of potential
biomarkers on clinical trajectories in patients with Aβ-negative
CBS. For the clinical scores PSPRS and the CBS clinical

Figure 3 Fluid Biomarker-Based Prediction of Clinical Trajectories in Aβ-Negative CBS

Line plots illustrating clinical trajectories on the clinical composite (A, C) and PSPRS (B, D) stratified by abnormality in plasmaNfL (A, B) and plasmaGFAP (C, D).
For visualization, regression fits were split into above and below median groups to illustrated disease trajectories relative to NfL and GFAP levels; however,
interactions were computed using continuous measures. Statistics are based on linear mixed models controlling for age, sex, education, body mass index,
disease duration, and random slope and intercept. CBS clinical composite score is defined by a principal component analysis usingMoCA, PSPRS, and SEADL
scores. A decrease in score value of the CBS clinical composite score indicates a clinical deterioration, whereas in PSPRS an increase in score value indicates
clinical worsening. Aβ = β-amyloid; CBS = corticobasal syndrome; GFAP = glial fibrillary acidic protein; MoCA = Montreal Cognitive Assessment; NfL =
neurofilament light chain; PSPRS = Progressive Supranuclear Palsy Rating Scale; SEADL = Schwab and England Activities of Daily Living.

8 Neurology | Volume 102, Number 1 | January 9, 2024 Neurology.org/N

Copyright © 2023 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


composite score (consisting of PSPRS, SEADL, and MoCA),
we observed a highly significant effect of follow-up time in
patients with CBS over a;2-year follow-up period, suggesting
worsening of symptoms over time. In our mixed linear model,
the PSPRS rate of change in patients with CBS was 7.8 ± 1.2
points per year. In 1 study assessing longitudinal changes in
PSPRS in 9 histopathologically proven cases of 4R-tauopathy
with CBS phenotype, the average decline of PSPRS was ;10
points per year,36 hence slightly above our observed clinical
decline. This may be partially due to our study’s inclusion
criteria requiring our patients to undergo 3 brain scans at
baseline, possibly rendering them as less clinically affected.

Assessing the interaction effect between biomarkers and time
on clinical trajectories, we showed that more widespread [18F]
PI-2620 tau PET signal and higher levels of NfL in plasma at
baseline are associated with disease progression in our Aβ-
negative CBS cohort. The impact of [18F]PI-2620 tau load on
clinical progression was specifically driven by cortical rather
than subcortical elevation of [18F]PI-2620 tau-PET signal. By
contrast, we found that higher levels of [18F]GE-180-PET
tracer uptake were associated with a slower disease course. In
our sample, GFAP in plasma and structural MRI were not
associated with clinical progression. Finally, we assessed
whether the biomarkers with prognostic value (i.e., [18F]PI-
2620 tau-PET, [18F]GE-180 TSPO-PET, and plasma-NfL)
could help identifying patients at risk of clinical progression to

reduce sample sizes required for detecting intervention effects
in clinical trials. Strongest sample size reduction capacities were
found for plasma NfL, followed by [18F]PI-2620 tau-PET.

Concerning neuroimaging biomarkers, our findings align with
studies of AD, a 3-repeat/4R tauopathy and PSP patients with
Richardson syndrome phenotype, in which in vivo PET
markers of tau burden were associated with the disease course
at baseline.34-36 In our Aβ-negative CBS cohort, the effect of
[18F]PI-2620 tau-PET on disease progression is driven by
cortical rather than subcortical tracer signal. For [18F]PI-2620
tau-PET, the reason for the observed limited value of sub-
cortical tau tracer enhancement concerning clinical pro-
gression may be a ceiling effect with high subcortical binding
in predilection sites, like the basal ganglia, with high tracer
uptake independently from disease duration and disease
severity.5

Regarding TSPO-PET, we found that less widespread
microglial activity levels were associated with faster disease
progression, particularly in the subcortex. Speculatively,
microglial activation occurs early during the disease course. In
our previous cross-sectional TSPO-PET study in Aβ-negative
CBS, we found higher TSPO-PET signal in early stages of
disease.8 Microglial activation might, thus, be protective in
terms of disease progression, with low TSPO-PET readouts in
some patients reflecting a functional burnout of microglia

Table 3 Sample Size Estimation for Detecting Simulated Intervention Effects Using Biomarker-Based Patient
Stratification Strategies

Primary end point: CBS clinical composite score Primary end point: PSPRS

Intervention effect Intervention effect

Median annualized
change rate 10% 20% 30%

Median annualized
change rate 10% 20% 30%

PI-2620 tau-PET

Pooled (N = 21) 481 110 45 708 196 96

>Median −14.77 234 54 22 9.44 295 82 41

<Median −8.28 833 189 77 6.68 1,279 353 173

TSPO-PET

Pooled (N = 16) 796 181 74 879 243 119

>Median −6.65 971 221 90 4.02 1,264 348 171

<Median −16.52 604 138 56 9.95 548 152 75

NfL

Pooled (N = 21) 481 110 45 708 196 96

>Median −14.06 189 44 18 10.0 255 71 35

<Median −7.38 1,049 283 97 3.41 1,141 315 154

Abbreviations: CBS = corticobasal syndrome; MoCA =Montreal Cognitive Assessment; PSPRS = Progressive Supranuclear Palsy Rating Scale; SEADL = Schwab
and England Activities of Daily Living; TSPO = 18 kDa translocator protein.
Numbers areN required per study arm (i.e., placebo vs verum). CBS clinical composite score is defined by a principal component analysis usingMoCA, PSPRS,
and SEADL scores.
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indicative of a faster disease course. In keeping with this, a
potential protective effect of microglia activation during early
disease course has been shown in patients with AD.37,38 On
the contrary, in a study of 17 patients with PSP-RS with a rate
of change in PSPRS similar to that in this study (;6–7 points
per year), a PCA-based analysis of the TSPO-PET tracer data
as obtained by the first-generation tracer [11C]PK11195
revealed that subcortical neuroinflammation was associated
with faster clinical progression.39 The difference between our
and the result of the above study may be due to differences in
distribution of pathologic brain changes in PSP-RS vs CBS,
with a shift toward cortical brain regions in case of CBS,40 and
due to differences in disease duration and hence disease dy-
namics (;4.7 years vs 2.7 years in our cohort). The latter
might affect study results because microglial activation asso-
ciated with progressive neuronal injury reflecting disease
progression may occur in later disease stages.38 Moreover,
[11C]PK11195 has a relatively low brain uptake41 and may
only be partially comparable with the tracer used in our study.

When assessing regional brain atrophy on structural MRI, no
association was found between gray matter volume and clin-
ical progression. This suggests that the degree of brain atro-
phy does not forecast future clinical trajectories, similar to
previous findings regarding 4R-tauopathy PSP with Richard-
son Syndrome phenotype, showing that tau-PET outperforms
MRI regarding the prognostic value.39

Concerning fluid biomarkers, we found that stronger neuro-
degeneration measured by NfL in plasma is associated with
faster clinical worsening. NfL has been associated with survival
in a retrospective study with patients with PSP-RS18 and with a
prognostic value concerning disease progression in PSP-RS,19,20

but not yet in patients withCBS. The range and variation rate of
plasma/CSF NfL concentrations in neurodegenerative diseases
are still not understood in detail, and further studies with lon-
gitudinal NfL measurements in patients with CBS as well as
other phenotypes of 4R tauopathies are warranted. In our Aβ-
negative CBS cohort, GFAP in plasma as a potential marker of
astrogliosis was not associated with disease progression. CSF/
plasma GFAP has been identified as a possible diagnostic and
disease course monitoring biomarker in various neurodegen-
erative diseases14-17 while, so far, a prognostic value has only
been shown for clinical outcome in stroke patients.42

Overall, our findings on the relevance of imaging and blood
biomarkers on clinical progression in patients with Aβ-nega-
tive CBS suggest an important role for tau burden, microglial
activation, and neuronal damage on prediction clinical pro-
gression in CBS. In future investigations, the question of
whether and to what degree clinical progression is paralleled
by progression of the above biomarkers needs to be
addressed. Particularly, longitudinal imaging and blood anal-
ysis would allow to investigate potential changes in the in-
terplay between these biomarkers over time and to study the
influence of potential biomarker interplay changes over time
on the clinical phenotype course.

We acknowledge several limitations to this study. Our cohort
was diagnosed using clinical criteria without neuropathologic
verification. To reduce the risk of clinical misdiagnosis, all
patients have been seen in a specialized outpatient clinic for
movement disorders, diagnosis was reconfirmed at each
follow-up visit, and all patients fulfilled diagnostic criteria for a
probable 4R tauopathy according to the MDS-PSP criteria.3 A
further clinical investigation of the cohort will be conducted to
follow-up on natural disease course and mortality and to,
eventually, evaluate postmortem histopathology in the context
of antemortem biomarker profile and in-depth clinical char-
acterization. This will allow us to validate sensitivity and
specificity of the PET, MRI, and blood biomarkers studied
against the diagnostic gold standard and to further assess
clinical scores for patient stratification for potential therapeutic
studies. A further limitation of our study is the relatively small
number of patients. This might mask effects such as age de-
pendency of tracer binding and of fluid biomarker levels.
Moreover, despite strong correlations between plasma and
CSF-derived NfL (r;0.743), plasmaNfLmay be influenced by
confounding factors such as renal function or neuropathies in
comparison with CSF-derived NfL. However, we decided to
use clinically easily accessible plasma measures in our study to
maximize the sample size for our main analysis as not all par-
ticipants underwent CSF sampling. The replication of our
findings with larger clinical cohorts will, thus, be important to
determine generalizability of our results and to evaluate a po-
tential synergistic effect of tau-PET, TSPO-PET, and plasma-
NfL as baseline biomarkers on sample size reductions for
clinical trials designs. Moreover, future studies should also in-
clude other subtypes of primary tauopathies to compare the
biomarkers’ potential prognostic role in different phenotypes of
suspected 4R-tauopathies and patients with Aβ-positive CBS to
evaluate a potential generalizability of our results for CBS in the
course of AD.

In conclusion, tau-PET, TSPO-PET, and plasma NfL show
effect on future clinical progression in Aβ-negative CBS. Thus,
this can be useful for future clinical decision-making and for
stratifying patients for clinical trials. Moreover, our power
calculation data demonstrate that clinical trials in patients
with Aβ-negative CBS are feasible and that these baseline
biomarkers have potential to reduce sample sizes when de-
signing interventional trials in CBS.
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The Lüneburg Heritage has supported the work of C. Palleis, S.
Katzdobler and J. Levin. The Friedrich-Baur-Stiftung has sup-
ported the work of C. Palleis.

Disclosure
C. Palleis is inventor in a patent “Oral Phenylbutyrate for
Treatment of Human 4-Repeat Tauopathies” (EP 23 156
122.6) filed by LMU Munich. N. Franzmeier served as a con-
sultant for MSD, has received speaker honoraria from LMI and
has funded research collaborations with Avid Radiopharma-
ceuticals. E. Weidinger reports no disclosures relevant to the
manuscript. A. Bernhardt reports no disclosures relevant to the
manuscript. S. Katzdobler reports no disclosures relevant to
the manuscript. S. Wall reports no disclosures relevant to the
manuscript. C. Ferschmann reports no disclosures relevant to
the manuscript. S. Harris reports no disclosures relevant to the
manuscript. J. Schmitt reports no disclosures relevant to the
manuscript. S. Schuster reports no disclosures relevant to
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