
BioMed Central

Environmental Health: A Global 
Access Science Source

ss
Open AcceMethodology
Global, local and focused geographic clustering for case-control 
data with residential histories
Geoffrey M Jacquez*1, Andy Kaufmann1, Jaymie Meliker2, Pierre Goovaerts1, 
Gillian AvRuskin1 and Jerome Nriagu2

Address: 1BioMedware, Inc., 516 North State Street, Ann Arbor, MI, 48104-1236, USA and 2Department of Environmental Health Sciences, The 
University of Michigan School of Public Health, 109 S. Observatory St. Ann Arbor, MI, 48109-2029, USA

Email: Geoffrey M Jacquez* - jacquez@biomedware.com; Andy Kaufmann - afsb@biomedware.com; Jaymie Meliker - jmeliker@umich.edu; 
Pierre Goovaerts - Goovaerts@biomedware.com; Gillian AvRuskin - avruskin@biomedware.com; Jerome Nriagu - jnriagu@umich.edu

* Corresponding author    

Abstract
Background: This paper introduces a new approach for evaluating clustering in case-control data
that accounts for residential histories. Although many statistics have been proposed for assessing
local, focused and global clustering in health outcomes, few, if any, exist for evaluating clusters when
individuals are mobile.

Methods: Local, global and focused tests for residential histories are developed based on sets of
matrices of nearest neighbor relationships that reflect the changing topology of cases and controls.
Exposure traces are defined that account for the latency between exposure and disease
manifestation, and that use exposure windows whose duration may vary. Several of the methods
so derived are applied to evaluate clustering of residential histories in a case-control study of
bladder cancer in south eastern Michigan. These data are still being collected and the analysis is
conducted for demonstration purposes only.

Results: Statistically significant clustering of residential histories of cases was found but is likely due
to delayed reporting of cases by one of the hospitals participating in the study.

Conclusion: Data with residential histories are preferable when causative exposures and disease
latencies occur on a long enough time span that human mobility matters. To analyze such data,
methods are needed that take residential histories into account.

Background
U.S. population-based surveys estimate that adults spend
87% of their day indoors, 69% in their place of residence,
and 6% in a vehicle [1-3]. To date, most published disease
cluster investigations use static geographies in which indi-
viduals are assumed to be sessile. Examples include the
use of geocoded place of residence at time of diagnosis,
death, and at time of birth (e.g. [4]), as well as the address

of the admitting hospital (e.g. [5]) to record locations of
health events, even though most researchers acknowledge
that residential mobility should be accounted for, espe-
cially for diseases with long latencies such as cancer. In a
recent review of standard methods for evaluating expo-
sure/hazards, disease mapping and clustering techniques,
Bayesian approaches, Markov Chain Monte Carlo
(MCMC) and geostatistical methods, Mather et al. [6]
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identified as substantial weaknesses (1) the lack of tempo-
ral referencing of geospatial data and (2) the inability of
methods to account for residential histories. A recent
meeting of this nation's experts recognized the need to
account for latency and human mobility as especially
pressing in studies of cancer [7]. Boscoe et al. [8] identi-
fied residential history information as a primary need for
the analysis of cancer data.

The representation of individuals as sessile (immobile)
rather than vagile (mobile) in part is due to the static
world view of GIS software, which is not well suited to
representing temporal change [9,10]. Recently, technolog-
ical advances have resulted in Space Time Intelligence Sys-
tems (e.g. [11-13]) that implement several constructs
from Geographic Information Science for representing
human mobility (see [14] for a review). The methods pre-
sented in this paper build on this body of prior work to
produce case-control cluster statistics for residential
histories.

We begin with a brief background on tests for disease clus-
tering, followed by a summary of approaches to modeling
human mobility. We then develop a suite of novel tests
for evaluating local, global and focused clustering in resi-
dential histories using case-control data. Finally, we illus-
trate several of the new techniques by quantifying local,
global and focused clustering of residential histories in a
case-control study of bladder cancer in Michigan.

Background on cluster tests
Cluster tests work within a hypothesis testing framework
that proceeds by calculating a statistic (e.g. clustering met-
ric) to quantify a relevant aspect of spatial pattern in a
health outcome (e.g. case/control location, disease inci-
dence, or mortality rate). The numerical value of this sta-
tistic is then compared to the distribution of that statistic's
value under a null spatial model, providing a probabilistic
assessment of how unlikely an observed cluster statistic is
under the null hypothesis [15]. Waller and Jacquez [16]
formalized this approach by identifying five components
of a spatial cluster test. The test statistic quantifies a rele-
vant aspect of spatial pattern (e.g. Moran's I). The alterna-
tive hypothesis describes the spatial pattern that the test is
designed to detect. This may be a specific alternative, such
as a circular cluster for the scan statistic, or it may be the
omnibus "not the null hypothesis". The null hypothesis
describes the spatial pattern expected when the alternative
hypothesis is false (e.g. uniform cancer risk). The null spa-
tial model is a mechanism for generating the reference dis-
tribution. This may be based on distribution theory, or it
may use randomization (e.g. Monte Carlo) techniques.
Most disease cluster tests employ heterogeneous Poisson
and Bernoulli models for specifying null hypotheses [17].
The reference distribution is the distribution of the test

statistic when the null hypothesis is true. Comparison of
the test statistic to the reference distribution allows calcu-
lation of the probability of observing that value of the test
statistic under the null hypothesis of no clustering. This
five-component mechanism underpins most commonly
used clustering methods.

There are dozens of cluster statistics (see [17-19] for
reviews) that may be categorized for convenience as glo-
bal, local, and focused tests. Global cluster statistics are
sensitive to spatial clustering, or departures from the null
hypothesis, that occur anywhere in the study area. Many
early tests for spatial pattern, such as Moran's I [20] are
global tests. While global statistics can determine whether
spatial structure (e.g. clustering, autocorrelation, uniform-
ity) exists, they do not identify where the clusters are, nor
do they quantify how spatial dependency varies from one
place to another.

Local statistics such as Local Indicators of Spatial Autocor-
relation (LISA) [21] quantify spatial autocorrelation and
clustering within the small areas that together comprise
the study geography. Local statistics quantify spatial
dependency (e.g. not significantly different from the null
expectation, cluster of high values, cluster of low values,
and high or low spatial outlier) in a given locality. Many
local statistics have global counterparts that often are cal-
culated as functions of local statistics. For example,
Moran's I is the sum of the scaled local Moran statistics.

Focused statistics quantify clustering around a specific
location or focus. These tests are particularly useful for
exploring possible clusters of disease near potential
sources of environmental pollutants. For example, Law-
son and Waller [22,23] proposed tests that score each area
for the difference between observed and expected disease
counts, weighted by exposure to the focus (also see [24]
for a review of these approaches). A commonly used expo-
sure function is inverse distance to the focus (1/d). The
null hypothesis is no clustering relative to the focus, with
expected number of cases calculated as the Poisson expec-
tation using the population at risk in each area and the
assumption that risk is uniform over the study area.

Hundreds of cluster investigations are recorded in the lit-
erature, and several of these have resulted in cancer con-
trol activities such as epidemiological studies to
understand potential causes. Notable examples of cluster
studies include brain cancer [25], liver cancer [26], breast
cancer [27,28], prostate cancer [29], colorectal cancer
[30], and cancer disparities [31], to name only a few.

In studies of lung, breast and colorectal cancer on Cape
Cod, stronger evidence for spatial clustering was found
once latency was taken into account [32]. In a population-
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based case-control study Vieira et al. [33] incorporated
residential location to evaluate lung cancer risks not
explained by age and smoking. Han et al. [34] explored
geographic clustering of breast cancer based on place of
residence early in life and found space-time clustering in
case-control data. They also explored clustering of cases
using place of residence at critical time points including at
the subject's birth, menarche, and at the women's first
birth. Boscoe et al. [8] recognized representation of resi-
dential mobility as a primary need for data used in studies
of cancer. But to date and to our knowledge, residential
mobility has yet to be directly accounted for in cluster
studies.

How might one account for residential mobility in cluster
studies? Hagerstrand [35] conceptualized the space time
path as an individual's continuous physical movement
through space and time, and visually represented this as a
3-dimensional graph. Hornsby and Egenhofer [36] recog-
nized that space-time paths mediate individual-level
exposure to pathogens and environmental toxins, and
that practical application would require a mechanism for
representing location uncertainty. A space time prism refers
to the possible locations an individual could feasibly pass
through in a specific time interval, given knowledge of
their actual locations in the times bracketing that interval.
The potential path area [37] shows the locations the indi-
vidual could occupy given these constraints, and repre-
sents places where exposure events might occur. These
constructs enabled new research approaches in diverse
fields such as student life [38], sports analysis [39], social
systems [40], transportation [37], and the analysis of dis-
parities in gender accessibility in households [41]. While
these approaches provide a proven mechanism for mode-
ling geospatial lifelines and related constructs, to date and
to our knowledge there are no methods for the statistical
evaluation of clustering among such lifelines other than
the paper by Sinha and Mark [42], who use Minkowski-
type metrics to calculate a dissimilarity metric for geospa-
tial lifelines, and then cluster this dissimilarity metric.

This paper proposes a novel technique for undertaking the
statistical evaluation of clustering of residential histories
for case-control data. We first develop the method, and
then apply it to an ongoing case-control study of bladder
cancer in southeastern Michigan.

Setting the Problem
A naïve approach when considering residential histories is
to take an existing test for spatial clustering, and to then
apply it repeatedly for different time values. For example,
when considering the geographic distribution of bladder
cancer, one might use place of residence of individuals in
a case-control study from T years ago, and then allow T to
vary in a range of several decades. Locations of place of

residence will change, as may the numbers of cases and
controls extant in the study area. How might results vary
depending on when one looks at the system (e.g. on selec-
tion of T)? To answer this question we analyzed data from
a population-based bladder cancer case-control study cur-
rently underway in southeastern Michigan. Cases are
recruited from the Michigan State Cancer Registry and
diagnosed in the years 2000–2004.

Controls are frequency matched to cases by age (± 5
years), race, and gender, and recruited using a random
digit dialing procedure from an age-weighted list. This
data set is described more fully later in this paper, and is
comprised of 63 cases and 182 controls. Using Cuzick and
Edwards Tk statistic with k = 5 nearest neighbors we then
analyzed these data at every point in time when the topol-
ogy of place of residence of the cases and controls changed
by having a participant move, enter or leave the study
area. The graph of Tk through time (Figure 1) is ascending,
reflecting the larger number of cases and controls residing
in the study area in later time periods. We found five peri-
ods when cases were significantly clustered relative to the
controls: January 1 1929 through January 1 1935, January
1 1941 through November 26 1942, January 1 1960
through January 1 1961, August 22 1967 through January
1 1975 and January 1 1995 through January 1 1997.
Clearly, results of cluster analyses that rely on single loca-
tions may be highly sensitive to the choice of the time at
which the analysis is conducted. What are needed are new
methods that account for the dynamic topology of cases
and controls that arise as a consequence of residential
mobility, and that are suited to multi-temporal analyses.
The development of such techniques is the focus of this
paper.

Methods
We begin by defining an algebra for residential histories,
and a matrix representation that describes how spatial
nearest neighbor relationships change through time. Next
we develop a local case control cluster test, and then
extend it to create global, local and focused tests at specific
time points, and then for entire residential histories. After
completing development of the cluster statistics for resi-
dential histories, we next describe exposure traces that
account for latency periods and exposure windows. We
then develop clustering methods for exposure traces. After
that we describe the bladder cancer data set that was ana-
lyzed with the new methods. In the Results section we
describe application of several of the new cluster tests to
evaluate possible clustering of residential histories of
cases of bladder cancer in Michigan.

Notation
Define the coordinate ui,t = {xi,t, yi,t} to indicate the geo-
graphic location of the place of residence of the ith case or
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Cuzick and Edward's statistic through timeFigure 1
Cuzick and Edward's statistic through time. Graph of Cuzick and Edward's Tk statistic (top) and its Probability (bottom) 
through time for k = 5. Shown in red are those time intervals in which the probability of Tk was 0.0l or smaller.
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control at time t. Residential histories for individual cases
and controls can then be represented as the set of space-
time locations:

Li = (ui0, ui1,..., uiT)  (Equation 1)

This defines individual i living at his or her place of resi-
dence found at ui0 at the beginning of the study (time 0),
and moving to location ui1 at time t = 1. At the end of the
study individual i may be found at uiT. T is defined to be
the number of unique observation times on all individu-
als in the study. This bears some emphasis as understand-
ing of how T is recorded is essential in order to understand
the cluster tests for residential histories. In other words, T
is the total number of different observation times across
all individuals, and so one might expect several geo-
graphic locations in an individual residential history to be
the same. For example, suppose we have 2 individuals (i
and j) and record their residential histories (Figure 2). We
record their places of residence at t = 0, the beginning of
the study. At some time t = 1 "i" moves to a different
home, and moves again at time t = 2. "j" never moves at
all and hence has the location of the same initial place of
residence recorded at times t = 0, 1, and 2. In this example
T = 2. Notice the duration between t = 0 to t = 1 may not
equal the duration from t = 1 to t = 2. This will be impor-

tant later when we develop duration-weighted versions of
the statistics.

While observations on residential histories occur at a
finite number of time points or observation times, these
observations do not have to happen at the same time for
all individuals under scrutiny. When residential histories
are self-reported, these observation times are defined by
the "move" dates reported by the respondent. We mod-
eled this as an instantaneous displacement from the spa-
tial coordinates for entity i at time t (uit) to those at time
t+1 (uit+1). We defined this instantaneous displacement as
occurring at time t+1. We viewed this as an observational
model in which the entity is assumed to reside at its
known location up until that moment when it is observed
elsewhere (e.g. Figure 2).

Individual residential histories can be associated with
time-dependent attributes such as weight, height, disease
state, smoking status, case control status, and so on. These
attributes may be associated with risk and thereby influ-
ence calculation of the latency period and exposure win-
dows defined later. Later we also will use time of diagnosis
to define exposure windows during which carcinogenesis
was thought to have occurred. For now let us define a case-
control identifier, ci to be

Define na to be the number of cases and nb to be the
number of controls. The total number of individuals in
the study is then N = na+nb.

Nearest Neighbor Relationships
Let k indicate the number of nearest neighbors to consider
when evaluating nearest neighbor relationships (e.g.
[63]), and define a nearest neighbor indicator to be:

We then define a binary matrix of kth nearest neighbor
relationships at a given time t as:

By convention we define ηi,i,k,t = 0 (the diagonal elements)
since we do not wish to count individuals as nearest
neighbors of themselves. This matrix enumerates the k
nearest neighbors (indicated by a 1) for each of the N
individuals. The entries of this matrix are 1 (indicating

Schematic of residential historiesFigure 2
Schematic of residential histories. Graphical representa-
tion of residential histories from Equation 1 using the instan-
taneous displacement movement model. Location is on the x-
axis, time on the y-axis. Individual i moves from location ui0 
to ui1 at time t = 1, and stays at that place of residence until t 
= T. Individual j stays at the same place of residence from t = 
0 to t = T.
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that j is a k nearest neighbor of i at time t) or 0 (indicating
j is not a k nearest neighbor of i at time t). It may be asym-
metric about the 0 diagonal since nearest neighbor rela-
tionships are not necessarily reflexive (e.g. Imagine 3
people, call them A, B and C, standing in a line. B is in the
middle but is closer to person A than to person C. The
nearest neighbor to C is B, but the nearest neighbor to B is
A. The nearest neighbor relationships are not reflexive).
Since two individuals cannot occupy the same location,
we assume at any time t that any individual has k unique
k-nearest neighbors. (While it is true that two individuals
cannot occupy the exact same location, such as the space
occupied by one individuals body, residential history
information can assign two individuals the same coordi-
nate when they live in the same house. How might tied
nearest neighbor relationships arising from this situation
be resolved? Two approaches have been proposed. The
first creates fractional nearest neighbor weights [43], the
second propagates uncertainty in the nearest neighbor
relationships by evaluating the permutations of possible
nearest neighbors for the tied nearest neighbor relation-
ships [44]). The row sums thus are equal to k (ηi,•,k,t = k)
although the column sums vary depending on the spatial
distribution of case control locations at time t. The sum of
all the elements in the matrix is Nk. There exists a 1 × T+1
vector of times denoting those instants in time when
either (1) the system is observed and the locations of the
entities are recorded, or (2) under continuous observation
at least one entity changes geographic location. We can
then consider the sequence of T nearest neighbor matrices
given by

This defines the sequence of k nearest neighbor matrices
for each unique temporal observation recorded in the
data set, and thus quantifies how nearest neighbor rela-
tionships change through time. This demonstrates one
way in which spatial weights (here the nearest neighbor
relationship) can be specified from residential histories.
We will now use these nearest neighbor relationships to
construct case control spatial and space-time cluster tests
for residential histories.

Spatially and Temporally Local Spatial Cluster Statistic
A spatially and temporally local case-control cluster statis-
tic is:

This is the count, at time t, of the number of k nearest
neighbors of case i that are cases, and not controls (assum-
ing i indeed is a case, if it isn't Qi,k,t = 0). Since a given indi-
vidual i may have k unique nearest neighbors, this statistic

is in the range 0..k. It always is 0 when i is a control. When
i is a case, low values indicate cluster avoidance (e.g. a case
surrounded by controls), and large values (near k)
indicate a cluster of cases. When Qi,k,t = k, at time t all of
the k nearest neighbors of case i are cases.

Probabilities, Null Hypotheses and Randomization
The statistical significance of Qi,k,t may be evaluated using
conditional randomization that holds the case control
identifier for individual i fixed and then allocates the vec-
tor of remaining N-1 case-control identifiers across the
remaining individuals with a given probability function.
If we assume equiprobability such that all individuals
have equal disease risk we obtain:

Given the case-control identifier for individual i, this is the
probability of individual j being a case under Goovaert
and Jacquez's [45] neutral model Type IV (HIV) of spatial
independence of risk for a spatially heterogeneous popu-
lation density. As expressed in Equation 7, the exact
number of cases (na) and controls (nb) might not be repro-
duced under probabilistic sampling.

Their neutral model type V retains a specified level of spa-
tial autocorrelation and may be simulated using rejection
sampling, sequential indicator simulation, or conditional
case-control index swapping to achieve the observed level
of spatial autocorrelation [46]. Probabilities for neutral
model type V are difficult to write in a closed form analo-
gous to Equation 7.

Probabilities for neutral model type HVI describe the situ-
ation where not all individuals have the same probability
of being labeled a case. This occurs, for example, when we
are concerned with detecting clusters that arise from addi-
tional risk above and beyond that of a background risk that
is itself spatially heterogeneous. This may be accom-
plished in a variety of fashions to model known individ-
ual and environmental risk factors. Tests of the
significance of Qi,k,t are then identifying clusters of cases
above and beyond that expected under the neutral model.

One calculates the value of the test statistic for each reali-
zation of the spatial distribution of cases generated under
the chosen neutral model. These values under randomiza-
tion are retained and used to construct the reference dis-
tribution of the statistic under the corresponding null
hypothesis. The observed value of the test statistic for the

not randomized data (denoted ) is then compared to
the reference distribution to calculate the p-value:
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Here a is the number of conditional randomizations
whose cluster statistic was greater than or equal to that
observed for the not randomized data, and b is the total
number of randomization runs conducted.

A convenient algorithm for conditional randomization
under neutral model IV is to hold the case-control identi-
fier for the ith individual constant, and to then draw from
the 1 × N-1 vector of remaining case-control identifiers
new case-control identifiers for the k nearest neighbors
surrounding i. This sampling is accomplished without
replacement. Alternatively, one could populate the k-near-
est neighbors about i using the probabilities from Equa-
tion 7. This equation is correct for the first identifier so
drawn, but needs to be adjusted for the second, third and
so on. For the mth identifier the correct probability for
sampling without replacement is:

If one assumes sampling with replacement, so that the
cases and controls are assumed drawn from a larger pop-
ulation, one can use Equation 7 without modification.

This approach does not work for neutral models type V
and VI, since spatial structure in the background risk is
lost. Instead one calculates the value of the test statistic for
each of the N locations, for each realization of the spatial
neutral model (of type V or VI) that produces a spatial
point pattern of cases and controls with the desired level
of spatial autocorrelation. The probability assigned to
clusters from these tests (as given by Equation 8) then
accounts for the specified background variation in disease
risk.

Note for each of the approaches listed above, that a refer-
ence distribution, test statistic, and corresponding p-
value, may be calculated for each of the na case locations.

Simes Correction for Local Dependency
The P-values for the k individuals surrounding the ith case
are not independent of one another, as they include one
another as their own k nearest neighbors. We therefore
employ a modified Simes correction [47] to account for
the lack of spatial independence in the local Q statistics.
The Simes adjustment is calculated as pi' = (k + 1 - a) pi.
Here k is the number of p-values being considered (the
number of neighbors), and a is the index (starting at 1)
indicating the rank in the sorted vector of p values for

individual i and its neighbors. We employ this correction
later when reporting p-values for the local Q-statistics.

Global Test for Spatial Clustering at Time t
A global statistic for spatial clustering at time t may be
constructed as:

This is the time-referenced form of Cuzick and Edward's
[43] global test for case-control clustering used in Figure
1. It is the count, over all cases, of the number of cases that
are k-nearest neighbors to those cases at time t. One could
divide this statistic, and others to follow, by na to facilitate
their interpretation. The test statistic would then be an
average number of neighbor cases per case instead of the
integer total number of cases, and would facilitate com-
parison across different studies with different numbers of
cases. In this paper we will use the case-count version.

The probability of Qk,t under HIV is evaluated by allocating
the case-control id's with equal probability over the N
locations at time t. Qk,t is then calculated and this process
is repeated b times to construct the reference distribution
and probability (Equation 8). Notice that since this is a
global test conditional randomization that holds the case-
control id for individual i constant is not needed.

Global Test for Spatial Clustering of Residential Histories
A global test for spatial clustering among the N residential
histories as represented in Equation 1 is

This is the sum, over all T+1 time points, of the global sta-
tistic Qk,t. It is a measure of the persistence of global clus-
tering and is large when case clustering persists through
time. Its reference distribution may be constructed under
a randomization procedure in which the case-control ids
are allocated with equal probability over the residential
histories comprising the set

{Li, i = 1..N}  (Equation 12)

This randomization procedure is conditioned on the total
number of cases and controls in the data set, so that each
data set constructed under randomization has the same
number of cases and controls as the original data.

Local Test for Spatial Clustering of Residential Histories 
through Time
To determine whether cases tend to cluster through time
around a specific case we may construct a test statistic:
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For the ith residential history, this is the sum, over all T+1
time points, of the local spatial cluster statistic Qi,k,t. It is
the number of cases that are k-nearest neighbors of the ith

residential history (a case), summed over all T+1 time
points. It will be large when cases tend to cluster around
the ith case through time. Under neutral model type IV, the
significance of Qi,k,t is evaluated under a conditional rand-
omization that holds the case id for i constant, and then
allocates the remaining case-control id's at random over
the N-1 remaining residential histories. This statistic is
useful for determining whether there is local clustering of
residential histories about a specific case. The statistic can
be calculated for all cases in the data set to identify those
cases whose residential histories form local spatial clus-
ters. However, when calculating significance one should
correct for the multiple testing inherent when many spa-
tial locations are evaluated.

Focused Test for Spatial Clustering at Time t
Suppose that one suspects that the cases may be clustering
about a specific focus defined by the lifeline (e.g. record of
business addresses):

LF = {uF,0, uF,1,.., uF,T}  (Equation 14)

This records the locations of the focus as it moves about
through space-time, and includes situations in which the
focus doesn't move as a degenerate instance. A test for spa-
tial clustering of cases about the focus at a given time t is
then:

Here ηF,j,k,t is the nearest neighbor index indicating at time
t whether the jth individual is a kth nearest neighbor of the
geographic location of the focus defined by uF,t. The statis-
tic QF,k,t is then the count of the number of k-nearest
neighbors about the focus at time t that are cases. Under
null hypothesis type IV randomization at time t may be
accomplished by allocating the case control identifiers
with equal probability over the N-individuals. Since only
the k-nearest neighbors are considered it is only necessary
to allocate their indices. This may be accomplished by
sampling without replacement from the 1 × N vector of
the case-control identifiers, or by drawing the k required
case control identifiers with probabilities defined by
Equation 9 (for sampling without replacement) or Equa-
tion 7 (for sampling with replacement).

Focused Test for Spatial Clustering of Residential Histories 
about a Mobile Focus
A test for focused clustering of residential histories
through time is:

This is the count, over the T times, of the number of cases
that are k nearest neighbors of the focus at each time
point. This statistic is large when residential histories that
are near the focus are cases. Its maximal value is

max(QF,k) = kT.  (Equation 17)

One drawback of using nearest neighbor relationships for
focused tests is that the set of nearest neighbors to the
focus are given equal weight in Equations 15 and 16,
regardless of their actual geographic distance and direc-
tion with respect to the focus. But diffusion and active
transport mechanisms that might carry emissions from
the focus typically result in higher exposures near the
focus, and it thus may make sense to use a maximum dis-
tance within which ki nearest neighbors are found. In
these instances the set of nearest neighbors to the focus
will vary (hence the i subscript denoting the ith focus)
depending on the number of cases and controls found
within the specified distance of the focus.

Power of the Focused Tests and Specification of the 
Exposure
Notice that the power of the tests given by Equations 15
and 16 decreases as k approaches N since QF,k,t = na when
k = N, and its probability is then:

P(QF,k,t | H0, k = N) = 1.0.  (Equation 18)

When one wishes to search for clustering in instances
where k approaches N power may be retained by con-
structing a weight function to model the hypothesized
exposure. For geographically localized foci this may be
based on proximity to the focus. One choice is

Here rF,j,t is the rank indicating proximity of the location
of the jth individual at time t (as given by uj,t) to the loca-
tion of the focus at time t (uF,t). For example, the first near-
est neighbor to the focus has rank 1, the second rank 2,
and so on.

In many situations, such as airborne pollution or ground-
water contamination, the magnitude of exposure is a
function not only of the proximity to the focus but also of
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its orientation, since most dispersion processes (i.e.
winds, infiltration through porous media) are anisotropic
or direction-dependent. Depending on the amount of
information available, exposure models of increasing
complexity can be built.

An easy way to account for anisotropy is to replace the
rank value rF,j,t by a function of the separation vector hjF,t
= |uj,t - uF,t| joining the location of the jth individual at
time t to the location of the focus at time t. Covariance
functions seem to be natural choices for the weight func-
tions wF,j,t since they incorporate the spatial pattern of
dependence of exposure data. For example, one could use
the Exponential or Gaussian covariance functions defined
as:

where a(θ) is the practical range of autocorrelation of the
covariance models; that is the distance h at which the cov-
ariance function equals 0.05. This range is a function of
the azimuth of the separation vector hjF,t. For example, the
range of exposure to an airborne contaminant is expected
to be larger in the direction of the prevailing winds.

More complex weight functions could be created if a proc-
ess-based model of dispersion is available. For the exam-
ple of airborne pollution, an atmospheric dispersion and
deposition model could be developed to predict the fate
of emissions and dust plumes from targeted facilities [48].
However, such models require many more parameters
and assumptions concerning, for example, the emission
rate, the meteorological conditions, complex terrain
effects, the particle size and density for deposition
calculation.

A limitation of process-based models is that they fail to
provide a measure of uncertainty attached to their predic-
tions and field exposure data are not readily incorporated.
Geostatistics [49] provide tools for modeling the spatio-
temporal distributions of exposure and assessing the
attached uncertainty. Various sources of information can
be taken into account, such as measurements at a few
monitoring stations, coordinates of major sources of
exposure (i.e. factories) and transport characteristics (i.e.
wind directions) that could be either directly incorporated
into the prediction algorithm [50] or fed into physical
models to derive spatial trends [51]. In the latter case,
geostatistics are used to model the unexplained or

residual part of the variability predicted by the process-
based models.

The weight function, either based on geographic proxim-
ity (as in Equation 19) or derived using a process-based
model or geostatistics (as in Equations 20 & 21), is then
used to construct the weighted focused test at time t as:

The test for spatial clustering of residential histories about
the focus through time is then:

Notice these weighted tests are conducted for the k nearest
neighbors being considered. When k = N the maximum
values are:

Duration-Weighted Tests for Clustering of Residential 
Histories
The number of time points defined by the t = 0 ..T obser-
vation times, and the frequency with which they are taken,
can have some influence on the value of the above statis-
tics. For example, many repeated observations when there
is a chance of clustering could lead to spurious signifi-
cance for the local and global tests for clustering of resi-
dential histories. We therefore developed duration-
weighted versions of the tests, and these are presented in
the Appendix [see Additional file 1].

Accounting for Exposure Windows and Latency Periods
When dealing with cancers, causative exposures may
occur during an exposure window (∆E), followed by a
latency period (∆L) before cancer is manifested and diag-
nosed. Given the residential history for case i, Li, further
denote the space-time coordinate representing place of

residence at time of diagnosis as , noting that 

∈ Li We can then define that subset of the residential his-
tory Li over which the exposure window occurred as:

Here ti,D is the time of diagnosis for individual i. The term
(ti,D - ∆L) indicates the time prior to diagnosis when the
latency period began and (ti,D - ∆L - ∆E) is the time when
the causative exposure began. Hence equation 25 denotes
that portion of individual i's residential history where
causative exposures could have occurred. Notice that both
the exposure window and latency period could be
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covariate-adjusted to account for risk factors such as
smoking and age (see Discussion). In this instance the
latency period and exposure window vary from one indi-
vidual to another and we write:

Here ∆i,L and ∆i,E are the latency period and exposure win-
dows for the ith individual. In either case (Equations 25 or

26) we call  the exposure trace for the ith individual.

Randomization Procedures for Exposure Traces
In order to evaluate whether exposure traces of the cases
cluster we must first construct a randomization procedure
for generating representative times of diagnosis, latency
periods, and exposure windows. Once this is accom-
plished we will be able to determine whether the exposure
traces for the cases cluster relative to those so constructed
for the controls. For a case, the exposure trace is defined
by the time of diagnosis and the latency period, with the
latency period potentially dependent on age, gender and
other covariates. The procedure proceeds as follows:

(1) Since controls are matched to cases, the "time of diag-
nosis" for each control is set equal to the time of diagnosis
for the matched case.

(2) The exposure window and latency period for each con-
trol is then defined based on the covariates for each con-
trol as was accomplished for that controls matched case.

(3) Completion of steps (1) and (2) will result in exposure
traces defined for both cases and controls. Now randomly
assign case control identifiers across the residential histo-
ries with equiprobability conditioned on the total
number of cases and the total number of controls.

(4) Calculate the desired test statistic for clustering of
exposure traces.

(5) Repeat steps 3 and 4 a desired number of times to con-
struct the reference distribution of the statistic under
randomization.

Test statistics for assessing clustering of exposure traces are
presented below.

Local Case-Control Test for the Spatial Clustering of 
Exposure Traces at Time t
When health events such as cancers are caused by expo-
sure to geographically localized factors we might expect
the exposure traces for the cases to cluster relative to the
exposure traces that are generated for the controls. The
durations of the exposure traces may vary, and we

therefore will employ duration-weighted statistics. We
would like to know whether exposure traces for the cases
exhibit spatial clustering relative to the controls both
locally (to identify places where causative exposures
occurred) and globally (to ascertain whether the exposure
traces for the cases cluster when considered as a group).
We also might wish to ask whether exposure traces for the
cases exhibit focused clustering.

The exposure trace for case i ( ) records those places
where that individual lived during that time when expo-
sures occurred that might have caused cancer later in life.
Now define an indicator, ei,t, as:

When ei,t is 1, let us say the exposure trace is "active". A
local case-control test for spatial clustering of exposure
traces at time t is then:

This is the count, at time t, of the number of k nearest
neighbors of case i's active exposure trace that are cases
(and not controls) whose exposure traces also are active.
Hence the statistic will be large at those times when expo-
sure traces of a group of cases are active and cluster. Its
value is 0 when individual i is a control, and also when
individual i is a case with an inactive exposure trace. The
duration weighted version of this statistic is:

Local Case-Control Test for the Spatial Clustering of 
Exposure Traces through Time
We can explore whether active exposure traces of cases
tend to cluster spatially through time. A statistic sensitive
to this pattern is:

 will tend to be large when active exposure traces for

cases tend to cluster around the active exposure trace of
the ith case. It will be 0 when i is a control, and small when
a given case i has the traces of many controls as its neigh-
bors. The duration-based version of this statistic is:
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This statistic will be expressed in case-time units, indicat-
ing the number (for example) of case-days over the entire
study period for which cases with active traces were k-
nearest neighbors of the active trace of case i.

Global Case-Control Test for the Spatial Clustering of 
Exposure Traces at Time t
We can ask whether, as a group, active case traces are spa-
tially clustered relative to the active traces of the controls
at a given time t. This is accomplished using the statistic:

This is simply the sum, over all cases, of the local statistic
for clustering of case exposure traces at time t. This statistic
will be large when active traces of cases tend to be near
one another and small when the active traces of cases tend
to have controls as their k nearest neighbors. The dura-
tion-based version is:

Global Case-Control Test for the Spatial Clustering of 
Exposure Traces through Time
A global test for the spatial clustering of the active expo-
sure traces of cases through time is:

This is the sum, over all time periods, of the global cluster
test for the clustering of exposure traces. It will be large
when global clustering of active exposure traces tends to
persist through time. The duration-based version of this
statistic is:

Focused Case-Control Test for the Spatial Clustering of 
Exposure Traces at Time t
We can also ask whether the exposure traces of cases clus-
ter near putative emission sources. Again, these sources
may be mobile, and we accomplish this by assigning
larger weights for those cases that are near the focus. Recall
from Equation 14 that we can represent a mobile source

as LF = {uF,0, uF,1,.., uF,T}. The test for spatial clustering of
cases about a focus at a given time t (Equation 15) may
then be extended to be a focused test for clustering of
exposure traces as:

This is the count of the number of cases with active expo-
sure traces that are k nearest neighbors of the focus at time
t. Significance of this statistic may be evaluated by con-
structing exposure traces for the controls as described ear-
lier, and by then repeatedly allocating case-control
identifiers across the N lifelines that are k nearest neigh-
bors of the focus in order to construct the reference distri-

bution for . The duration weighted version of this

statistic is

Focused Test for Spatial Clustering of Exposure Traces 
about a Mobile Focus through Time
We can evaluate whether there is statistically significant
clustering of exposure traces of cases about a mobile focus
through time using the statistic:

This is the count, over T+1 times, of the number of cases
that have active exposure traces that are k nearest neigh-
bors of the focus at each time point. The maximum value
of this statistic is kT, and its significance may be evaluated
under randomization by reallocating case-control identi-
ties over the exposure traces of the cases and controls as
described in the previous section. The duration-weighted
version of this statistic is:

Weighted Focused tests for Exposure Traces
The power of the k-nearest neighbor based focused test for
exposure traces decreases as k approaches N. Weights such
as that suggested in Equations 19–21 may be used to con-
struct a weighted focused test for exposure traces at a given
time t:

The test for focused clustering of exposure traces through
time is then:
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The significance of these statistics is evaluated using rand-
omization across the k nearest neighbors of the focus as
described earlier. The corresponding duration-weighted
versions are

This is the weighted focused test over duration ωt. The
duration-based weighted focused test for exposure traces
through time is

Bladder Cancer in southeastern Michigan
A population-based bladder cancer case-control study is
currently underway in southeastern Michigan. Cases are
recruited from the Michigan State Cancer Registry and
diagnosed in the years 2000–2004. Controls are fre-
quency matched to cases by age (± 5 years), race, and gen-
der, and recruited using a random digit dialing procedure
from an age-weighted list. To be eligible for inclusion in
the study, participants must have lived in the eleven
county study area for at least the past 5 years and had no
prior history of cancer (with the exception of non-
melanoma skin cancer). Participants are offered a modest
financial incentive and research is approved by the Uni-
versity of Michigan IRB-Health Committee.

The data presented here are from 63 cases and 182 con-
trols. As part of the study, participants complete a written
questionnaire describing their residential mobility his-
tory. The duration of residence and exact street address
were obtained, otherwise the closest cross streets were
provided. Each residence in the study area was geocoded
and assigned a geographic coordinate in ArcGIS; resi-
dences outside the study area were not geocoded. Partici-
pants resided at 1004 homes within the study area, with
time spent averaging 64% of their lifetimes. Residences
within the study area were successfully geocoded: 76%
automatically matched using ArcGIS settings of spelling
sensitivity equal to 75, minimum candidate score equal to
10, and a minimum match score equal to 60. The
unmatched addresses were manually matched using cross
streets with the assistance of internet mapping services
(15%). If cross streets were not provided, best informed
guess placed the address on the road (5%), and as a last
resort, residence was matched to town centroid (4%).

Industrial histories have also been collected for the study
area, and will be explored to explain local clustering.
Industries reported to or believed to emit contaminants
that have been associated with bladder cancer were iden-
tified using the Toxics Release Inventory [52] and the
Directory of Michigan Manufacturers (Manufacturer Pub-
lishing Co., 1946, 1953, 1960, 1969, 1977, 1982). Stand-
ard Industrial Classification (SIC) codes were adopted,
but prior to SIC coding, industrial classification titles were
selected. Characteristics of 268 industries, including, but
not limited to, fabric finishing, wood preserving, pulp
mills, industrial organic chemical manufacturing, and
paint, rubber, and leather manufacturing, were compiled
into a database. Industries were geocoded following the
same matching procedure as described for residences:
89% matched to the address, 5% were placed on the road
using best informed guess, and as a last resort, 6% were
matched to town centroid. Each industry was assigned a
start year and end year, based on best available data. The
data on these industries is used to demonstrate the
focused versions of the Q statistics.

Results
At the time of this writing, geocoding and data collection
are ongoing; hence the results reported in this manuscript
are entirely preliminary and should not be used to draw
any conclusions regarding the spatial patterns of bladder
cancer in Michigan. The analysis undertaken in the man-
uscript is provided only as an example application of the
new Q statistics.

To demonstrate the methods we implemented the local
and global Q statistics for clustering of residential histo-
ries, specifically the local test at time t, Qi,k,t (Equations 6),
and its global counterpart Qk,t (Equation 10). We also
implemented the local test for clustering of residential his-
tories through time Qi,k (Equation 13), and the global test
for clustering of residential histories Qk (Equation 11). We
also were concerned with possible clustering of cases near
the industrial facilities, and evaluated this using the
focused test at time t QF,k,t (Equation 15) as well as the
focused test through time QF,k (Equation 16). In addition
we programmed the duration-weighted versions of these
statistics, and for the focused tests we also employed expo-
sure weights calculated using the inverse rank distance
(Equation 19).

Results for Qkt
These techniques were implemented in TerraSeer's STIS
software using the Application Programmer's Interface.
This allowed us to create a methods dynamic linked
library with our new techniques that we then invoked
using an automatically generated dialog. Time animated
maps of the places of residence of the cases and controls,
and of the changing geography of the municipal water
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supplies, were constructed using STIS (Figure 3 [see Addi-
tional file 2] [see Additional file 3]). These display the
changing geography of the cases and controls as they
move from one place to another, alterations in the geog-
raphy of the municipal water supplies as they are
founded, expand and merge, as well as township bound-
aries. To verify the methods we compared results using the
Q statistics to those obtained using Cuzick and Edward's
test in the ClusterSeer software. Specifically, we used STIS
to calculate the Qkt statistics through time and then
exported the data for July 1, 1969. We choose this time
point, because Qkt reached a local peak of Qkt = 77 that was
statistically significant (see Figure 1). The Cuzick and
Edward's test in ClusterSeer returned T5 = 77, confirming

the results from STIS. As noted earlier, Cuzick and
Edward's test is a special case of the Q-statistic for the glo-
bal test at time t, Qkt. Note that Qkt is calculated as the sum
of the local Q statistics at time t, Qikt, and thereby provides
verification that the statistic Qikt, from which the family of
Q statistics is derived, is being calculated correctly. We
must remind the reader that these results are highly pre-
liminary and that data collection is incomplete. In fact,
and as noted later in the Discussion, it is likely the
observed clustering in these data is due to the geographic
ordering in which the data are being collected. Nonethe-
less, this example demonstrates how plots of the Qkt statis-
tics may be used to evaluate geographic case clustering of
residential histories.

Still from the animation of residential histories of cases, controls and industry in southeastern Michigan (additional file 2 and additional file 3).Figure 3
Still from the animation of residential histories of cases, controls and industry in southeastern Michigan (addi-
tional file 2 and additional file 3).
Page 13 of 19
(page number not for citation purposes)



Environmental Health: A Global Access Science Source 2005, 4:4 http://www.ehjournal.net/content/4/1/4
Results for 

The results reported above were not time standardized.
We therefore undertook an analysis using the time-stand-

ardized version of Qkt called  as per Equation A4.

This expresses the amount of clustering at a given time
interval in cases per unit time period. STIS reports times
down to the second, hence results are recorded in person
seconds. Figure 4 shows a similar overall increasing trend
but also a greater variability in the value of the Q statistic
through time. This is driven both by the increased number
of cases through time and also by differences in the dura-
tions between movement events. When these sources of
variability are accounted for we find episodic case cluster-
ing in approximately the same time intervals as found for
the not time weighted statistic.

Results for Qk

Having found some of the Qkt and  statistics to be
statistically significant, the question then arises as to
whether there is overall global clustering given the
multiple time points evaluated. To accomplish this we
used the global Qk test under the randomization proce-
dure that holds the residential histories of the cases and
controls as given and then allocates the na case and nb con-
trol identifiers across the N residential histories. We
accomplished this randomization 99 times in the STIS
with a resulting p-value of 0.01, and concluded there was
global clustering in the residential histories.

Results for Qi,k to evaluate Clustering of Residential 
Histories

The statistics Qkt and  are sensitive to a clustering of

cases relative to the controls, and are evaluated at each of
the T+1 time points in the set of residential histories. We
also can ask, whether residential histories of the cases clus-
ter near the residential histories of other cases by using the
statistics Qi,k (Equation 13) and its duration-weighted ver-

sion  (Equation A6). Since our analysis above demon-

strated the results are not overly sensitive to duration
weighting, we report results only for the not-weighted
tests. This test will associate a statistic and a p-value with
each residential history. A map of the residential histories
on April 12, 1997 is shown in Figure 5. Note the two red
dots that denote the place of residence of the two cases
with statistically significant clustering of residential
histories. Over the entire time span of the study, these two
cases tend to be surrounded by residential histories of
other cases, rather than the residential histories of con-
trols. Because of residential mobility, the two red dots
move about through time. This animation is quite com-
pelling in the STIS and is approximated by the simpler

animation in Figure 3. Note the animation in Figure 3 is
sampled from the complete animation created when run-
ning the STIS software. This is necessary to create .avi files
of small enough size for effective posting on the internet.
Periods in which a red dot disappears from the animation
denote time periods when that individual moved out of
the study area. It is important to note that we have not
adjusted these local tests for the multiple testing in the
many spatial locations that were evaluated. However, the
global Qk statistic was statistically significant and the large
local statistics observed for the two red dots reference the
two residential histories that contributed the most to the
global Qk.

Focused clustering
To demonstrate the use of the focused versions of the Q
statistic we analyzed possible clustering of the residential
histories of cases near the 268 industrial facilities that pro-
duced compounds thought to be putative carcinogens for
bladder cancer. We undertook two sets of analyses using
QF,k (Equation 16). The first evaluated focused clustering
of residential histories using k = 5 nearest neighbors. The
second only considered those nearest neighbors within 1
kilometer of the focus.

When considering the 5 nearest neighbors to each indus-
try, 24 of the 268 industrial facilities had p-values less
than 0.05. Thus under the null hypothesis that each per-
son in the study had an equal probability of being labeled
a case, these 24 candidate foci had a significant excess of
cases among each of their five nearest neighbors, at least
at the nominal 0.05 level. Notice that at the 0.05 level, we
would have expected 13.4 foci to be significant under this
null hypothesis. Using an experiment-wise error
approach, and a 5% critical value, the adjusted alpha level
of the test is 0.000187 using the Bonferonni correction,
and is 0.000191 using Sidak's multiplicative inequality.
Using 49,999 randomizations, we were able to resolve p-
values as small as 0.00005. None of these industries
proved to be statistically significant foci once multiple
testing was accounted for.

We also used the distance-based approach considering
those neighbors within 4,000 m of each industrial facility.
Under this approach, 10 industrial facilities had p-values
< 0.05, but none of these were significant once multiple
testing was accounted for.

Discussion
This paper presented a new approach for evaluating case
control clustering of residential histories. To date and to
our knowledge, almost all case control cluster tests rely on
the static view, analyzing clustering at one point in time or
independently at several points in time. By using the
mathematical construct of a residential history in
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 through timeFigure 4

through time. Graph of  (top) and its probability (bottom) through time for k = 5.  is the time weighted 
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Equation 1, and the notion of super sets of proximity
matrices (Equation 5) to represent the changing geometry
of place of residence, we have derived local, global and
focused tests that are realistic in the sense that they quan-
tify human residential mobility.

The results of the analysis of the bladder cancer data are
entirely preliminary, and should not be interpreted to
reach any inferences or conclusions regarding case-control
clustering of bladder cancer in Michigan. At the time of
this writing we believe statistically significant spatial clus-
tering of cases is the result of a geographic pattern in the
temporal order in which cases are reported. Because of

recent implementation of the HIPPA (Health Insurance
Portability and Accountability Act) legislation, The Uni-
versity of Michigan hospital systems had been unwilling
to release case data until its official position on these
requirements was completely formulated. As a result,
bladder cancer cases that were treated at the University of
Michigan hospitals are only now being recruited to the
study's data set. Because many of these cases are from the
surrounding environs of Washtenaw and Livingston
counties, the data set analyzed in this paper has a deficit
of cases in these areas. Selection of controls employs a
population sample using random digit dialing, and
appropriately represents the entire study area. As a result,

Map of cases and controls on 4/12/1997Figure 5
Map of cases and controls on 4/12/1997. Map of cases and controls on 4/12/1997. Cases are shown as dots within a circle, 
controls are shown as crosses. The two cases whose residential histories tend to be surrounded by the residential histories of 
other cases are shown in red.
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there is a deficit of cases in Washtenaw and Livingston
counties, and a concomitant clustering of cases in the bal-
ance of the study area. Further investigation of any blad-
der cancer clusters would also entail including known
bladder cancer risk factors, such as cigarette smoking and
occupational exposure history, in the analysis. We intend
to revisit this analysis once the data set is complete.

Selection of controls through random digit dialing can
introduce bias, since not everyone is equally likely to be
selected due to different numbers of phones and the like-
lihood of answering the phone. While such bias might be
reduced by first selecting a census block group based on
census numbers, adjusted for age and gender, and then
doing random digit dialing within that block group, such
a procedure has the potential of over-matching on expo-
sure [53]. This would make it very difficult to detect any
spatial pattern that arises at a spatial scale greater than the
block group. In this study we chose not to match on geog-
raphy because some of the exposures of interest display a
geographic pattern and over-matching on exposure was a
possibility. These exposures include regional patterns in
arsenic concentration in drinking waters associated with
surficial geology and regional differences in household
water supply sources [54,55].

Southeastern Michigan includes rural farming areas as
well as portions of metropolitan Detroit, and differential
response rates under random digit dialing are a concern.
We attempted to ensure these areas do not have differen-
tial response rates by comparing addresses of responders
and non-responders in age-weighted lists.

Exposures in early life and over an individual's life course
may be important risk factors for the onset of cancer
[56,57,34], thereby impacting both the date of diagnosis
and latency period. But how can such risk factors be
accounted for in exposure trace analysis? We need to
explicitly model the latency period to take into account
not only exposures of direct interest (arsenic in our exam-
ple) but also additional risk factors (such as smoking) that
might decrease the latency period and accelerate disease
onset. Many common epidemiological risk-disease meas-
ures (e.g. odds ratio) are concerned with whether an expo-
sure occurred, rather than with when it occurred, and are
thus of little use for estimating relationships between tim-
ing of exposure and disease onset [58]. For cohort analy-
ses, Robins and Greenland[59] argued that, when
conditioned on age, Years of Life Lost (YLL) due to early
exposures cannot be estimated without bias in the
absence of causal models for how exposure causes death.
This result was demonstrated analytically by Morfeld [60],
who developed a framework for causal thinking in epide-
miology, and applied it to evaluate the estimability of YLL
and related measures. Candidate causal modeling

approaches cited by Morfeld include Robin's G-estima-
tion procedure [61,62] which can be used to estimate the
time period between exposures and outcomes such as
death, and thus appear promising for incorporating cov-
ariates into models of the latency period. Applications of
G-estimation and the YLL procedures of Robins [61] in
exposure trace modeling is thus an important future
research direction.

Discussion of the type of spatial metric to use (nearest
neighbor, adjacency, or geographic distance-based) as
well as the number of k nearest neighbors to analyze is
warranted. The approaches detailed in this paper are gen-
eral in the sense that weights such as inverse distance and
adjacency could be used in place of k-nearest neighbor
relationships in Equation 4. We chose to work with near-
est neighbor measures because we've found them to be
more powerful than adjacency- and distance-based meas-
ures in some situations (e.g. [63]). As noted earlier in this
paper, we used k = 5 because we found in the past that spa-
tial clustering under nearest neighbor methods often may
be detected at that level of k. Such a justification is
sufficient in analyses conducted purely for demonstration
purposes but is deficient in applied settings. In practice,
two approaches may be used, which we call a priori and
exploratory. When prior information is available on the
scale of clustering this can be used to select a specific
number of nearest neighbors to explore. Hence if one
wishes to detect clusters of five individuals one might set
k = 5. When such prior information is lacking an explora-
tory approach may be used in which several levels of k are
analyzed, and probabilities from the analyses must then
be adjusted to account for multiple testing [63].

We could not demonstrate each of the statistics developed
in this paper, due to both data and space constraints. We
note that exposure traces could be implemented to repre-
sent cases and controls of similar ages, in addition to
those at a point in time. For example, a researcher may
wish to determine whether cases cluster together when
they were children, irrespective of year, thereby indicating
early-lifetime vulnerability to an environmental exposure
in the area. These clustering tools thus can be used to dis-
play cancer clusters of similarly-aged participants, as well
as clusters based on the years a participant lived at a
residence. In this manner, clusters of children can be
investigated, whether they are born in the same genera-
tion or born in different generations.

Conclusion
In conclusion, the methods presented in this paper
account for residential mobility and are thus far more
realistic than existing tests that are founded on static geo-
graphic representations. They thus are preferred over clus-
tering methods that ignore human mobility. The
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techniques demonstrated in this paper have been pro-
grammed in a dynamic linked library that can be obtained
from the first author and used in conjunction with a STIS.
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