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Abstract
Light detection and ranging (lidar) has emerged as a valuable tool for examining 
the fine-scale characteristics of vegetation. However, lidar is rarely used to exam-
ine coastal wetland vegetation or the habitat selection of small mammals. Extensive 
anthropogenic modification has threatened the endemic species in the estuarine 
wetlands of the California coast, such as the endangered salt marsh harvest mouse 
(Reithrodontomys raviventris; SMHM). A better understanding of SMHM habitat se-
lection could help managers better protect this species. We assessed the ability of 
airborne topographic lidar imagery in measuring the vegetation structure of SMHM 
habitats in a coastal wetland with a narrow range of vegetation heights. We also aimed 
to better understand the role of vegetation structure in habitat selection at different 
spatial scales. Habitat selection was modeled from data compiled from 15 small mam-
mal trapping grids collected in the highly urbanized San Francisco Estuary in California, 
USA. Analyses were conducted at three spatial scales: microhabitat (25 m2), meso-
habitat (2025 m2), and macrohabitat (~10,000 m2). A suite of structural covariates was 
derived from raw lidar data to examine vegetation complexity. We found that add-
ing structural covariates to conventional habitat selection variables significantly im-
proved our models. At the microhabitat scale in managed wetlands, SMHM preferred 
areas with denser and shorter vegetation and selected for proximity to levees and 
taller vegetation in tidal wetlands. At the mesohabitat scale, SMHM were associated 
with a lower percentage of bare ground and with pickleweed (Salicornia pacifica) pres-
ence. All covariates were insignificant at the macrohabitat scale. Our results suggest 
that SMHM preferentially selected microhabitats with access to tidal refugia and mes-
ohabitats with consistent food sources. Our findings showed that lidar can contribute 
to improving our understanding of habitat selection of wildlife in coastal wetlands and 
help to guide future conservation of an endangered species.
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1  |  INTRODUC TION

Over the last few decades, extensive development and human activ-
ity have threatened coastal wetland ecosystems worldwide (Casazza 
et al., 2021; Davidson, 2014; Li et al., 2018; Marcot et al., 2020). It 
is estimated that as much as 87% of global coastal wetlands have 
been lost due to diking, filling, and other anthropogenic activities 
(Davidson, 2014; Smith et  al.,  2020). Wetlands are crucial ecosys-
tems for a variety of native plant and wildlife species, including 
halophytes, waterfowl, fish, and small rodents (Marcot et al., 2020; 
Moyle et al., 2014). The salt marsh harvest mouse (Reithrodontomys 
raviventris, hereafter SMHM; Figure 1) is one such species endemic 
to the highly urbanized (Nichols et al., 1986) coastal wetlands of the 
San Francisco Estuary. SMHM are fully confined to coastal wetlands 
and directly adjacent habitats (Smith et al., 2018). Habitat loss, deg-
radation, and fragmentation have resulted in the listing of SMHM 

as endangered at both the state and federal level (CNDDB, 2023; 
Shellhammer et  al.,  1982; USFWS,  1984, 2013; Whitaker & 
NatureServe, 2018). The continued preservation of SMHM habitat 
is therefore a priority for conservation practitioners in the region 
(USFWS, 2013). Currently, a substantial proportion of the remaining 
SMHM population resides in Suisun Marsh – part of the San Francisco 
Estuary and one of the largest contiguous brackish marshes in North 
America (Smith et al., 2018; Sustaita et al., 2011). However, the San 
Francisco Estuary has been particularly vulnerable to anthropogenic 
influence; <10% of its historic tidal wetlands remain today (Bias & 
Morrison, 1999; Smith et al., 2014; Williams & Faber, 2001). A com-
prehensive understanding of SMHM ecology and behavior can help 
wildlife practitioners conserve the species, especially in the face 
of impending sea-level rise due to climate change which is already 
negatively impacting habitat (Moyle et al., 2014; Smith et al., 2018; 
Spencer et al., 2016; Thorne et al., 2014, 2018).

Habitat selection is widely considered to be an important aspect 
of the ecology of a species (Marcot et al., 2020; Mayor et al., 2009; 
Morris, 2003; Padgett-Flohr & Isakson, 2003; Vierling et al., 2008). 
Elevation and vegetation structure have been shown to be crucial 
considerations of habitat selection for a variety of species, includ-
ing birds (Cody, 1981; Guyot et al., 2017; Jedlikowski et al., 2016; 
Tsao et  al.,  2009), small mammals (Jaime-González et  al.,  2017; 
Klinger et al., 2015), and ungulates (Ewald et al., 2014). Determining 
the environmental characteristics which make some aspects of the 
wetland landscape more valuable than others as potential habitat 
to SMHM will support its conservation. There have been several 
studies on the movement and habitat selection of the SMHM (Bias & 
Morrison, 2006; Shellhammer et al., 1982; Smith et al., 2020; Sustaita 
et al., 2011); however, these studies have not quantified vegetation 
structure in detail because it is difficult to quantify using standard 
field methods. SMHM are hypothesized to rely upon taller plants as 
tidal refugia and protection from predators (Bias & Morrison, 2006; 
Smith et al., 2014; Sustaita et al., 2011), while utilizing shorter plants 
for food; therefore, although it has not been studied in depth, vege-
tation structure within their potential habitat may be a crucial factor 
in their habitat selection.

Airborne topographic light detection and ranging (lidar) has 
emerged as a valuable tool for monitoring ecological phenomena 
and examining the three-dimensional components of a landscape 
(Davies & Asner, 2014; Simonson et al., 2014). Its applications are 
wide-ranging; lidar has been employed by ecologists to assess ani-
mal species diversity (Davies & Asner, 2014; Simonson et al., 2014) 
landscape structure and health (Lim et  al.,  2003; Richardson & 
Moskal, 2011), and the habitat selection of wildlife. However, use of 
lidar in habitat selection studies has been primarily limited to avian 
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F I G U R E  1 An ear-tagged salt marsh harvest mouse 
(Reithrodontomys raviventris) climbing through pickleweed (Salicornia 
pacifica) habitat (photo: Marisa Ishimatsu).
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species in forest canopy (Goetz et  al.,  2010; Hagar et  al.,  2020; 
Vierling et  al.,  2008) and forest mammals (Ewald et  al.,  2014; 
Jaime-González et  al.,  2017). While lidar has been particularly 
valuable for studying the habitat selection of species for which 
there is large variation in the vegetation height structure, the tool 
has rarely been used in wetland ecosystems that have a relatively 
limited range of ground and vegetation heights (Koma et al., 2020). 
Also, it has been rarely used to examine the habitat selection of 
small mammals (Jaime-González et al., 2017). Prior to widespread 
availability of lidar, measurements of vegetation structure were 
often compiled as field-based metrics collected by hand (Jaime-
González et al., 2017; Koma et al., 2020). These measurements can 
be somewhat coarse or subjective and collecting the data may be 
costly and time-consuming (Freeman et al., 2022; Jaime-González 
et al., 2017; Vierling et al., 2008). Therefore, lidar may allow users 
to quantify vegetation structure in habitats at a much finer scale 
while covering a much broader extent (Hagar et al., 2020; Vierling 
et al., 2008).

This study aimed to examine the characteristics of vegetation 
structure that may provide nuanced insight into the habitat selection 
of SMHM. We also took advantage of the opportunity to evaluate 
the ability of lidar to assess habitat selection in a coastal wetland 
ecosystem, because SMHM likely rely on a three-dimensional land-
scape for many crucial ecological functions (Bias & Morrison, 2006; 
Smith et al., 2014). We used data compiled from small mammal field 
surveys conducted throughout Suisun Marsh in conjunction with a 
suite of lidar-derived covariates to determine the characteristics of 
preferred SMHM habitat. Because habitat selection is often made at 
different spatial scales (Guyot et al., 2017; Jedlikowski et al., 2016; 
Johnson, 1980; Mayor et  al.,  2009), we examined the relative im-
portance of structural and non-structural characteristics of the 
wetland in predicting SMHM habitat at three spatial scales. We 
hypothesized that SMHM would preferentially select habitats with 
vegetation structure characteristics that provide access to refugia 

and food sources and that lidar-derived covariates would improve 
understanding of their habitat preferences over traditional habitat 
selection models.

2  |  METHODS

2.1  |  Study site

We examined the habitat selection of SMHM in Suisun Marsh in the 
San Francisco Estuary in northern California, USA. We considered 
habitat selection as an individual's use of certain areas in the ecosys-
tem proportionately more than their availability (Mayor et al., 2009). 
Suisun Marsh (38°08′28.1″ N, 122°00′43.6″ W) is a 46,950-ha re-
gion divided by a mix of public, private, and nonprofit landowners. 
The wetlands are either seasonal managed wetlands surrounded by 
levees with water infrastructure (flood and drain gates) controlling 
the water levels primarily for waterfowl hunting, or tidal wetlands 
open to the influence of the mixed semidiurnal daily tides resulting in 
twice-daily high and low tidal inundation (Figure 2). Additional non-
wetland, upland areas are interspersed throughout the marsh and 
consist of grassland and pasture. These upland areas are often found 
adjacent to wetlands.

Many characteristics of Suisun Marsh are unlike any other por-
tion of the SMHM geographic range (USFWS, 2013). The mosaic of 
wetlands and habitat types in Suisun Marsh, each with varying water 
management type (actively managed and tidal) and plant communi-
ties, provides a diversity of unique habitat patches that SMHM may 
select. In addition, the brackish water of Suisun Marsh promotes 
greater vegetation diversity than other portions of the SMHM geo-
graphic range (Jones et al., 2021). Most wetlands in the San Francisco 
Estuary outside Suisun Marsh where SMHM are found are oligoha-
line marshes and primarily composed of pickleweed (Salicornia paci-
fica; Padgett-Flohr & Isakson, 2003). Therefore, it is likely that the 

F I G U R E  2 (a) A small mammal trap 
placed in the field, (b) an upland area 
dominated by grassland (photo: San 
Francisco Bay National Estuarine Research 
Reserve), (c) a tidal wetland subjected to 
the influence of semidiurnal tides (photo: 
Westervelt Ecological Services), (d) a 
managed wetland surrounded by levees 
on which water levels are controlled.
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habitat selection of SMHM in Suisun Marsh differs from those in 
other parts of the San Francisco Estuary.

2.2  |  Trapping surveys

We compiled data from small mammal surveys that were conducted 
at trapping grids on 15 sites throughout Suisun Marsh (Figure  3). 
SMHM were trapped at 11 managed wetlands, 3 tidal wetlands, and 
1 upland area. Trapping grid arrays varied from 49 to 100 traps, and 
surveys were conducted for either three or four trap nights (Table 1). 
An accessible area was used to tether the grid, after which uniform 
spacing was used to place traps in a configuration that best repre-
sented the broader landscape. While the number of traps and sur-
vey duration varied across sites depending on the size and shape 
of grids, the methodology employed at each remained consistent. 
Traps were located 10–15 m apart and were sampled in the early 
morning. Each trap location was measured using a Garmin Oregon 
650 t or a Garmin eTrex 10 handheld GPS, which have a maximum 
accuracy of 3–5 m in ideal conditions. Due to the lack of tree cover in 
Suisun Marsh and because locations were averages taken by a sta-
tionary user, we considered our GPS locations to be accurate within 
this range. All surveys were conducted during the summer (June and 
July) of the year in which we obtained the lidar image of the region. 
SMHM were identified in the field by trained wildlife biologists with 
expertise in SMHM identification. A regression model (Sustaita 
et al., 2018) was applied using tail length, body length, and tail di-
ameter which assisted in confirming species identification along 
with surveyor expertise, as SMHM can be difficult to distinguish 
from the congeneric western harvest mouse (R. megalotis; Statham 
et al., 2016; Statham et al., 2021). All SMHM were captured in 2018 
and handled by permitted biologists operating under incidental 

take permit TE-020548-14 (USGS), scientific collecting permit SC-
005749 (USGS), and Institutional Animal Care & Use Committee 
(IACUC) permits #19806 and #21118 (UCD). All SMHM surveys 
used in this study were conducted under the cooperative agreement 
between California Department of Fish and Wildlife (CDFW) and 
the U.S. Fish and Wildlife Service (USFWS).

2.3  |  Lidar data

Airborne topographic lidar data collection was contracted by the 
California Department of Water Resources (DWR) to Towill, Inc. 
(Concord, CA, USA). These discrete return lidar data were collected 
over a two-day period in September 2018 with a Teledyne/Optech 
Orion 300 sensor. The survey achieved an average density of eight 
total lidar returns per m2 with an accuracy of 7-cm root mean squared 
error (RMSE); these parameters classify the collection as QL1 data. 
The lidar strips were then processed and calibrated using Optech's 
LMS software suite and data from seven Continuously Operating 
Reference Stations (CORS) located throughout the Suisun Marsh 
area.

2.4  |  Habitat structure variables

We derived a set of variables which describe vegetation struc-
ture (Table 2) from the raw lidar point cloud. These variables were 
chosen because of their previous use in assessing the vegetation 
complexity of rodent habitat (Jaime-González et al., 2017) or to ex-
amine ecosystem structure more generally (Bakx et al., 2019; Koma 
et al., 2020). Many of the variables are related to the Z-axis of a lidar 
return (“Z”; vegetation height) or the percentage of vegetation height 

F I G U R E  3 Location of the 15 small 
mammal surveys conducted in Suisun 
Marsh used in this study. Red stars 
indicate the survey was conducted in a 
managed wetland (surrounded by levees 
with water infrastructure controlling the 
water levels), blue stars in a tidal wetland 
(open to the influence of the mixed 
semidiurnal daily tides resulting in twice-
daily high and low tides), and yellow stars 
in an upland area (grassland areas adjacent 
to the wetlands). Suisun Marsh is located 
within the white square in the inset map 
of California on the right. SMHM, salt 
marsh harvest mouse.
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distribution (“P”). For each trapping grid, the relevant lidar file(s) were 
isolated, merged into a single file, and clipped to the grid using the 
LAStools software suite (Isenburg, 2014) in ArcGIS Pro (ESRI, 2019; 
Figure  4). A 3-m buffer was established around the perimeter of 

each trapping grid to ensure edge data were properly captured. In R 
Studio Version 1.2.5033 (R Core Team, 2021; R Studio Team, 2021), 
using the package “lidR” (Roussel et al., 2020; Roussel & Auty, 2022), 
the clipped lidar file was normalized to set all points delineating the 

Site name
Grid area 
(ha)

Habitat 
type Traps Orientation

Survey 
duration (days)

Area 9 1.64 Tidal 100 Fit to wetland 4

Arnold A 0.81 Managed 50 5 × 10 4

Arnold B 0.81 Managed 50 5 × 10 4

Crescent Unit 1.82 Managed 100 10 × 10 4

Field 14P 0.81 Uplanda 49 7 × 7 3

Goodyear Managed 1.22 Managed 60 6 × 10 3

Goodyear Tidal 1.22 Tidal 60 6 × 10 3

Hill Slough 4 0.81 Managed 50 5 × 10 4

Hill Slough 4A 0.81 Managed 50 5 × 10 4

Joice Managed 1.22 Managed 60 6 × 10 3

Joice Tidal 1.22 Tidal 60 6 × 10 3

Pond 1 0.81 Managed 49 5 × 10b 3

Pond 2 0.81 Managed 49 5 × 10b 3

Pond 15 0.81 Managed 49 7 × 7 3

Pond 20 0.81 Managed 49 7 × 7 3

Note: Habitat type was managed wetland (surrounded by levees with water infrastructure 
controlling the water levels), tidal wetland (open to the influence of the mixed semidiurnal daily 
tides resulting in twice-daily high and low tides), or upland (grassland areas adjacent to the 
wetlands).
aUpland field surrounded by wetlands.
bOne row of nine traps.

TA B L E  1 Metadata for the 15 small 
mammal surveys used in this study.

TA B L E  2 Lidar-derived, three-dimensional habitat structure variables.

Metric Definition Description

Zmeana,b Mean vegetation height Mean vegetation height

Zmaxb Maximum vegetation height Maximum vegetation height

ZSDa,b,c Standard deviation of vegetation height Describes the complexity of the surrounding vegetation

Zskewb Skewness of vegetation height A skew value closer to 0 suggests a normal distribution of vegetation height

Zkurtb Kurtosis of vegetation height A high kurtosis can suggest outliers in the distribution of vegetation height

PZ>Zmeana,c Percentage of returns above mean vegetation 
height

A lower percentage implies the existence of outlier vegetation above mean 
height

PZ>Xa,c Percentage of returns above X m Describes the percentage of vegetation taller than X (0.25, 0.50, 0.75) m

ZQ5 to ZQ95c Q quantile of height distribution The vegetation height at each 5% quantile (ZQ5, ZQ10, etc.). ZQ100 (100%) is 
equivalent to the maximum height; ZQ50 is equivalent to the median

ZC1 to ZC9c Cumulative percentage of return of the Nth bin Divides the height distribution into 10 equal parts, each part (ZPC1, ZPC2, 
etc.) describing the percent of observations found below it

%Bareb,c Percentage of returns classified as “ground” Describes the percentage of lidar returns classified as bare ground (no 
vegetation)

Note: Variables were derived from a point cloud that had been normalized (ground points set to zero) using a modified digital elevation model 
(Buffington et al., 2019). “Z” refers to z-axis (vegetation height), “P” refers to percentage, “Q” refers to quantile, and “C” refers to cumulative. These 
variables were derived at the microhabitat (25 m2), mesohabitat (2025 m2), and macrohabitat (trapping grid size, ~10,000 m2) scale.
aJaime-González et al. (2017).
bBakx et al. (2019).
cKoma et al. (2020).
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ground surface to have a height of 0 m. We used a digital elevation 
model (DEM) corrected with a modification of the Lidar Elevation 
Adjustment with NDVI (LEAN) technique (Buffington et  al.,  2019) 
to normalize the point cloud, rather than the raw lidar data itself. 
Surface elevation heights as estimated by this DEM were subtracted 
from the “Z” value of the raw lidar data, resulting in a measurement 
of vegetation height. Because SMHM inhabit areas characterized 
by relatively short vegetation, and because aerial lidar may not 
penetrate the dense vegetation canopy of tidal wetlands, the DEM 
was corrected to ensure the accuracy of our normalized lidar data 
(Buffington et al., 2016). The typical vertical accuracy of aerial lidar is 
15–25 cm, RMSE; the corrected DEM produced an accuracy of 7 cm, 
RMSE (Buffington et al., 2019). The suite of lidar-derived metrics was 
then extracted from the normalized lidar file (Table 2).

We examined habitat selection at three scales: microhabitat 
(trap level; 25 m2), mesohabitat (home-range level; 2025 m2; Bias & 
Morrison, 1999), and macrohabitat (trapping grid level; ~10,000 m2; 
Figure  5; Table  1). For the microhabitat scale, we selected 5 m as 
the minimum resolution possible given the accuracy of our GNSS 
receivers for a pixel size of 25 m2. All lidar points collected within 
each spatial resolution were used to calculate habitat structure 
variables. Habitat selection is often made at various spatial scales 
(Guyot et al., 2017; Jedlikowski et al., 2016; Johnson, 1980), and the 
fine-scale resolution at which lidar is collected allows for flexibility 
in analyses. Therefore, our assessment of SMHM habitat selection at 
these three scales allowed us to test the efficacy of lidar in assessing 
important habitat and structural characteristics at different levels.

2.5  |  BASE covariates

Some standard habitat variables have been shown to help char-
acterize habitats preferred by SMHM in earlier studies. These 

variables include ground surface elevation (“Elev”), distance to 
nearest levee (“LDist”), distance to nearest urban area (“UDist”), 
and dominant vegetation species (“Veg”; Bias & Morrison,  2006; 
Basson,  2009; Tsao et  al.,  2009; Sustaita et  al.,  2011; Marcot 
et al., 2020). Ground surface elevation was extracted from the cor-
rected DEM (Buffington et  al.,  2019), and we used the Euclidean 
Distance tool in ArcGIS Pro to create a 3-m raster describing the 
distance of every pixel to the nearest levee (Unpubl. data, SRCD) or 
urban area. These raster files were reprojected to match the coordi-
nate system of the raw lidar data (NAD83 California Zone 2, in feet; 
EPSG:2226). Lastly, we included the dominant plant species from 
vegetation data collected in the field during each of the surveys 
used in this study. This variable was recorded in the field during the 
duration of the trapping survey and identifies the single most prev-
alent plant species within five meters surrounding each trap (see 
Smith et al., 2020). Previous research on SMHM habitat selection in 
other parts of the San Francisco Estuary has included similar covari-
ates such as distance to nearest permanent water and distance to 
nearest road (Marcot et al., 2020). However, because most “roads” 
in Suisun Marsh are on levees, which border most permanent water 
sources, we expected our distance to levee and urban area covari-
ates to be sufficient.

The use of these variables may dominate the results of models 
seeking to explain more subtle elements of habitat selection in-
cluding habitat structure. To look more closely at the selection for 
specific elements of habitat structure, we followed the methods 
described in Žydelis et al. (2006) and forced the four standard vari-
ables into all our multivariate models grouped as a single “BASE” 
covariate (Kemp et al., 2023; Morin et  al., 2020). By condensing 
these four covariates into a single group, we reduced the number 
of possible candidate models and allowed for a focused assess-
ment of the relative importance of lidar-derived structure covari-
ates (Morin et al., 2020).

F I G U R E  4 Example lidar point cloud at 
the Joice Managed survey grid in Suisun 
Marsh. Top image shows the birds-eye 
view of the grid as a 1 m2 raster and the 
bottom view shows the point cloud from 
the side. Vegetation heights are displayed 
in colors, with blue/green representing 
shorter vegetation and warmer colors 
representing taller vegetation. Maximum 
vegetation height within this grid was 
3.07 m. For better visualization, vegetation 
heights in the bottom view have been 
scaled 10×.
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2.6  |  Statistical models

Before model creation, and at each spatial scale, we tested for cor-
relation among covariates by calculating Pearson's coefficients in R. 
The BASE covariate was separated, and each covariate was assessed 
individually for this test. Covariate combinations with coefficients 
>0.70 were examined, and the variable hypothesized to be less rel-
evant to SMHM habitat selection was removed (Taylor, 1990). We 
then standardized all continuous covariates with z-score normaliza-
tion to set the mean of each to 0 and the standard deviation to 1 (De 
Knegt et al., 2010). This process ensured that variable coefficients 
produced by our models would be directly comparable.

To examine the habitat selection of SMHM, we fit generalized 
linear models (GLMs) in R. To account for differences in both the 
survey duration and number of traps in a grid, we used capture effi-
ciency (CE) as our response variable. CE can be defined as:

Our selection of “unique” captures ensured that a recapture of 
an individual mouse was not included in our models multiple times. 
In instances where an individual was captured more than once, the 
first capture occasion was used in analyses. We compared candi-
date models with the Akaike Information Criterion (AIC). Models 

with an AIC difference >2.0 were considered statistically inequiv-
alent with lower AICs indicating greater parsimony (Anderson & 
Burnham, 2004; Harrison et al., 2018). For models with comparable 
AIC values (ΔAIC <2.0), the model with the fewest parameters was 
selected. As additional metrics of model performance, we calculated 
R-squared values and Akaike weights for each candidate model (Lok 
et al., 2012) and used the sum of Akaike weights to assess the relative 
importance of individual model covariates (Giam & Olden, 2015). A 
null model including no predictor covariates was included at each 
spatial scale; however, this null model was never selected and there-
fore excluded from our results.

2.6.1  | Microhabitat models

At the microhabitat scale, we generated models for all traps as well 
as comparing those in tidal wetlands, managed wetlands, and up-
land separately. Because each habitat type is subjected to varying 
levels of inundation and water control, we expected the vegetation 
requirements (and thus habitat selection) of SMHM to differ within 
each. We generated models with the BASE covariate and habitat 
structure variables separately, and the BASE and structure covari-
ates in a single model. We then used backward stepwise regression 
(Zhang, 2016) to identify the most parsimonious model that included 

(1)CE = 100

(

Total number of uniquemice captured

Number of traps × Number of sample days

)

F I G U R E  5 Visualization of the three spatial scales at which the habitat selection of salt marsh harvest mice (Reithrodontomys raviventris) 
was analyzed at the Crescent Unit trapping grid. The three spatial scales were (a) microhabitat (trap level; blue squares; 25 m2), (b) 
mesohabitat (home range level; yellow squares; 2025 m2), and (c) macrohabitat (trapping grid level; black outline; size varies by grid). The 
location of small mammal traps is represented by the black dots.
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both BASE and habitat structure covariates. Nonsignificant terms 
were then iteratively removed from the full model until the most 
parsimonious model was identified.

2.6.2  | Mesohabitat models

Previous research has estimated SMHM home-range sizes in salt 
marshes of San Pablo Bay immediately west of Suisun Marsh to be 
2000 m2 (0.2 ha) in size (Bias & Morrison, 1999), and we used this 
home-range size to generate potential SMHM home ranges in each 
trapping grid. Applying this home-range size, we created represent-
ative 45 × 45 m home range polygons (2025 m2) and located them 
in the corners and center of each trapping grid. We calculated an 
average for each habitat structure variable and the BASE covariate 
within each home range. All traps within a home range were used 
to derive an estimate of CE, and these resulted in 3–5 replicates 
depending on the shape of the grid. Some traps were resampled 
more than once in 11 of the grids, but 75% of the total were only 
sampled once. However, we felt the resampling with replacement 
was justified for some grids for representation of average habitat 
structure variables, the BASE covariate, and CE within the home 
ranges (Fieberg et al., 2020). As with our microhabitat models, we 
generated models with only the BASE covariate, only habitat struc-
ture variables, and the BASE and structure covariates combined. 
We determined the most parsimonious BASE and structure model 
with backward stepwise regression. We also included habitat type 
(tidal wetland, managed wetland, upland) as a categorical covariate.

2.6.3  | Macrohabitat models

We ran univariate models on each non-correlated covariate. BASE 
covariates were separated and assessed individually at this spatial 
scale. Habitat structure and BASE covariates were averaged within 
each grid. Habitat type was included as a categorical covariate. 
To reconcile the small sample size, we used corrected AIC (AICc; 
Cavanaugh, 1997) to compare univariate models.

3  |  RESULTS

3.1  |  Summary statistics of SMHM surveys

The number of unique SMHM captured at a survey site ranged from 
0 to 60, with an average of 19 (±16 SD). Six unique SMHM were 
captured in the one upland site, 70 across three tidal sites, and 210 
across 11 managed sites. CE was highest in Field 15 (managed wet-
land; 26.53), lowest in Arnold A and Arnold B (managed wetlands, 
0.00), and averaged 9.4 (±6.94). CE was highest in managed wetlands 
(9.78), followed by tidal wetlands (9.21) then upland area (4.08).

Mean vegetation height was highest in the Joice Tidal survey 
site (0.52 m), lowest in Hill Slough 4 (0.01 m), and averaged 0.23 m 
(±0.14). Maximum vegetation height was highest in Joice Tidal 
(3.17 m), lowest in Crescent Unit (0.58 m), and averaged 1.60 m 
(±0.84). Hill Slough 4 had the highest percentage of bare ground 
(75.68%) and Joice Tidal the lowest (28.87%). Bare ground percent 
averaged 51.37% across all grids (±12.23).

At traps at which SMHM were captured, maximum vegetation 
height averaged 0.57 m (±0.46), mean vegetation height aver-
aged 0.25 m (±0.24), and percent bare ground averaged 51.76% 
(±21.22). At traps where no mice were captured, maximum vege-
tation height averaged 0.53 m (±0.40), mean vegetation height av-
eraged 0.23 m (±0.20), and percent bare ground averaged 54.56% 
(±21.90).

3.2  |  Microhabitat models

Combining traps from all habitat types into one model reduced 
its predictive power, with the best model for all traps explaining 
just 11% of the variation in the data (Table 3). In comparison, the 
best model for tidal wetland traps explained 23% of variation, 15% 
for managed wetland traps, and 32% for upland traps. Based on 
AIC values, models for both wetland types (tidal wetland, managed 
wetland) significantly improved by combining the BASE covariate 
and habitat structure variables (Table 3). For our upland site, the 
model including only habitat structure variables was statistically 
comparable with our best model combining BASE and structure 
covariates.

Across all traps, SMHM captures were significantly associated 
with a higher Zmax (p = .02), lower PZ > 0.25 (p = .01), ZQ5 (p < .01), 
and ZPC5 (p < .01), as well as saltmarsh aster (Symphyotrichum sub-
ulatum; p = .02) and baltic rush (Juncus balticus; p = .04) dominance 
(Table 4). While not statistically significant, %Bare (p = .06) and pick-
leweed dominance (p = .07) were strongly associated with SMHM 
captures.

In tidal wetlands, SMHM were significantly associated with traps 
with a higher Zmax (p = .01; Figure 6) and ZPC9 (p = .01) and lower 
ZPC1 (p = .01) and ZPC6 (p = .03; Table 4). SMHM were also found 
closer to levees (p = .02) and urban areas (p = .04). SMHM captures 
tended towards microhabitats with a greater proportion of bare 
ground (p = .06) and where common tule (Schoenoplectus acutus; 
p = .13) and cattail (Typha spp.; p = .13) were the dominant plant spe-
cies, although not significantly.

In managed wetlands, SMHM were associated with traps with 
a significantly lower PZ > 0.25 (p = .02), ZPC5 (p < .01), and %Bare 
(p < .01; Table 4; Figure 6). SMHM also preferentially selected traps 
further from levees (p < .01). PZ > Zmean (p = .03) was the only sta-
tistically significant covariate in our best upland area model, with 
SMHM preferentially found in areas with a greater proportion of 
vegetation above the mean vegetation height.
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3.3  |  Mesohabitat models

Zmean, Zskew, ZQ5, ZPC2, ZPC5, ZPC9, and %Bare were found to 
be uncorrelated habitat structure variables and were included in 
models alongside the BASE covariate. Our full model produced an 
AIC of 404.9 (R2 = .55). The BASE-only model yielded an AIC of 414.0 
(R2 = .28); the structure-only model 414.2 (R2 = .22). The most par-
simonious model combining BASE and habitat structure covariates 
significantly improved the results (AIC = 397.0, R2 = .52). This best 
model included %Bare, PZ > Zmean, Zmean, ZPC2, and Zskew, in ad-
dition to the BASE covariate.

Mouse captures at the mesohabitat scale were significantly and 
negatively associated with %Bare (p = .01), ZPC2 (p = .01), UDist 
(p = .05), and multiple vegetation types (Table  5). SMHM captures 
were significantly (p = .04) and positively associated with areas 
where pickleweed was the dominant vegetation species. Mouse 
captures were also negatively related to Zmean, but not significantly 
(p = .09; Table 5). Based on the sum of Akaike weights, Veg (p = .97), 
ZPC2 (p = .94), and %Bare (p = .91) were the most important individ-
ual covariates; Elev (p = .38), PZ > Zmean (p = .58), and Zskew (p = .59) 
were the least.

3.4  |  Macrohabitat models

We found Zmean, Zskew, PZ > Zmean, ZPC2, ZPC5, ZPC9, and 
%Bare to be uncorrelated habitat structure covariates and therefore 

were included in models at this spatial scale. None of our univariate 
models produced statistically significant results. The model which 
included habitat type yielded the highest R2 value (.12). PZ > Zmean 
(0.11) and ZPC2 (0.12) were the most important variables based on 
the sum of Akaike weights.

4  |  DISCUSSION

4.1  |  Lidar efficacy and value in wetlands

Airborne topographic lidar is a well-established tool for research-
ing the habitat selection of wildlife, but its use has been primar-
ily reserved for avian species or forest-dwelling animals (Ewald 
et al., 2014; Goetz et al., 2010; Hagar et al., 2020; Jaime-González 
et  al.,  2017; Vierling et  al.,  2008). Few studies have attempted to 
employ lidar to assess structural characteristics of wetlands or 
ecosystems with a focus on habitat selection. Our results demon-
strate that even for species that reside in ecosystems without a 
wide range of vegetation heights, lidar can reveal nuances in the 
structural complexity of the habitats. This is particularly important 
when wetland restoration or enhancement projects are done in the 
estuary. Widespread tidal wetland restoration is ongoing in the San 
Francisco Estuary (Callaway et  al.,  2011) and planned throughout 
Suisun Marsh (US DOI, 2013) with over 2000 ha under considera-
tion (Goals Project, 1999). This restoration is planned to benefit na-
tive fish (Brown,  2003), California Ridgway's Rail (Rallus obsoletus 

TA B L E  3 Comparison of candidate models at the trap-level (25 m2; “microhabitat”) spatial scale.

Ecosystem type Model AIC ΔAIC R2
Akaike 
weight

All Full 7869.7 3.4 .11 0.15

BASE only 7881.5 15.2 .08 0.00

Habitat Structure only 7909.6 43.3 .03 0.00

Best (BASE + Zmax + PZ > 0.25 + ZQ5 + ZPC5 + ZPC9 + %Bare) 7866.3 0 .11 0.85

Tidal Wetlands Full 1976.4 7.1 .24 0.03

BASE only 1973.9 4.6 .17 0.09

Habitat Structure only 2000.8 31.5 .06 0.00

Best (BASE + Zmax + ZQ5 + ZPC1 + ZPC6 + ZPC9 + %Bare) 1969.3 0 .23 0.88

Managed Wetlands Full 5454.1 6.0 .15 0.05

BASE only 5471.7 23.6 .10 0.00

Habitat Structure only 5484.8 36.7 .06 0.00

Best (BASE + %Bare + Zskew + ZPC1 + ZPC4) 5448.1 0 .15 0.95

Upland Areas Full 417.9 4.2 .38 0.06

BASE only 417.2 3.5 .15 0.08

Habitat Structure only 413.7 0 .30 0.47

Best (BASE + PZ > Zmean + ZPC1 + ZPC8 + ZQ5) 414.0 0.3 .32 0.40

Note: We ran models with all uncorrelated covariates (“full”), just the BASE covariate (“BASE only”), just habitat structure variables (“Habitat 
Structure only”), and with the most parsimonious combination of covariates (“Best”). The BASE covariate includes ground surface elevation, distance 
to nearest levee, distance to nearest urban area, and dominant vegetation species. For each habitat type, the covariates included in the best model 
are listed in parentheses. As metrics of model performance and/or model comparison, we found AIC, R2, and Akaike weights. A null model was run 
for each analysis but never selected and was excluded from the results.
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TA B L E  4 Outputs for the most parsimonious models combining the BASE covariate and habitat structure variables at the microhabitat 
scale (trap-level; 25 m2).

Variable Estimate SE t-value p-value w(i)

All traps (R2 = .11)

Intercept 2.17 9.28 0.23 .82 NA

Zmax 3.32 1.39 2.38 .02* 0.83

PZ > 0.25 −2.64 1.01 −2.62 .01* 0.87

ZQ5 −3.42 1.19 −2.88 <.01* 0.93

ZPC5 −4.18 1.14 −3.67 <.01* 0.97

ZPC9 1.29 0.87 1.48 .14 0.48

%Bare −2.03 1.09 −1.88 .06 0.69

Elev −1.02 1.23 −0.83 .41 0.30

LDist 1.85 0.94 1.97 .05* 0.60

UDist −0.76 1.10 −0.69 .49 0.31

Symphyotrichum subulatum 26.80 11.83 2.27 .02* 1.00

Atriplex prostrata 15.82 10.78 1.47 .14 1.00

Bare Ground 10.04 10.05 1.00 .32 1.00

Bromus diandrus 1.67 11.80 0.14 .89 1.00

Distichlis spicata 4.14 9.39 0.44 .66 1.00

Frankenia salina 10.50 9.93 1.06 .29 1.00

Juncus balticus 19.96 9.88 2.02 .04* 1.00

Phragmites australis 9.69 10.58 0.92 .36 1.00

Salicornia pacifica 16.76 9.33 1.80 .07 1.00

Schoenoplectus acutus 9.15 11.78 0.78 .44 1.00

Schoenoplectus americanus 10.17 9.72 1.05 .30 1.00

Sesuvium verrucosum 0.20 12.12 0.02 .99 1.00

Typha spp. −2.27 11.60 −0.20 .85 1.00

Xanthium strumarium 2.41 13.84 0.17 .86 1.00

Tidal Wetlands (R2 = .24)

Intercept 23.76 8.13 2.92 <.01* NA

Zmax 8.78 3.11 2.83 .01* 0.65

ZQ5 −4.36 3.06 −1.43 .15 0.36

ZPC1 −4.75 1.79 −2.65 .01* 0.73

ZPC6 −5.66 2.67 −2.12 .03* 0.45

ZPC9 5.06 1.92 2.63 .01* 0.72

%Bare 4.31 2.26 1.91 .06 0.41

Elev −1.79 1.57 −0.75 .45 0.35

LDist −5.13 2.24 −2.29 .02* 0.66

UDist −4.41 2.14 −2.06 .04* 0.67

Atriplex prostrata −31.21 22.07 −1.41 .16 0.88

Distichlis spicata −15.97 9.14 −1.75 .08 0.88

Frankenia salina −23.60 15.59 −1.51 .13 0.88

Juncus balticus 2.73 9.07 0.30 .76 0.88

Salicornia pacifica −3.17 8.55 −0.37 .71 0.88

Schoenoplectus acutus −25.11 16.34 −1.54 .13 0.88

Schoenoplectus americanus −4.98 8.77 −0.57 .57 0.88

Typha spp. −17.11 11.21 −1.52 .13 0.88
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obsoletus), and SMHM (Goals Project, 1999). Applying lidar to better 
understand habitat preferences of SMHM could assist in the design 
and implementation of wetland restoration projects that aid in the 
recovery of the species (US DOI, 2013).

At both the microhabitat and the mesohabitat scale, models 
containing only the classic BASE landscape covariates or only hab-
itat structure variables performed significantly worse than models 
that combined the two, suggesting that both the landscape covari-
ates and habitat structure variables from lidar provided important 
insights into SMHM habitat selection. Our best model at the me-
sohabitat spatial scale, incorporating both the BASE covariate and 
habitat structure variables, explained 52% of the variation in the 

data. In comparison, similar models examining the habitat selec-
tion of wood mice (Apodemus sylvaticus) in a Mediterranean high-
mountain pine forest found that their best models including both 
lidar- and field-derived covariates explained 30% of variance (Jaime-
González et  al.,  2017). At the microhabitat scale, adding habitat 
structure variables to the BASE covariate also improved our models 
significantly across habitat types. Although we only sampled a single 
upland study area, habitat structure variables improved the variance 
explained by the BASE-only model from 15% to 32%.

Lidar can provide a potentially cheaper and less labor-intensive 
alternative to field data collection while covering a larger geographic 
extent (Jaime-González et  al.,  2017). The fine-scale resolution at 

Variable Estimate SE t-value p-value w(i)

Managed Wetlands (R2 = .15)

Intercept 5.62 9.22 0.61 .54 NA

PZ > 0.25 −3.26 1.40 −2.33 .02* 0.93

ZQ5 −2.24 1.14 −1.96 .05 0.74

ZPC2 2.05 1.40 1.47 .14 0.56

ZPC5 −3.63 1.16 −3.12 <.01* 0.94

%Bare −3.99 1.20 −3.32 <.01* 0.98

Elev −1.97 1.30 −1.51 .13 0.59

LDist 3.32 0.97 3.41 <.01* 0.99

UDist −0.57 1.42 −0.40 .69 0.32

Atriplex prostrata 12.10 10.86 1.11 .27 1.00

Bare Ground 5.52 9.97 0.55 .58 1.00

Bromus diandrus −4.33 11.69 −0.37 .71 1.00

Distichlis spicata 1.77 9.37 0.19 .85 1.00

Frankenia salina 5.38 10.50 0.51 .61 1.00

Juncus balticus 9.34 10.36 0.90 .37 1.00

Phragmites australis 7.39 10.45 0.71 .48 1.00

Salicornia pacifica 12.32 9.28 1.33 .18 1.00

Schoenoplectus acutus 17.60 11.78 1.49 .14 1.00

Schoenoplectus americanus 2.08 10.90 0.19 .85 1.00

Sesuvium verrucosum −4.00 11.96 −0.33 .74 1.00

Xanthium strumarium −0.29 13.62 −0.02 .98 1.00

Upland Areas (R2 = .32)

Intercept −1.19 5.32 −0.22 .82 NA

PZ > Zmean 6.23 2.77 2.25 .03* 0.78

ZPC1 5.63 3.46 1.63 .11 0.38

ZPC8 −4.45 2.43 −1.83 .07 0.60

ZQ5 4.97 2.93 1.70 .10 0.50

Elev 1.85 2.55 0.73 .47 0.31

UDist −0.66 5.09 −0.13 .90 0.35

LDist −1.65 5.46 −0.30 .76 0.45

Frankenia salina 13.79 6.92 1.99 .05 0.52

Salicornia pacifica 7.17 6.84 1.05 .30 0.52

Note: Models were generated for all traps combined and for each habitat type (managed wetland, tidal wetland, upland area) separately. Variables 
that were significant at the p < .05 level are marked with an asterisk.

TA B L E  4 (Continued)
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which data were collected with lidar for this study (8 points per 
m2) also presents flexibility in analysis and the opportunity to ex-
amine landscape characteristics at a variety of scales. Airborne 
topographic lidar may not penetrate dense vegetation which cre-
ates difficulties in examining features below the vegetation canopy 

(Buffington et al., 2016). Here, <1% of the point cloud captured in 
our study sites were second lidar returns suggesting that only the 
tops of vegetation were being measured. For animals such as SMHM 
which may utilize understory, thatch, and litter for cover, travel, and 
denning (Fisler, 1965; Marcot et al., 2020; Shellhammer et al., 1982), 

F I G U R E  6 Partial effects plots showing the relationship between salt marsh harvest mouse (Reithrodontomys raviventris) catch per unit 
effort (CE) and important covariates in managed wetlands (a–c; red) and tidal wetlands (d–f; blue). We show the relationship between CE and 
distance to levees (a, d; “LDist), percent bare ground (b, e; “%Bare”), and maximum vegetation height (c, f; “Zmax”). These partial effects plots 
were derived from our full models at the microhabitat scale that included all lidar habitat structure variables and BASE covariates.

Variable Estimate SE t-value p-value
Akaike 
weight

Intercept 28.96 7.2 4.02 <.01 NA

%Bare −5.24 1.77 −2.97 .01* 0.91

PZ > Zmean 2.21 1.51 1.49 .15 0.58

Zmean −3.87 2.22 −1.75 .09 0.64

ZC2 −4.66 1.69 −2.76 .01* 0.94

Zskew 1.82 1.34 1.36 .18 0.59

Elev −1.52 2.41 −0.63 .53 0.38

LDist −0.19 0.84 −0.23 .86 0.11

UDist −4.49 2.18 −2.07 .05* 0.78

Atriplex prostrata −9.87 10.61 −0.93 .36 0.97

Distichlis spicata −24.38 7.45 −3.27 <.01* 0.97

Juncus balticus −7.22 9.54 −0.76 .45 0.97

Phragmites australis −6.96 8.85 −0.79 .44 0.97

Salicornia pacifica 15.78 7.61 −2.07 .04* 0.97

Schoenoplectus acutus −13.88 10.41 −1.33 .19 0.97

Schoenoplectus 
americanus

−20.47 7.72 −2.65 .01* 0.97

Note: Variables that were significant at the p < .05 level are marked with an asterisk.

TA B L E  5 Model outputs for the most 
parsimonious model which included both 
habitat structure variables and the BASE 
covariates at the mesohabitat (2025 m2) 
spatial scale.
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the inability to penetrate dense vegetation hinders the ability to fully 
examine habitat selection. Terrestrial lidar may reconcile this short-
coming and has been shown to accurately characterize litter in pre-
vious research (Loudermilk et al., 2009; Rowell & Seielstad, 2012). 
Similarly, lidar shot by unmanned aerial systems (UAS) can collect 
hundreds of returns per square meter (Pricope et al., 2022) and pro-
vide more accurate vegetative detail in wetland ecosystems.

4.2  |  Habitat selection of SMHM

Our analysis of lidar data revealed important characteristics of veg-
etation structure in assessing the habitat selection of SMHM at the 
microhabitat scale. Our results provide evidence to support the 
importance of vegetation heterogeneity in SMHM habitat. Across 
all sites, and in managed wetlands in particular, SMHM captures at 
the microhabitat scale were positively correlated with the standard 
deviation of vegetation height. No other habitat structure variables 
were significant in managed wetland sites, suggesting that SMHM 
are selecting microhabitats with a higher variance in vegetation 
heights without showing explicit preference for shorter or taller 
vegetation. Earlier research has hypothesized that SMHM utilize 
taller vegetation for both refugia from inundation at higher tides 
(tidal wetlands) or seasonal flooding (managed wetlands) and for 
cover from predators (Fisler, 1965; Marcot et al., 2020; Shellhammer 
et al., 1982; Smith et al., 2018). They rely on shorter vegetation such 
as grasses and pickleweed, as well as over 40 other plant and inver-
tebrate species (Aylward et al., 2022; Smith & Kelt, 2019) for food. 
Microhabitats represent short-term landscape use (Morris,  1987), 
but variation in heights of the vegetation may provide value for 
SMHM over longer periods.

In tidal wetlands, taller vegetation was the primary component of 
preferred SMHM microhabitat. SMHM selected areas with a higher 
maximum vegetation height and were associated with taller vegeta-
tion species like common tule and cattail, although that association 
was not significant. Similarly, SMHM captures were associated with 
a lower cumulative percentage in the first (ZPC1) and sixth vegeta-
tion bin (ZPC6), suggesting that a greater proportion of shorter veg-
etation within microhabitats is not preferred. Surprisingly, SMHM 
preferred areas with a higher bare ground percentage, potentially 
further highlighting the importance of refugia in their habitats. As 
tidal wetlands are subjected to daily inundation and more extreme 
flooding events, vegetation refugia may be more critical especially in 
areas with more bare ground.

In addition to taller vegetation, SMHM selected areas closer to 
levees in tidal wetland microhabitats. While levees are primarily 
found on managed wetlands, most tidal wetlands and upland areas 
in Suisun Marsh are also bordered by similar high-elevation struc-
tures. Levees, roads, and other higher-elevation areas may serve 
as refugia outside of core home ranges in the event of extreme 
flooding, while taller vegetation within the marsh plain acts as a 
consistent source of refugia habitat. While the influence of tides 
on SMHM movements is still not well known, previous research 

has suggested that SMHM are tolerant of levees and roads near 
their habitats (Marcot et  al.,  2020), may regularly cross levees 
(Bias & Morrison,  1999), or even use levees to avoid flooded 
areas (Hulst et  al.,  2001). Species that use similar habitats such 
as California black rails (Laterallus jamaicensis coturniculus; Tsao 
et al., 2009) have been shown to rely on levees for refugia as well. 
High water has also been shown to increase the hunting activity of 
avian predators in tidal wetlands (Thorne et al., 2019), increasing 
the value of refugia for predator avoidance.

In contrast, SMHM in managed wetlands selected for microhab-
itats with a lower proportion of vegetation taller than 0.25 m and a 
lower percentage of bare ground suggesting a preference for areas 
with shorter, denser vegetation. Taller vegetation may be necessary 
for inundation refugia, but dense vegetation may provide better pro-
tection from predation (Kotler, 1984; Thompson & Gese, 2013), and 
SMHM were also found in areas farther from levees. In managed 
wetlands, where water levels do not fluctuate daily, SMHM may 
not rely on elevated levees as regularly compared to tidal wetlands, 
though there may be seasonal differences that were not examined 
in this study.

Models generated at the mesohabitat scale performed the 
strongest with our most parsimonious model explaining 52% of 
the variation in the data. These results suggest that the home-
range scale may be the most important spatial level at which 
SMHM select their habitats. SMHM preferentially selected me-
sohabitat with a lower bare ground percentage indicating that 
abundance of vegetation is an important characteristic of their 
preferred habitat. This finding aligned with success criteria for 
wetland restoration, which set the requirements for providing 
SMHM habitat and often include greater percent vegetation cover 
(USFWS,  1981, 2013). Other important structural covariates at 
the mesohabitat scale provided evidence that shorter vegetation 
comprised the majority of selected habitats. SMHM were sim-
ilarly associated with pickleweed presence which served as one 
of the most significant sources of food for the species (Aylward 
et  al.,  2022; Smith & Kelt,  2019). Our overall results suggested 
that microhabitats may offer SMHM temporary resources such 
as refugia from predation and tides, while mesohabitats offer 
abundant food to support individuals and populations in the lon-
ger term. Neither habitat structure variables nor BASE covariates 
were significant at the macrohabitat scale, and the grid scale may 
be too large to capture how individual SMHM select features in 
the landscape.

4.3  |  Future directions

Management of endangered species such as the SMHM is of great 
importance for resource managers in the San Francisco Estuary. 
With increasing threats of climate change and sea-level rise 
(Craft et al., 2008; Elmilady et al., 2019; Knowles, 2010; Thorne 
et  al.,  2018), protecting SMHM habitats has never been more 
crucial. In Suisun Marsh, climate change is projected to raise sea 
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levels, therefore lowering relative tidal wetland elevations, by 
0.15–0.61 m by the end of the century (Takekawa et  al.,  2013; 
Thorne et  al.,  2018), likely placing many SMHM habitats at risk. 
Loss of coastal wetland habitats from sea-level rise has been 
documented for other wetland species (Hunter et al., 2017; Nuse 
et al., 2015; Rosencranz et al., 2019) with wetland restoration ac-
tivities proposed as a tool to combat loss (Veloz et al., 2013). While 
SMHM are now known to inhabit both tidal and diked wetlands 
at similar densities (Shellhammer et al., 1982; Smith et al., 2020; 
Sustaita et  al.,  2011), their affinity towards both wetland types 
puts a large proportion of the population at risk under sea-level 
rise scenarios (Stralberg et al., 2011). Flooding and sea-level rise 
also are expected to increase avian predation of tidal wetland 
wildlife, further threatening the survival of species like the SMHM 
(Thorne et al., 2019). Our findings suggest that preserving higher-
elevation wetland habitat features such as levees and supporting 
a heterogeneous mixture of shorter and taller vegetation types 
will benefit SMHM populations. These findings are consistent 
with current recommendations which focus on maintaining pick-
leweed presence, access to adjacent high-marsh transition zones 
for refugia, and a mixture of short and tall vegetation species 
(USFWS, 2013). Continuing to prioritize habitats that provide the 
criteria described in this study could benefit SMHM conservation, 
especially in the face of climate change.
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