
Ecology and Evolution. 2024;14:e10894.	 		 	 | 1 of 17
https://doi.org/10.1002/ece3.10894

www.ecolevol.org

Received:	17	July	2023  | Revised:	19	December	2023  | Accepted:	12	January	2024
DOI:	10.1002/ece3.10894		

R E S E A R C H  A R T I C L E

Application of lidar to assess the habitat selection of 
an endangered small mammal in an estuarine wetland 
environment

Jason S. Hagani1  |   John Y. Takekawa1 |   Shannon M. Skalos2,3 |   Michael L. Casazza2 |   
Melissa K. Riley4 |   Sarah A. Estrella4 |   Laureen M. Barthman- Thompson5 |    
Katie R. Smith6,7 |   Kevin J. Buffington8 |   Karen M. Thorne8

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2024	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1Suisun	Resource	Conservation	District,	
Suisun	City,	California,	USA
2U.S.	Geological	Survey	Western	
Ecological	Research	Center,	Dixon,	
California,	USA
3California	Department	of	Fish	and	
Wildlife,	West	Sacramento,	California,	
USA
4California	Department	of	Fish	and	
Wildlife,	Fairfield,	California,	USA
5California	Department	of	Fish	and	
Wildlife,	Stockton,	California,	USA
6WRA,	Inc.,	San	Rafael,	California,	USA
7Department	of	Wildlife,	Fish	and	
Conservation	Biology,	UC	Davis,	Davis,	
California,	USA
8U.S.	Geological	Survey	Davis	Field	
Station,	University	of	California	Davis,	
Davis,	California,	USA

Correspondence
Jason	S.	Hagani,	Suisun	Resource	
Conservation	District,	2544	Grizzly	Island	
Road,	Suisun	City,	CA	94585,	USA.
Email:	jhagani@suisunrcd.org

Funding information
National	Fish	and	Wildlife	Foundation,	
Grant/Award	Number:	66509	and	70713

Abstract
Light	 detection	 and	 ranging	 (lidar)	 has	 emerged	 as	 a	 valuable	 tool	 for	 examining	
the	 fine-	scale	 characteristics	 of	 vegetation.	However,	 lidar	 is	 rarely	 used	 to	 exam-
ine	coastal	wetland	vegetation	or	the	habitat	selection	of	small	mammals.	Extensive	
anthropogenic	 modification	 has	 threatened	 the	 endemic	 species	 in	 the	 estuarine	
wetlands	of	the	California	coast,	such	as	the	endangered	salt	marsh	harvest	mouse	
(Reithrodontomys raviventris;	 SMHM).	A	better	understanding	of	SMHM	habitat	 se-
lection	could	help	managers	better	protect	 this	species.	We	assessed	the	ability	of	
airborne	topographic	lidar	imagery	in	measuring	the	vegetation	structure	of	SMHM	
habitats	in	a	coastal	wetland	with	a	narrow	range	of	vegetation	heights.	We	also	aimed	
to	better	understand	the	role	of	vegetation	structure	in	habitat	selection	at	different	
spatial	scales.	Habitat	selection	was	modeled	from	data	compiled	from	15	small	mam-
mal	trapping	grids	collected	in	the	highly	urbanized	San	Francisco	Estuary	in	California,	
USA.	Analyses	were	conducted	at	 three	 spatial	 scales:	microhabitat	 (25 m2),	meso-
habitat	(2025 m2),	and	macrohabitat	(~10,000 m2).	A	suite	of	structural	covariates	was	
derived	from	raw	lidar	data	to	examine	vegetation	complexity.	We	found	that	add-
ing	structural	covariates	to	conventional	habitat	selection	variables	significantly	im-
proved	our	models.	At	the	microhabitat	scale	in	managed	wetlands,	SMHM	preferred	
areas	with	denser	and	shorter	vegetation	and	selected	 for	proximity	 to	 levees	and	
taller	vegetation	in	tidal	wetlands.	At	the	mesohabitat	scale,	SMHM	were	associated	
with	a	lower	percentage	of	bare	ground	and	with	pickleweed	(Salicornia pacifica)	pres-
ence.	All	covariates	were	insignificant	at	the	macrohabitat	scale.	Our	results	suggest	
that	SMHM	preferentially	selected	microhabitats	with	access	to	tidal	refugia	and	mes-
ohabitats	with	consistent	food	sources.	Our	findings	showed	that	lidar	can	contribute	
to	improving	our	understanding	of	habitat	selection	of	wildlife	in	coastal	wetlands	and	
help	to	guide	future	conservation	of	an	endangered	species.
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1  |  INTRODUC TION

Over	the	last	few	decades,	extensive	development	and	human	activ-
ity	have	threatened	coastal	wetland	ecosystems	worldwide	(Casazza	
et	al.,	2021;	Davidson,	2014;	Li	et	al.,	2018;	Marcot	et	al.,	2020).	It	
is	estimated	 that	as	much	as	87%	of	global	 coastal	wetlands	have	
been	 lost	 due	 to	 diking,	 filling,	 and	other	 anthropogenic	 activities	
(Davidson,	2014;	 Smith	et	 al.,	2020).	Wetlands	are	 crucial	 ecosys-
tems	 for	 a	 variety	 of	 native	 plant	 and	 wildlife	 species,	 including	
halophytes,	waterfowl,	fish,	and	small	rodents	(Marcot	et	al.,	2020; 
Moyle	et	al.,	2014).	The	salt	marsh	harvest	mouse	(Reithrodontomys 
raviventris,	hereafter	SMHM;	Figure 1)	is	one	such	species	endemic	
to	the	highly	urbanized	(Nichols	et	al.,	1986)	coastal	wetlands	of	the	
San	Francisco	Estuary.	SMHM	are	fully	confined	to	coastal	wetlands	
and	directly	adjacent	habitats	(Smith	et	al.,	2018).	Habitat	loss,	deg-
radation,	 and	 fragmentation	have	 resulted	 in	 the	 listing	of	SMHM	

as	endangered	at	both	 the	state	and	 federal	 level	 (CNDDB,	2023; 
Shellhammer	 et	 al.,	 1982;	 USFWS,	 1984,	 2013;	 Whitaker	 &	
NatureServe,	2018).	The	continued	preservation	of	SMHM	habitat	
is	 therefore	 a	 priority	 for	 conservation	practitioners	 in	 the	 region	
(USFWS,	2013).	Currently,	a	substantial	proportion	of	the	remaining	
SMHM	population	resides	in	Suisun	Marsh	–	part	of	the	San	Francisco	
Estuary	and	one	of	the	largest	contiguous	brackish	marshes	in	North	
America	(Smith	et	al.,	2018;	Sustaita	et	al.,	2011).	However,	the	San	
Francisco	Estuary	has	been	particularly	vulnerable	to	anthropogenic	
influence;	<10%	of	 its	historic	tidal	wetlands	remain	today	 (Bias	&	
Morrison,	1999;	Smith	et	al.,	2014;	Williams	&	Faber,	2001).	A	com-
prehensive	understanding	of	SMHM	ecology	and	behavior	can	help	
wildlife	 practitioners	 conserve	 the	 species,	 especially	 in	 the	 face	
of	 impending	sea-	level	rise	due	to	climate	change	which	 is	already	
negatively	impacting	habitat	(Moyle	et	al.,	2014;	Smith	et	al.,	2018; 
Spencer	et	al.,	2016;	Thorne	et	al.,	2014,	2018).

Habitat	selection	is	widely	considered	to	be	an	important	aspect	
of	the	ecology	of	a	species	(Marcot	et	al.,	2020;	Mayor	et	al.,	2009; 
Morris,	2003;	Padgett-	Flohr	&	Isakson,	2003;	Vierling	et	al.,	2008).	
Elevation	and	vegetation	structure	have	been	shown	to	be	crucial	
considerations	of	habitat	selection	for	a	variety	of	species,	 includ-
ing	birds	 (Cody,	1981;	Guyot	et	al.,	2017;	 Jedlikowski	et	al.,	2016; 
Tsao	 et	 al.,	 2009),	 small	 mammals	 (Jaime-	González	 et	 al.,	 2017; 
Klinger	et	al.,	2015),	and	ungulates	(Ewald	et	al.,	2014).	Determining	
the	environmental	characteristics	which	make	some	aspects	of	the	
wetland	 landscape	more	 valuable	 than	 others	 as	 potential	 habitat	
to	 SMHM	will	 support	 its	 conservation.	 There	 have	 been	 several	
studies	on	the	movement	and	habitat	selection	of	the	SMHM	(Bias	&	
Morrison,	2006;	Shellhammer	et	al.,	1982;	Smith	et	al.,	2020;	Sustaita	
et	al.,	2011);	however,	these	studies	have	not	quantified	vegetation	
structure	in	detail	because	it	 is	difficult	to	quantify	using	standard	
field	methods.	SMHM	are	hypothesized	to	rely	upon	taller	plants	as	
tidal	refugia	and	protection	from	predators	(Bias	&	Morrison,	2006; 
Smith	et	al.,	2014;	Sustaita	et	al.,	2011),	while	utilizing	shorter	plants	
for	food;	therefore,	although	it	has	not	been	studied	in	depth,	vege-
tation	structure	within	their	potential	habitat	may	be	a	crucial	factor	
in	their	habitat	selection.

Airborne	 topographic	 light	 detection	 and	 ranging	 (lidar)	 has	
emerged	as	a	valuable	tool	 for	monitoring	ecological	phenomena	
and	examining	the	three-	dimensional	components	of	a	landscape	
(Davies	&	Asner,	2014;	Simonson	et	al.,	2014).	Its	applications	are	
wide-	ranging;	lidar	has	been	employed	by	ecologists	to	assess	ani-
mal	species	diversity	(Davies	&	Asner,	2014;	Simonson	et	al.,	2014)	
landscape	 structure	 and	 health	 (Lim	 et	 al.,	 2003;	 Richardson	 &	
Moskal,	2011),	and	the	habitat	selection	of	wildlife.	However,	use	of	
lidar	in	habitat	selection	studies	has	been	primarily	limited	to	avian	

K E Y W O R D S
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F I G U R E  1 An	ear-	tagged	salt	marsh	harvest	mouse	
(Reithrodontomys raviventris)	climbing	through	pickleweed	(Salicornia 
pacifica)	habitat	(photo:	Marisa	Ishimatsu).
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species	 in	 forest	 canopy	 (Goetz	 et	 al.,	2010;	Hagar	 et	 al.,	2020; 
Vierling	 et	 al.,	 2008)	 and	 forest	 mammals	 (Ewald	 et	 al.,	 2014; 
Jaime-	González	 et	 al.,	 2017).	 While	 lidar	 has	 been	 particularly	
valuable	 for	 studying	 the	 habitat	 selection	 of	 species	 for	 which	
there	is	large	variation	in	the	vegetation	height	structure,	the	tool	
has	rarely	been	used	in	wetland	ecosystems	that	have	a	relatively	
limited	range	of	ground	and	vegetation	heights	(Koma	et	al.,	2020).	
Also,	 it	has	been	 rarely	used	 to	examine	 the	habitat	 selection	of	
small	mammals	(Jaime-	González	et	al.,	2017).	Prior	to	widespread	
availability	 of	 lidar,	 measurements	 of	 vegetation	 structure	 were	
often	 compiled	 as	 field-	based	metrics	 collected	 by	 hand	 (Jaime-	
González	et	al.,	2017;	Koma	et	al.,	2020).	These	measurements	can	
be	somewhat	coarse	or	subjective	and	collecting	the	data	may	be	
costly	and	time-	consuming	(Freeman	et	al.,	2022;	Jaime-	González	
et	al.,	2017;	Vierling	et	al.,	2008).	Therefore,	lidar	may	allow	users	
to	quantify	vegetation	structure	in	habitats	at	a	much	finer	scale	
while	covering	a	much	broader	extent	(Hagar	et	al.,	2020;	Vierling	
et	al.,	2008).

This	 study	 aimed	 to	 examine	 the	 characteristics	 of	 vegetation	
structure	that	may	provide	nuanced	insight	into	the	habitat	selection	
of	SMHM.	We	also	took	advantage	of	the	opportunity	to	evaluate	
the	ability	of	 lidar	 to	assess	habitat	 selection	 in	a	 coastal	wetland	
ecosystem,	because	SMHM	likely	rely	on	a	three-	dimensional	land-
scape	for	many	crucial	ecological	functions	(Bias	&	Morrison,	2006; 
Smith	et	al.,	2014).	We	used	data	compiled	from	small	mammal	field	
surveys	conducted	throughout	Suisun	Marsh	in	conjunction	with	a	
suite	of	lidar-	derived	covariates	to	determine	the	characteristics	of	
preferred	SMHM	habitat.	Because	habitat	selection	is	often	made	at	
different	spatial	scales	(Guyot	et	al.,	2017;	Jedlikowski	et	al.,	2016; 
Johnson,	1980;	Mayor	 et	 al.,	2009),	we	examined	 the	 relative	 im-
portance	 of	 structural	 and	 non-	structural	 characteristics	 of	 the	
wetland	 in	 predicting	 SMHM	 habitat	 at	 three	 spatial	 scales.	 We	
hypothesized	that	SMHM	would	preferentially	select	habitats	with	
vegetation	 structure	 characteristics	 that	provide	access	 to	 refugia	

and	 food	 sources	 and	 that	 lidar-	derived	covariates	would	 improve	
understanding	of	 their	habitat	preferences	over	 traditional	habitat	
selection	models.

2  |  METHODS

2.1  |  Study site

We	examined	the	habitat	selection	of	SMHM	in	Suisun	Marsh	in	the	
San	Francisco	Estuary	 in	northern	California,	USA.	We	considered	
habitat	selection	as	an	individual's	use	of	certain	areas	in	the	ecosys-
tem	proportionately	more	than	their	availability	(Mayor	et	al.,	2009).	
Suisun	Marsh	 (38°08′28.1″	N,	122°00′43.6″	W)	 is	a	46,950-	ha	re-
gion	divided	by	a	mix	of	public,	private,	and	nonprofit	landowners.	
The	wetlands	are	either	seasonal	managed	wetlands	surrounded	by	
levees	with	water	 infrastructure	(flood	and	drain	gates)	controlling	
the	water	 levels	primarily	 for	waterfowl	hunting,	or	 tidal	wetlands	
open	to	the	influence	of	the	mixed	semidiurnal	daily	tides	resulting	in	
twice-	daily	high	and	low	tidal	inundation	(Figure 2).	Additional	non-	
wetland,	upland	areas	 are	 interspersed	 throughout	 the	marsh	and	
consist	of	grassland	and	pasture.	These	upland	areas	are	often	found	
adjacent	to	wetlands.

Many	characteristics	of	Suisun	Marsh	are	unlike	any	other	por-
tion	of	the	SMHM	geographic	range	(USFWS,	2013).	The	mosaic	of	
wetlands	and	habitat	types	in	Suisun	Marsh,	each	with	varying	water	
management	type	(actively	managed	and	tidal)	and	plant	communi-
ties,	provides	a	diversity	of	unique	habitat	patches	that	SMHM	may	
select.	 In	 addition,	 the	 brackish	water	 of	 Suisun	Marsh	 promotes	
greater	vegetation	diversity	than	other	portions	of	the	SMHM	geo-
graphic	range	(Jones	et	al.,	2021).	Most	wetlands	in	the	San	Francisco	
Estuary	outside	Suisun	Marsh	where	SMHM	are	found	are	oligoha-
line	marshes	and	primarily	composed	of	pickleweed	(Salicornia paci-
fica;	Padgett-	Flohr	&	Isakson,	2003).	Therefore,	 it	 is	 likely	that	the	

F I G U R E  2 (a)	A	small	mammal	trap	
placed	in	the	field,	(b)	an	upland	area	
dominated	by	grassland	(photo:	San	
Francisco	Bay	National	Estuarine	Research	
Reserve),	(c)	a	tidal	wetland	subjected	to	
the	influence	of	semidiurnal	tides	(photo:	
Westervelt	Ecological	Services),	(d)	a	
managed	wetland	surrounded	by	levees	
on	which	water	levels	are	controlled.
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habitat	 selection	 of	 SMHM	 in	 Suisun	Marsh	 differs	 from	 those	 in	
other	parts	of	the	San	Francisco	Estuary.

2.2  |  Trapping surveys

We	compiled	data	from	small	mammal	surveys	that	were	conducted	
at	 trapping	 grids	 on	 15	 sites	 throughout	 Suisun	Marsh	 (Figure 3).	
SMHM	were	trapped	at	11	managed	wetlands,	3	tidal	wetlands,	and	
1	upland	area.	Trapping	grid	arrays	varied	from	49	to	100	traps,	and	
surveys	were	conducted	for	either	three	or	four	trap	nights	(Table 1).	
An	accessible	area	was	used	to	tether	the	grid,	after	which	uniform	
spacing	was	used	to	place	traps	in	a	configuration	that	best	repre-
sented	the	broader	landscape.	While	the	number	of	traps	and	sur-
vey	 duration	 varied	 across	 sites	 depending	 on	 the	 size	 and	 shape	
of	 grids,	 the	methodology	employed	at	 each	 remained	 consistent.	
Traps	were	 located	 10–15 m	 apart	 and	were	 sampled	 in	 the	 early	
morning.	Each	trap	location	was	measured	using	a	Garmin	Oregon	
650 t	or	a	Garmin	eTrex	10	handheld	GPS,	which	have	a	maximum	
accuracy	of	3–5 m	in	ideal	conditions.	Due	to	the	lack	of	tree	cover	in	
Suisun	Marsh	and	because	locations	were	averages	taken	by	a	sta-
tionary	user,	we	considered	our	GPS	locations	to	be	accurate	within	
this	range.	All	surveys	were	conducted	during	the	summer	(June	and	
July)	of	the	year	in	which	we	obtained	the	lidar	image	of	the	region.	
SMHM	were	identified	in	the	field	by	trained	wildlife	biologists	with	
expertise	 in	 SMHM	 identification.	 A	 regression	 model	 (Sustaita	
et	al.,	2018)	was	applied	using	tail	 length,	body	length,	and	tail	di-
ameter	 which	 assisted	 in	 confirming	 species	 identification	 along	
with	 surveyor	 expertise,	 as	 SMHM	 can	 be	 difficult	 to	 distinguish	
from	the	congeneric	western	harvest	mouse	(R. megalotis;	Statham	
et	al.,	2016;	Statham	et	al.,	2021).	All	SMHM	were	captured	in	2018	
and	 handled	 by	 permitted	 biologists	 operating	 under	 incidental	

take	permit	TE-	020548-	14	 (USGS),	 scientific	 collecting	permit	SC-	
005749	 (USGS),	 and	 Institutional	 Animal	 Care	 &	 Use	 Committee	
(IACUC)	 permits	 #19806	 and	 #21118	 (UCD).	 All	 SMHM	 surveys	
used	in	this	study	were	conducted	under	the	cooperative	agreement	
between	California	Department	 of	 Fish	 and	Wildlife	 (CDFW)	 and	
the	U.S.	Fish	and	Wildlife	Service	(USFWS).

2.3  |  Lidar data

Airborne	 topographic	 lidar	 data	 collection	 was	 contracted	 by	 the	
California	 Department	 of	 Water	 Resources	 (DWR)	 to	 Towill,	 Inc.	
(Concord,	CA,	USA).	These	discrete	return	lidar	data	were	collected	
over	a	two-	day	period	in	September	2018	with	a	Teledyne/Optech	
Orion	300	sensor.	The	survey	achieved	an	average	density	of	eight	
total	lidar	returns	per	m2	with	an	accuracy	of	7-	cm	root	mean	squared	
error	(RMSE);	these	parameters	classify	the	collection	as	QL1	data.	
The	lidar	strips	were	then	processed	and	calibrated	using	Optech's	
LMS	 software	 suite	 and	 data	 from	 seven	Continuously	Operating	
Reference	 Stations	 (CORS)	 located	 throughout	 the	 Suisun	 Marsh	
area.

2.4  |  Habitat structure variables

We	 derived	 a	 set	 of	 variables	 which	 describe	 vegetation	 struc-
ture	 (Table 2)	 from	the	raw	lidar	point	cloud.	These	variables	were	
chosen	 because	 of	 their	 previous	 use	 in	 assessing	 the	 vegetation	
complexity	of	rodent	habitat	(Jaime-	González	et	al.,	2017)	or	to	ex-
amine	ecosystem	structure	more	generally	(Bakx	et	al.,	2019;	Koma	
et	al.,	2020).	Many	of	the	variables	are	related	to	the	Z-	axis	of	a	lidar	
return	(“Z”;	vegetation	height)	or	the	percentage	of	vegetation	height	

F I G U R E  3 Location	of	the	15	small	
mammal	surveys	conducted	in	Suisun	
Marsh	used	in	this	study.	Red	stars	
indicate	the	survey	was	conducted	in	a	
managed	wetland	(surrounded	by	levees	
with	water	infrastructure	controlling	the	
water	levels),	blue	stars	in	a	tidal	wetland	
(open	to	the	influence	of	the	mixed	
semidiurnal	daily	tides	resulting	in	twice-	
daily	high	and	low	tides),	and	yellow	stars	
in	an	upland	area	(grassland	areas	adjacent	
to	the	wetlands).	Suisun	Marsh	is	located	
within	the	white	square	in	the	inset	map	
of	California	on	the	right.	SMHM,	salt	
marsh	harvest	mouse.
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distribution	(“P”).	For	each	trapping	grid,	the	relevant	lidar	file(s)	were	
isolated,	merged	into	a	single	file,	and	clipped	to	the	grid	using	the	
LAStools	software	suite	(Isenburg,	2014)	in	ArcGIS	Pro	(ESRI,	2019; 
Figure 4).	 A	 3-	m	 buffer	 was	 established	 around	 the	 perimeter	 of	

each	trapping	grid	to	ensure	edge	data	were	properly	captured.	In	R	
Studio	Version	1.2.5033	(R	Core	Team,	2021;	R	Studio	Team,	2021),	
using	the	package	“lidR”	(Roussel	et	al.,	2020;	Roussel	&	Auty,	2022),	
the	clipped	lidar	file	was	normalized	to	set	all	points	delineating	the	

Site name
Grid area 
(ha)

Habitat 
type Traps Orientation

Survey 
duration (days)

Area	9 1.64 Tidal 100 Fit	to	wetland 4

Arnold	A 0.81 Managed 50 5 × 10 4

Arnold	B 0.81 Managed 50 5 × 10 4

Crescent	Unit 1.82 Managed 100 10 × 10 4

Field	14P 0.81 Uplanda 49 7 × 7 3

Goodyear	Managed 1.22 Managed 60 6 × 10 3

Goodyear	Tidal 1.22 Tidal 60 6 × 10 3

Hill	Slough	4 0.81 Managed 50 5 × 10 4

Hill	Slough	4A 0.81 Managed 50 5 × 10 4

Joice	Managed 1.22 Managed 60 6 × 10 3

Joice	Tidal 1.22 Tidal 60 6 × 10 3

Pond	1 0.81 Managed 49 5 × 10b 3

Pond	2 0.81 Managed 49 5 × 10b 3

Pond	15 0.81 Managed 49 7 × 7 3

Pond	20 0.81 Managed 49 7 × 7 3

Note:	Habitat	type	was	managed	wetland	(surrounded	by	levees	with	water	infrastructure	
controlling	the	water	levels),	tidal	wetland	(open	to	the	influence	of	the	mixed	semidiurnal	daily	
tides	resulting	in	twice-	daily	high	and	low	tides),	or	upland	(grassland	areas	adjacent	to	the	
wetlands).
aUpland	field	surrounded	by	wetlands.
bOne	row	of	nine	traps.

TA B L E  1 Metadata	for	the	15	small	
mammal	surveys	used	in	this	study.

TA B L E  2 Lidar-	derived,	three-	dimensional	habitat	structure	variables.

Metric Definition Description

Zmeana,b Mean	vegetation	height Mean	vegetation	height

Zmaxb Maximum	vegetation	height Maximum	vegetation	height

ZSDa,b,c Standard	deviation	of	vegetation	height Describes	the	complexity	of	the	surrounding	vegetation

Zskewb Skewness	of	vegetation	height A	skew	value	closer	to	0	suggests	a	normal	distribution	of	vegetation	height

Zkurtb Kurtosis	of	vegetation	height A	high	kurtosis	can	suggest	outliers	in	the	distribution	of	vegetation	height

PZ>Zmeana,c Percentage	of	returns	above	mean	vegetation	
height

A	lower	percentage	implies	the	existence	of	outlier	vegetation	above	mean	
height

PZ>Xa,c Percentage	of	returns	above	X	m Describes	the	percentage	of	vegetation	taller	than	X	(0.25,	0.50,	0.75)	m

ZQ5	to	ZQ95c Q	quantile	of	height	distribution The	vegetation	height	at	each	5%	quantile	(ZQ5,	ZQ10,	etc.).	ZQ100	(100%)	is	
equivalent	to	the	maximum	height;	ZQ50	is	equivalent	to	the	median

ZC1 to ZC9c Cumulative	percentage	of	return	of	the	Nth	bin Divides	the	height	distribution	into	10	equal	parts,	each	part	(ZPC1,	ZPC2,	
etc.)	describing	the	percent	of	observations	found	below	it

%Bareb,c Percentage	of	returns	classified	as	“ground” Describes	the	percentage	of	lidar	returns	classified	as	bare	ground	(no	
vegetation)

Note:	Variables	were	derived	from	a	point	cloud	that	had	been	normalized	(ground	points	set	to	zero)	using	a	modified	digital	elevation	model	
(Buffington	et	al.,	2019).	“Z”	refers	to	z-	axis	(vegetation	height),	“P”	refers	to	percentage,	“Q”	refers	to	quantile,	and	“C”	refers	to	cumulative.	These	
variables	were	derived	at	the	microhabitat	(25	m2),	mesohabitat	(2025	m2),	and	macrohabitat	(trapping	grid	size,	~10,000	m2)	scale.
aJaime-	González	et	al.	(2017).
bBakx	et	al.	(2019).
cKoma	et	al.	(2020).
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ground	surface	to	have	a	height	of	0 m.	We	used	a	digital	elevation	
model	 (DEM)	 corrected	with	 a	modification	 of	 the	 Lidar	 Elevation	
Adjustment	with	NDVI	 (LEAN)	 technique	 (Buffington	 et	 al.,	2019)	
to	 normalize	 the	 point	 cloud,	 rather	 than	 the	 raw	 lidar	 data	 itself.	
Surface	elevation	heights	as	estimated	by	this	DEM	were	subtracted	
from	the	“Z”	value	of	the	raw	lidar	data,	resulting	in	a	measurement	
of	 vegetation	 height.	 Because	 SMHM	 inhabit	 areas	 characterized	
by	 relatively	 short	 vegetation,	 and	 because	 aerial	 lidar	 may	 not	
penetrate	the	dense	vegetation	canopy	of	tidal	wetlands,	the	DEM	
was	corrected	 to	ensure	 the	accuracy	of	our	normalized	 lidar	data	
(Buffington	et	al.,	2016).	The	typical	vertical	accuracy	of	aerial	lidar	is	
15–25 cm,	RMSE;	the	corrected	DEM	produced	an	accuracy	of	7 cm,	
RMSE	(Buffington	et	al.,	2019).	The	suite	of	lidar-	derived	metrics	was	
then	extracted	from	the	normalized	lidar	file	(Table 2).

We	 examined	 habitat	 selection	 at	 three	 scales:	 microhabitat	
(trap	level;	25	m2),	mesohabitat	(home-	range	level;	2025 m2;	Bias	&	
Morrison,	1999),	and	macrohabitat	(trapping	grid	level;	~10,000 m2; 
Figure 5; Table 1).	 For	 the	microhabitat	 scale,	we	 selected	 5 m	 as	
the	minimum	 resolution	 possible	 given	 the	 accuracy	 of	 our	GNSS	
receivers	for	a	pixel	size	of	25	m2.	All	 lidar	points	collected	within	
each	 spatial	 resolution	 were	 used	 to	 calculate	 habitat	 structure	
variables.	Habitat	 selection	 is	often	made	at	various	 spatial	 scales	
(Guyot	et	al.,	2017;	Jedlikowski	et	al.,	2016;	Johnson,	1980),	and	the	
fine-	scale	resolution	at	which	lidar	is	collected	allows	for	flexibility	
in	analyses.	Therefore,	our	assessment	of	SMHM	habitat	selection	at	
these	three	scales	allowed	us	to	test	the	efficacy	of	lidar	in	assessing	
important	habitat	and	structural	characteristics	at	different	levels.

2.5  |  BASE covariates

Some	 standard	 habitat	 variables	 have	 been	 shown	 to	 help	 char-
acterize	 habitats	 preferred	 by	 SMHM	 in	 earlier	 studies.	 These	

variables	 include	 ground	 surface	 elevation	 (“Elev”),	 distance	 to	
nearest	 levee	 (“LDist”),	 distance	 to	 nearest	 urban	 area	 (“UDist”),	
and	 dominant	 vegetation	 species	 (“Veg”;	 Bias	 &	Morrison,	 2006; 
Basson,	 2009;	 Tsao	 et	 al.,	 2009;	 Sustaita	 et	 al.,	 2011;	 Marcot	
et	al.,	2020).	Ground	surface	elevation	was	extracted	from	the	cor-
rected	DEM	 (Buffington	et	 al.,	2019),	 and	we	used	 the	Euclidean	
Distance	tool	 in	ArcGIS	Pro	 to	create	a	3-	m	raster	describing	 the	
distance	of	every	pixel	to	the	nearest	levee	(Unpubl.	data,	SRCD)	or	
urban	area.	These	raster	files	were	reprojected	to	match	the	coordi-
nate	system	of	the	raw	lidar	data	(NAD83	California	Zone	2,	in	feet;	
EPSG:2226).	 Lastly,	we	 included	 the	dominant	plant	 species	 from	
vegetation	 data	 collected	 in	 the	 field	 during	 each	 of	 the	 surveys	
used	in	this	study.	This	variable	was	recorded	in	the	field	during	the	
duration	of	the	trapping	survey	and	identifies	the	single	most	prev-
alent	plant	 species	within	 five	meters	 surrounding	each	 trap	 (see	
Smith	et	al.,	2020).	Previous	research	on	SMHM	habitat	selection	in	
other	parts	of	the	San	Francisco	Estuary	has	included	similar	covari-
ates	such	as	distance	to	nearest	permanent	water	and	distance	to	
nearest	road	(Marcot	et	al.,	2020).	However,	because	most	“roads”	
in	Suisun	Marsh	are	on	levees,	which	border	most	permanent	water	
sources,	we	expected	our	distance	to	levee	and	urban	area	covari-
ates	to	be	sufficient.

The	use	of	these	variables	may	dominate	the	results	of	models	
seeking	 to	explain	more	 subtle	 elements	of	habitat	 selection	 in-
cluding	habitat	structure.	To	look	more	closely	at	the	selection	for	
specific	elements	of	habitat	structure,	we	followed	the	methods	
described	in	Žydelis	et	al.	(2006)	and	forced	the	four	standard	vari-
ables	into	all	our	multivariate	models	grouped	as	a	single	“BASE”	
covariate	 (Kemp	et	al.,	2023;	Morin	et	 al.,	2020).	By	condensing	
these	four	covariates	into	a	single	group,	we	reduced	the	number	
of	 possible	 candidate	models	 and	 allowed	 for	 a	 focused	 assess-
ment	of	the	relative	importance	of	lidar-	derived	structure	covari-
ates	(Morin	et	al.,	2020).

F I G U R E  4 Example	lidar	point	cloud	at	
the	Joice	Managed	survey	grid	in	Suisun	
Marsh.	Top	image	shows	the	birds-	eye	
view	of	the	grid	as	a	1 m2	raster	and	the	
bottom	view	shows	the	point	cloud	from	
the	side.	Vegetation	heights	are	displayed	
in	colors,	with	blue/green	representing	
shorter	vegetation	and	warmer	colors	
representing	taller	vegetation.	Maximum	
vegetation	height	within	this	grid	was	
3.07 m.	For	better	visualization,	vegetation	
heights	in	the	bottom	view	have	been	
scaled	10×.
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2.6  |  Statistical models

Before	model	creation,	and	at	each	spatial	scale,	we	tested	for	cor-
relation	among	covariates	by	calculating	Pearson's	coefficients	in	R.	
The	BASE	covariate	was	separated,	and	each	covariate	was	assessed	
individually	 for	 this	 test.	Covariate	 combinations	with	 coefficients	
>0.70	were	examined,	and	the	variable	hypothesized	to	be	less	rel-
evant	to	SMHM	habitat	selection	was	removed	(Taylor,	1990).	We	
then	standardized	all	continuous	covariates	with	z-	score	normaliza-
tion	to	set	the	mean	of	each	to	0	and	the	standard	deviation	to	1	(De	
Knegt	et	al.,	2010).	This	process	ensured	that	variable	coefficients	
produced	by	our	models	would	be	directly	comparable.

To	examine	 the	habitat	 selection	of	SMHM,	we	 fit	generalized	
linear	models	 (GLMs)	 in	R.	 To	 account	 for	 differences	 in	 both	 the	
survey	duration	and	number	of	traps	in	a	grid,	we	used	capture	effi-
ciency	(CE)	as	our	response	variable.	CE	can	be	defined	as:

Our	selection	of	“unique”	captures	ensured	that	a	recapture	of	
an	individual	mouse	was	not	included	in	our	models	multiple	times.	
In	instances	where	an	individual	was	captured	more	than	once,	the	
first	 capture	 occasion	was	 used	 in	 analyses.	We	 compared	 candi-
date	 models	 with	 the	 Akaike	 Information	 Criterion	 (AIC).	 Models	

with	an	AIC	difference	>2.0	were	considered	 statistically	 inequiv-
alent	 with	 lower	 AICs	 indicating	 greater	 parsimony	 (Anderson	 &	
Burnham,	2004;	Harrison	et	al.,	2018).	For	models	with	comparable	
AIC	values	(ΔAIC	<2.0),	the	model	with	the	fewest	parameters	was	
selected.	As	additional	metrics	of	model	performance,	we	calculated	
R-	squared	values	and	Akaike	weights	for	each	candidate	model	(Lok	
et	al.,	2012)	and	used	the	sum	of	Akaike	weights	to	assess	the	relative	
importance	of	individual	model	covariates	(Giam	&	Olden,	2015).	A	
null	model	 including	no	predictor	 covariates	was	 included	at	 each	
spatial	scale;	however,	this	null	model	was	never	selected	and	there-
fore	excluded	from	our	results.

2.6.1  | Microhabitat	models

At	the	microhabitat	scale,	we	generated	models	for	all	traps	as	well	
as	 comparing	 those	 in	 tidal	wetlands,	managed	wetlands,	 and	 up-
land	separately.	Because	each	habitat	type	 is	subjected	to	varying	
levels	of	inundation	and	water	control,	we	expected	the	vegetation	
requirements	(and	thus	habitat	selection)	of	SMHM	to	differ	within	
each.	We	 generated	models	with	 the	 BASE	 covariate	 and	 habitat	
structure	variables	separately,	and	the	BASE	and	structure	covari-
ates	in	a	single	model.	We	then	used	backward	stepwise	regression	
(Zhang,	2016)	to	identify	the	most	parsimonious	model	that	included	

(1)CE = 100

(

Total number of uniquemice captured

Number of traps × Number of sample days

)

F I G U R E  5 Visualization	of	the	three	spatial	scales	at	which	the	habitat	selection	of	salt	marsh	harvest	mice	(Reithrodontomys raviventris)	
was	analyzed	at	the	Crescent	Unit	trapping	grid.	The	three	spatial	scales	were	(a)	microhabitat	(trap	level;	blue	squares;	25	m2),	(b)	
mesohabitat	(home	range	level;	yellow	squares;	2025 m2),	and	(c)	macrohabitat	(trapping	grid	level;	black	outline;	size	varies	by	grid).	The	
location	of	small	mammal	traps	is	represented	by	the	black	dots.
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both	 BASE	 and	 habitat	 structure	 covariates.	Nonsignificant	 terms	
were	 then	 iteratively	 removed	 from	 the	 full	model	 until	 the	most	
parsimonious	model	was	identified.

2.6.2  | Mesohabitat	models

Previous	 research	has	estimated	SMHM	home-	range	 sizes	 in	 salt	
marshes	of	San	Pablo	Bay	immediately	west	of	Suisun	Marsh	to	be	
2000 m2	 (0.2 ha)	in	size	(Bias	&	Morrison,	1999),	and	we	used	this	
home-	range	size	to	generate	potential	SMHM	home	ranges	in	each	
trapping	grid.	Applying	this	home-	range	size,	we	created	represent-
ative	45 × 45	m	home	range	polygons	(2025 m2)	and	located	them	
in	the	corners	and	center	of	each	trapping	grid.	We	calculated	an	
average	for	each	habitat	structure	variable	and	the	BASE	covariate	
within	each	home	range.	All	traps	within	a	home	range	were	used	
to	derive	an	estimate	of	CE,	and	 these	 resulted	 in	3–5	 replicates	
depending	on	 the	 shape	of	 the	grid.	 Some	 traps	were	 resampled	
more	than	once	in	11	of	the	grids,	but	75%	of	the	total	were	only	
sampled	once.	However,	we	felt	the	resampling	with	replacement	
was	justified	for	some	grids	for	representation	of	average	habitat	
structure	variables,	 the	BASE	covariate,	 and	CE	within	 the	home	
ranges	(Fieberg	et	al.,	2020).	As	with	our	microhabitat	models,	we	
generated	models	with	only	the	BASE	covariate,	only	habitat	struc-
ture	 variables,	 and	 the	BASE	and	 structure	 covariates	 combined.	
We	determined	the	most	parsimonious	BASE	and	structure	model	
with	backward	stepwise	regression.	We	also	included	habitat	type	
(tidal	wetland,	managed	wetland,	upland)	as	a	categorical	covariate.

2.6.3  | Macrohabitat	models

We	ran	univariate	models	on	each	non-	correlated	covariate.	BASE	
covariates	were	separated	and	assessed	 individually	at	 this	 spatial	
scale.	Habitat	structure	and	BASE	covariates	were	averaged	within	
each	 grid.	 Habitat	 type	 was	 included	 as	 a	 categorical	 covariate.	
To	 reconcile	 the	 small	 sample	 size,	we	 used	 corrected	 AIC	 (AICc;	
Cavanaugh,	1997)	to	compare	univariate	models.

3  |  RESULTS

3.1  |  Summary statistics of SMHM surveys

The	number	of	unique	SMHM	captured	at	a	survey	site	ranged	from	
0	 to	60,	with	 an	 average	of	19	 (±16	SD).	 Six	 unique	SMHM	were	
captured	in	the	one	upland	site,	70	across	three	tidal	sites,	and	210	
across	11	managed	sites.	CE	was	highest	in	Field	15	(managed	wet-
land;	26.53),	 lowest	 in	Arnold	A	and	Arnold	B	 (managed	wetlands,	
0.00),	and	averaged	9.4	(±6.94).	CE	was	highest	in	managed	wetlands	
(9.78),	followed	by	tidal	wetlands	(9.21)	then	upland	area	(4.08).

Mean	 vegetation	 height	was	 highest	 in	 the	 Joice	 Tidal	 survey	
site	 (0.52 m),	 lowest	 in	Hill	Slough	4	 (0.01 m),	and	averaged	0.23 m	
(±0.14).	 Maximum	 vegetation	 height	 was	 highest	 in	 Joice	 Tidal	
(3.17 m),	 lowest	 in	 Crescent	 Unit	 (0.58 m),	 and	 averaged	 1.60 m	
(±0.84).	Hill	 Slough	 4	 had	 the	 highest	 percentage	 of	 bare	 ground	
(75.68%)	and	Joice	Tidal	the	lowest	(28.87%).	Bare	ground	percent	
averaged	51.37%	across	all	grids	(±12.23).

At	traps	at	which	SMHM	were	captured,	maximum	vegetation	
height	 averaged	 0.57 m	 (±0.46),	 mean	 vegetation	 height	 aver-
aged	 0.25 m	 (±0.24),	 and	 percent	 bare	 ground	 averaged	 51.76%	
(±21.22).	At	traps	where	no	mice	were	captured,	maximum	vege-
tation	height	averaged	0.53 m	(±0.40),	mean	vegetation	height	av-
eraged	0.23 m	(±0.20),	and	percent	bare	ground	averaged	54.56%	
(±21.90).

3.2  |  Microhabitat models

Combining	 traps	 from	 all	 habitat	 types	 into	 one	model	 reduced	
its	predictive	power,	with	the	best	model	 for	all	 traps	explaining	
just	11%	of	the	variation	in	the	data	(Table 3).	In	comparison,	the	
best	model	for	tidal	wetland	traps	explained	23%	of	variation,	15%	
for	managed	wetland	 traps,	and	32%	for	upland	 traps.	Based	on	
AIC	values,	models	for	both	wetland	types	(tidal	wetland,	managed	
wetland)	significantly	improved	by	combining	the	BASE	covariate	
and	habitat	structure	variables	(Table 3).	For	our	upland	site,	the	
model	 including	only	habitat	 structure	variables	was	statistically	
comparable	with	 our	 best	model	 combining	BASE	 and	 structure	
covariates.

Across	 all	 traps,	 SMHM	captures	were	 significantly	 associated	
with	a	higher	Zmax	(p = .02),	lower	PZ > 0.25	(p = .01),	ZQ5	(p < .01),	
and	ZPC5	(p < .01),	as	well	as	saltmarsh	aster	(Symphyotrichum sub-
ulatum; p = .02)	 and	baltic	 rush	 (Juncus balticus; p = .04)	dominance	
(Table 4).	While	not	statistically	significant,	%Bare	(p = .06)	and	pick-
leweed	 dominance	 (p = .07)	 were	 strongly	 associated	with	 SMHM	
captures.

In	tidal	wetlands,	SMHM	were	significantly	associated	with	traps	
with	a	higher	Zmax	(p = .01;	Figure 6)	and	ZPC9	(p = .01)	and	lower	
ZPC1	(p = .01)	and	ZPC6	(p = .03;	Table 4).	SMHM	were	also	found	
closer	to	levees	(p = .02)	and	urban	areas	(p = .04).	SMHM	captures	
tended	 towards	 microhabitats	 with	 a	 greater	 proportion	 of	 bare	
ground	 (p = .06)	 and	 where	 common	 tule	 (Schoenoplectus acutus; 
p = .13)	and	cattail	(Typha spp.; p = .13)	were	the	dominant	plant	spe-
cies,	although	not	significantly.

In	managed	wetlands,	 SMHM	were	 associated	with	 traps	with	
a	 significantly	 lower	 PZ > 0.25	 (p = .02),	 ZPC5	 (p < .01),	 and	%Bare	
(p < .01;	Table 4; Figure 6).	SMHM	also	preferentially	selected	traps	
further	from	levees	(p < .01).	PZ > Zmean	(p = .03)	was	the	only	sta-
tistically	 significant	 covariate	 in	 our	 best	 upland	 area	model,	with	
SMHM	preferentially	 found	 in	 areas	with	 a	 greater	 proportion	 of	
vegetation	above	the	mean	vegetation	height.
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3.3  |  Mesohabitat models

Zmean,	Zskew,	ZQ5,	ZPC2,	ZPC5,	ZPC9,	and	%Bare	were	found	to	
be	 uncorrelated	 habitat	 structure	 variables	 and	 were	 included	 in	
models	alongside	the	BASE	covariate.	Our	full	model	produced	an	
AIC	of	404.9	(R2 = .55).	The	BASE-	only	model	yielded	an	AIC	of	414.0	
(R2 = .28);	 the	structure-	only	model	414.2	 (R2 = .22).	The	most	par-
simonious	model	combining	BASE	and	habitat	structure	covariates	
significantly	 improved	 the	 results	 (AIC = 397.0,	R2 = .52).	 This	 best	
model	included	%Bare,	PZ > Zmean,	Zmean,	ZPC2,	and	Zskew,	in	ad-
dition	to	the	BASE	covariate.

Mouse	captures	at	the	mesohabitat	scale	were	significantly	and	
negatively	 associated	 with	 %Bare	 (p = .01),	 ZPC2	 (p = .01),	 UDist	
(p = .05),	 and	multiple	 vegetation	 types	 (Table 5).	 SMHM	captures	
were	 significantly	 (p = .04)	 and	 positively	 associated	 with	 areas	
where	 pickleweed	 was	 the	 dominant	 vegetation	 species.	 Mouse	
captures	were	also	negatively	related	to	Zmean,	but	not	significantly	
(p = .09;	Table 5).	Based	on	the	sum	of	Akaike	weights,	Veg	(p = .97),	
ZPC2	(p = .94),	and	%Bare	(p = .91)	were	the	most	important	individ-
ual	covariates;	Elev	(p = .38),	PZ > Zmean	(p = .58),	and	Zskew	(p = .59)	
were	the	least.

3.4  |  Macrohabitat models

We	 found	 Zmean,	 Zskew,	 PZ > Zmean,	 ZPC2,	 ZPC5,	 ZPC9,	 and	
%Bare	to	be	uncorrelated	habitat	structure	covariates	and	therefore	

were	included	in	models	at	this	spatial	scale.	None	of	our	univariate	
models	produced	 statistically	 significant	 results.	 The	model	which	
included	habitat	type	yielded	the	highest	R2	value	(.12).	PZ > Zmean	
(0.11)	and	ZPC2	(0.12)	were	the	most	important	variables	based	on	
the	sum	of	Akaike	weights.

4  |  DISCUSSION

4.1  |  Lidar efficacy and value in wetlands

Airborne	 topographic	 lidar	 is	 a	well-	established	 tool	 for	 research-
ing	 the	 habitat	 selection	 of	 wildlife,	 but	 its	 use	 has	 been	 primar-
ily	 reserved	 for	 avian	 species	 or	 forest-	dwelling	 animals	 (Ewald	
et	al.,	2014;	Goetz	et	al.,	2010;	Hagar	et	al.,	2020;	Jaime-	González	
et	 al.,	2017;	Vierling	 et	 al.,	2008).	 Few	 studies	 have	 attempted	 to	
employ	 lidar	 to	 assess	 structural	 characteristics	 of	 wetlands	 or	
ecosystems	with	a	 focus	on	habitat	 selection.	Our	 results	demon-
strate	 that	 even	 for	 species	 that	 reside	 in	 ecosystems	 without	 a	
wide	 range	 of	 vegetation	 heights,	 lidar	 can	 reveal	 nuances	 in	 the	
structural	complexity	of	the	habitats.	This	is	particularly	important	
when	wetland	restoration	or	enhancement	projects	are	done	in	the	
estuary.	Widespread	tidal	wetland	restoration	is	ongoing	in	the	San	
Francisco	 Estuary	 (Callaway	 et	 al.,	2011)	 and	 planned	 throughout	
Suisun	Marsh	 (US	DOI,	2013)	with	over	2000 ha	under	considera-
tion	(Goals	Project,	1999).	This	restoration	is	planned	to	benefit	na-
tive	 fish	 (Brown,	2003),	 California	 Ridgway's	 Rail	 (Rallus obsoletus 

TA B L E  3 Comparison	of	candidate	models	at	the	trap-	level	(25 m2;	“microhabitat”)	spatial	scale.

Ecosystem type Model AIC ΔAIC R2
Akaike 
weight

All Full 7869.7 3.4 .11 0.15

BASE	only 7881.5 15.2 .08 0.00

Habitat	Structure	only 7909.6 43.3 .03 0.00

Best	(BASE + Zmax + PZ > 0.25 + ZQ5 + ZPC5 + ZPC9 + %Bare) 7866.3 0 .11 0.85

Tidal	Wetlands Full 1976.4 7.1 .24 0.03

BASE	only 1973.9 4.6 .17 0.09

Habitat	Structure	only 2000.8 31.5 .06 0.00

Best	(BASE + Zmax + ZQ5 + ZPC1 + ZPC6 + ZPC9 + %Bare) 1969.3 0 .23 0.88

Managed	Wetlands Full 5454.1 6.0 .15 0.05

BASE	only 5471.7 23.6 .10 0.00

Habitat	Structure	only 5484.8 36.7 .06 0.00

Best	(BASE + %Bare + Zskew + ZPC1 + ZPC4) 5448.1 0 .15 0.95

Upland	Areas Full 417.9 4.2 .38 0.06

BASE	only 417.2 3.5 .15 0.08

Habitat	Structure	only 413.7 0 .30 0.47

Best	(BASE + PZ > Zmean + ZPC1 + ZPC8 + ZQ5) 414.0 0.3 .32 0.40

Note:	We	ran	models	with	all	uncorrelated	covariates	(“full”),	just	the	BASE	covariate	(“BASE	only”),	just	habitat	structure	variables	(“Habitat	
Structure	only”),	and	with	the	most	parsimonious	combination	of	covariates	(“Best”).	The	BASE	covariate	includes	ground	surface	elevation,	distance	
to	nearest	levee,	distance	to	nearest	urban	area,	and	dominant	vegetation	species.	For	each	habitat	type,	the	covariates	included	in	the	best	model	
are	listed	in	parentheses.	As	metrics	of	model	performance	and/or	model	comparison,	we	found	AIC,	R2,	and	Akaike	weights.	A	null	model	was	run	
for	each	analysis	but	never	selected	and	was	excluded	from	the	results.
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TA B L E  4 Outputs	for	the	most	parsimonious	models	combining	the	BASE	covariate	and	habitat	structure	variables	at	the	microhabitat	
scale	(trap-	level;	25	m2).

Variable Estimate SE t- value p- value w(i)

All traps (R2 = .11)

Intercept 2.17 9.28 0.23 .82 NA

Zmax 3.32 1.39 2.38 .02* 0.83

PZ > 0.25 −2.64 1.01 −2.62 .01* 0.87

ZQ5 −3.42 1.19 −2.88 <.01* 0.93

ZPC5 −4.18 1.14 −3.67 <.01* 0.97

ZPC9 1.29 0.87 1.48 .14 0.48

%Bare −2.03 1.09 −1.88 .06 0.69

Elev −1.02 1.23 −0.83 .41 0.30

LDist 1.85 0.94 1.97 .05* 0.60

UDist −0.76 1.10 −0.69 .49 0.31

Symphyotrichum subulatum 26.80 11.83 2.27 .02* 1.00

Atriplex prostrata 15.82 10.78 1.47 .14 1.00

Bare	Ground 10.04 10.05 1.00 .32 1.00

Bromus diandrus 1.67 11.80 0.14 .89 1.00

Distichlis spicata 4.14 9.39 0.44 .66 1.00

Frankenia salina 10.50 9.93 1.06 .29 1.00

Juncus balticus 19.96 9.88 2.02 .04* 1.00

Phragmites australis 9.69 10.58 0.92 .36 1.00

Salicornia pacifica 16.76 9.33 1.80 .07 1.00

Schoenoplectus acutus 9.15 11.78 0.78 .44 1.00

Schoenoplectus americanus 10.17 9.72 1.05 .30 1.00

Sesuvium verrucosum 0.20 12.12 0.02 .99 1.00

Typha spp. −2.27 11.60 −0.20 .85 1.00

Xanthium strumarium 2.41 13.84 0.17 .86 1.00

Tidal Wetlands (R2 = .24)

Intercept 23.76 8.13 2.92 <.01* NA

Zmax 8.78 3.11 2.83 .01* 0.65

ZQ5 −4.36 3.06 −1.43 .15 0.36

ZPC1 −4.75 1.79 −2.65 .01* 0.73

ZPC6 −5.66 2.67 −2.12 .03* 0.45

ZPC9 5.06 1.92 2.63 .01* 0.72

%Bare 4.31 2.26 1.91 .06 0.41

Elev −1.79 1.57 −0.75 .45 0.35

LDist −5.13 2.24 −2.29 .02* 0.66

UDist −4.41 2.14 −2.06 .04* 0.67

Atriplex prostrata −31.21 22.07 −1.41 .16 0.88

Distichlis spicata −15.97 9.14 −1.75 .08 0.88

Frankenia salina −23.60 15.59 −1.51 .13 0.88

Juncus balticus 2.73 9.07 0.30 .76 0.88

Salicornia pacifica −3.17 8.55 −0.37 .71 0.88

Schoenoplectus acutus −25.11 16.34 −1.54 .13 0.88

Schoenoplectus americanus −4.98 8.77 −0.57 .57 0.88

Typha spp. −17.11 11.21 −1.52 .13 0.88
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obsoletus),	and	SMHM	(Goals	Project,	1999).	Applying	lidar	to	better	
understand	habitat	preferences	of	SMHM	could	assist	in	the	design	
and	implementation	of	wetland	restoration	projects	that	aid	in	the	
recovery	of	the	species	(US	DOI,	2013).

At	 both	 the	 microhabitat	 and	 the	 mesohabitat	 scale,	 models	
containing	only	the	classic	BASE	landscape	covariates	or	only	hab-
itat	structure	variables	performed	significantly	worse	than	models	
that	combined	the	two,	suggesting	that	both	the	landscape	covari-
ates	and	habitat	 structure	variables	 from	 lidar	provided	 important	
insights	 into	SMHM	habitat	 selection.	Our	best	model	 at	 the	me-
sohabitat	spatial	scale,	 incorporating	both	the	BASE	covariate	and	
habitat	 structure	 variables,	 explained	 52%	 of	 the	 variation	 in	 the	

data.	 In	 comparison,	 similar	 models	 examining	 the	 habitat	 selec-
tion	of	wood	mice	 (Apodemus sylvaticus)	 in	 a	Mediterranean	high-	
mountain	 pine	 forest	 found	 that	 their	 best	models	 including	 both	
lidar-		and	field-	derived	covariates	explained	30%	of	variance	(Jaime-	
González	 et	 al.,	 2017).	 At	 the	 microhabitat	 scale,	 adding	 habitat	
structure	variables	to	the	BASE	covariate	also	improved	our	models	
significantly	across	habitat	types.	Although	we	only	sampled	a	single	
upland	study	area,	habitat	structure	variables	improved	the	variance	
explained	by	the	BASE-	only	model	from	15%	to	32%.

Lidar	can	provide	a	potentially	cheaper	and	less	labor-	intensive	
alternative	to	field	data	collection	while	covering	a	larger	geographic	
extent	 (Jaime-	González	 et	 al.,	 2017).	 The	 fine-	scale	 resolution	 at	

Variable Estimate SE t- value p- value w(i)

Managed Wetlands (R2 = .15)

Intercept 5.62 9.22 0.61 .54 NA

PZ > 0.25 −3.26 1.40 −2.33 .02* 0.93

ZQ5 −2.24 1.14 −1.96 .05 0.74

ZPC2 2.05 1.40 1.47 .14 0.56

ZPC5 −3.63 1.16 −3.12 <.01* 0.94

%Bare −3.99 1.20 −3.32 <.01* 0.98

Elev −1.97 1.30 −1.51 .13 0.59

LDist 3.32 0.97 3.41 <.01* 0.99

UDist −0.57 1.42 −0.40 .69 0.32

Atriplex prostrata 12.10 10.86 1.11 .27 1.00

Bare	Ground 5.52 9.97 0.55 .58 1.00

Bromus diandrus −4.33 11.69 −0.37 .71 1.00

Distichlis spicata 1.77 9.37 0.19 .85 1.00

Frankenia salina 5.38 10.50 0.51 .61 1.00

Juncus balticus 9.34 10.36 0.90 .37 1.00

Phragmites australis 7.39 10.45 0.71 .48 1.00

Salicornia pacifica 12.32 9.28 1.33 .18 1.00

Schoenoplectus acutus 17.60 11.78 1.49 .14 1.00

Schoenoplectus americanus 2.08 10.90 0.19 .85 1.00

Sesuvium verrucosum −4.00 11.96 −0.33 .74 1.00

Xanthium strumarium −0.29 13.62 −0.02 .98 1.00

Upland Areas (R2 = .32)

Intercept −1.19 5.32 −0.22 .82 NA

PZ > Zmean 6.23 2.77 2.25 .03* 0.78

ZPC1 5.63 3.46 1.63 .11 0.38

ZPC8 −4.45 2.43 −1.83 .07 0.60

ZQ5 4.97 2.93 1.70 .10 0.50

Elev 1.85 2.55 0.73 .47 0.31

UDist −0.66 5.09 −0.13 .90 0.35

LDist −1.65 5.46 −0.30 .76 0.45

Frankenia salina 13.79 6.92 1.99 .05 0.52

Salicornia pacifica 7.17 6.84 1.05 .30 0.52

Note:	Models	were	generated	for	all	traps	combined	and	for	each	habitat	type	(managed	wetland,	tidal	wetland,	upland	area)	separately.	Variables	
that	were	significant	at	the	p < .05	level	are	marked	with	an	asterisk.

TA B L E  4 (Continued)
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which	 data	 were	 collected	 with	 lidar	 for	 this	 study	 (8	 points	 per	
m2)	 also	presents	 flexibility	 in	 analysis	 and	 the	opportunity	 to	ex-
amine	 landscape	 characteristics	 at	 a	 variety	 of	 scales.	 Airborne	
topographic	 lidar	may	 not	 penetrate	 dense	 vegetation	which	 cre-
ates	difficulties	in	examining	features	below	the	vegetation	canopy	

(Buffington	et	al.,	2016).	Here,	<1%	of	the	point	cloud	captured	in	
our	study	sites	were	second	 lidar	 returns	suggesting	that	only	 the	
tops	of	vegetation	were	being	measured.	For	animals	such	as	SMHM	
which	may	utilize	understory,	thatch,	and	litter	for	cover,	travel,	and	
denning	(Fisler,	1965;	Marcot	et	al.,	2020;	Shellhammer	et	al.,	1982),	

F I G U R E  6 Partial	effects	plots	showing	the	relationship	between	salt	marsh	harvest	mouse	(Reithrodontomys raviventris)	catch	per	unit	
effort	(CE)	and	important	covariates	in	managed	wetlands	(a–c;	red)	and	tidal	wetlands	(d–f;	blue).	We	show	the	relationship	between	CE	and	
distance	to	levees	(a,	d;	“LDist),	percent	bare	ground	(b,	e;	“%Bare”),	and	maximum	vegetation	height	(c,	f;	“Zmax”).	These	partial	effects	plots	
were	derived	from	our	full	models	at	the	microhabitat	scale	that	included	all	lidar	habitat	structure	variables	and	BASE	covariates.

Variable Estimate SE t- value p- value
Akaike 
weight

Intercept 28.96 7.2 4.02 <.01 NA

%Bare −5.24 1.77 −2.97 .01* 0.91

PZ > Zmean 2.21 1.51 1.49 .15 0.58

Zmean −3.87 2.22 −1.75 .09 0.64

ZC2 −4.66 1.69 −2.76 .01* 0.94

Zskew 1.82 1.34 1.36 .18 0.59

Elev −1.52 2.41 −0.63 .53 0.38

LDist −0.19 0.84 −0.23 .86 0.11

UDist −4.49 2.18 −2.07 .05* 0.78

Atriplex prostrata −9.87 10.61 −0.93 .36 0.97

Distichlis spicata −24.38 7.45 −3.27 <.01* 0.97

Juncus balticus −7.22 9.54 −0.76 .45 0.97

Phragmites australis −6.96 8.85 −0.79 .44 0.97

Salicornia pacifica 15.78 7.61 −2.07 .04* 0.97

Schoenoplectus acutus −13.88 10.41 −1.33 .19 0.97

Schoenoplectus 
americanus

−20.47 7.72 −2.65 .01* 0.97

Note:	Variables	that	were	significant	at	the	p < .05	level	are	marked	with	an	asterisk.

TA B L E  5 Model	outputs	for	the	most	
parsimonious	model	which	included	both	
habitat	structure	variables	and	the	BASE	
covariates	at	the	mesohabitat	(2025 m2)	
spatial	scale.
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the	inability	to	penetrate	dense	vegetation	hinders	the	ability	to	fully	
examine	habitat	selection.	Terrestrial	lidar	may	reconcile	this	short-
coming	and	has	been	shown	to	accurately	characterize	litter	in	pre-
vious	research	(Loudermilk	et	al.,	2009;	Rowell	&	Seielstad,	2012).	
Similarly,	 lidar	 shot	by	unmanned	aerial	 systems	 (UAS)	 can	 collect	
hundreds	of	returns	per	square	meter	(Pricope	et	al.,	2022)	and	pro-
vide	more	accurate	vegetative	detail	in	wetland	ecosystems.

4.2  |  Habitat selection of SMHM

Our	analysis	of	lidar	data	revealed	important	characteristics	of	veg-
etation	structure	in	assessing	the	habitat	selection	of	SMHM	at	the	
microhabitat	 scale.	 Our	 results	 provide	 evidence	 to	 support	 the	
importance	of	 vegetation	heterogeneity	 in	 SMHM	habitat.	Across	
all	sites,	and	in	managed	wetlands	in	particular,	SMHM	captures	at	
the	microhabitat	scale	were	positively	correlated	with	the	standard	
deviation	of	vegetation	height.	No	other	habitat	structure	variables	
were	significant	 in	managed	wetland	sites,	 suggesting	 that	SMHM	
are	 selecting	 microhabitats	 with	 a	 higher	 variance	 in	 vegetation	
heights	 without	 showing	 explicit	 preference	 for	 shorter	 or	 taller	
vegetation.	 Earlier	 research	 has	 hypothesized	 that	 SMHM	 utilize	
taller	 vegetation	 for	 both	 refugia	 from	 inundation	 at	 higher	 tides	
(tidal	 wetlands)	 or	 seasonal	 flooding	 (managed	 wetlands)	 and	 for	
cover	from	predators	(Fisler,	1965;	Marcot	et	al.,	2020;	Shellhammer	
et	al.,	1982;	Smith	et	al.,	2018).	They	rely	on	shorter	vegetation	such	
as	grasses	and	pickleweed,	as	well	as	over	40	other	plant	and	inver-
tebrate	species	(Aylward	et	al.,	2022;	Smith	&	Kelt,	2019)	for	food.	
Microhabitats	 represent	 short-	term	 landscape	 use	 (Morris,	 1987),	
but	 variation	 in	 heights	 of	 the	 vegetation	 may	 provide	 value	 for	
SMHM	over	longer	periods.

In	tidal	wetlands,	taller	vegetation	was	the	primary	component	of	
preferred	SMHM	microhabitat.	SMHM	selected	areas	with	a	higher	
maximum	vegetation	height	and	were	associated	with	taller	vegeta-
tion	species	like	common	tule	and	cattail,	although	that	association	
was	not	significant.	Similarly,	SMHM	captures	were	associated	with	
a	lower	cumulative	percentage	in	the	first	(ZPC1)	and	sixth	vegeta-
tion	bin	(ZPC6),	suggesting	that	a	greater	proportion	of	shorter	veg-
etation	within	microhabitats	 is	 not	 preferred.	 Surprisingly,	 SMHM	
preferred	 areas	with	 a	 higher	 bare	 ground	percentage,	 potentially	
further	highlighting	 the	 importance	of	 refugia	 in	 their	habitats.	As	
tidal	wetlands	are	subjected	to	daily	inundation	and	more	extreme	
flooding	events,	vegetation	refugia	may	be	more	critical	especially	in	
areas	with	more	bare	ground.

In	addition	to	taller	vegetation,	SMHM	selected	areas	closer	to	
levees	 in	 tidal	wetland	microhabitats.	While	 levees	are	primarily	
found	on	managed	wetlands,	most	tidal	wetlands	and	upland	areas	
in	Suisun	Marsh	are	also	bordered	by	similar	high-	elevation	struc-
tures.	Levees,	roads,	and	other	higher-	elevation	areas	may	serve	
as	 refugia	 outside	of	 core	home	 ranges	 in	 the	 event	 of	 extreme	
flooding,	while	 taller	vegetation	within	 the	marsh	plain	acts	as	a	
consistent	source	of	refugia	habitat.	While	the	influence	of	tides	
on	SMHM	movements	 is	 still	 not	well	 known,	previous	 research	

has	suggested	that	SMHM	are	 tolerant	of	 levees	and	roads	near	
their	 habitats	 (Marcot	 et	 al.,	 2020),	 may	 regularly	 cross	 levees	
(Bias	 &	 Morrison,	 1999),	 or	 even	 use	 levees	 to	 avoid	 flooded	
areas	 (Hulst	 et	 al.,	2001).	 Species	 that	 use	 similar	 habitats	 such	
as	 California	 black	 rails	 (Laterallus jamaicensis coturniculus;	 Tsao	
et	al.,	2009)	have	been	shown	to	rely	on	levees	for	refugia	as	well.	
High	water	has	also	been	shown	to	increase	the	hunting	activity	of	
avian	predators	in	tidal	wetlands	(Thorne	et	al.,	2019),	 increasing	
the	value	of	refugia	for	predator	avoidance.

In	contrast,	SMHM	in	managed	wetlands	selected	for	microhab-
itats	with	a	lower	proportion	of	vegetation	taller	than	0.25 m	and	a	
lower	percentage	of	bare	ground	suggesting	a	preference	for	areas	
with	shorter,	denser	vegetation.	Taller	vegetation	may	be	necessary	
for	inundation	refugia,	but	dense	vegetation	may	provide	better	pro-
tection	from	predation	(Kotler,	1984;	Thompson	&	Gese,	2013),	and	
SMHM	were	 also	 found	 in	 areas	 farther	 from	 levees.	 In	managed	
wetlands,	 where	 water	 levels	 do	 not	 fluctuate	 daily,	 SMHM	may	
not	rely	on	elevated	levees	as	regularly	compared	to	tidal	wetlands,	
though	there	may	be	seasonal	differences	that	were	not	examined	
in	this	study.

Models	 generated	 at	 the	 mesohabitat	 scale	 performed	 the	
strongest	 with	 our	most	 parsimonious	model	 explaining	 52%	 of	
the	 variation	 in	 the	 data.	 These	 results	 suggest	 that	 the	 home-	
range	 scale	 may	 be	 the	 most	 important	 spatial	 level	 at	 which	
SMHM	 select	 their	 habitats.	 SMHM	 preferentially	 selected	me-
sohabitat	 with	 a	 lower	 bare	 ground	 percentage	 indicating	 that	
abundance	 of	 vegetation	 is	 an	 important	 characteristic	 of	 their	
preferred	 habitat.	 This	 finding	 aligned	 with	 success	 criteria	 for	
wetland	 restoration,	 which	 set	 the	 requirements	 for	 providing	
SMHM	habitat	and	often	include	greater	percent	vegetation	cover	
(USFWS,	 1981,	 2013).	 Other	 important	 structural	 covariates	 at	
the	mesohabitat	scale	provided	evidence	that	shorter	vegetation	
comprised	 the	 majority	 of	 selected	 habitats.	 SMHM	 were	 sim-
ilarly	 associated	with	 pickleweed	 presence	which	 served	 as	 one	
of	 the	most	 significant	 sources	of	 food	 for	 the	 species	 (Aylward	
et	 al.,	 2022;	 Smith	 &	 Kelt,	 2019).	 Our	 overall	 results	 suggested	
that	 microhabitats	 may	 offer	 SMHM	 temporary	 resources	 such	
as	 refugia	 from	 predation	 and	 tides,	 while	 mesohabitats	 offer	
abundant	food	to	support	individuals	and	populations	in	the	lon-
ger	term.	Neither	habitat	structure	variables	nor	BASE	covariates	
were	significant	at	the	macrohabitat	scale,	and	the	grid	scale	may	
be	 too	 large	 to	capture	how	 individual	SMHM	select	 features	 in	
the	landscape.

4.3  |  Future directions

Management	of	endangered	species	such	as	the	SMHM	is	of	great	
importance	 for	 resource	managers	 in	 the	San	Francisco	Estuary.	
With	 increasing	 threats	 of	 climate	 change	 and	 sea-	level	 rise	
(Craft	et	al.,	2008;	Elmilady	et	al.,	2019;	Knowles,	2010;	Thorne	
et	 al.,	 2018),	 protecting	 SMHM	 habitats	 has	 never	 been	 more	
crucial.	 In	Suisun	Marsh,	climate	change	is	projected	to	raise	sea	
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levels,	 therefore	 lowering	 relative	 tidal	 wetland	 elevations,	 by	
0.15–0.61 m	 by	 the	 end	 of	 the	 century	 (Takekawa	 et	 al.,	 2013; 
Thorne	et	 al.,	2018),	 likely	placing	many	SMHM	habitats	 at	 risk.	
Loss	 of	 coastal	 wetland	 habitats	 from	 sea-	level	 rise	 has	 been	
documented	for	other	wetland	species	(Hunter	et	al.,	2017; Nuse 
et	al.,	2015;	Rosencranz	et	al.,	2019)	with	wetland	restoration	ac-
tivities	proposed	as	a	tool	to	combat	loss	(Veloz	et	al.,	2013).	While	
SMHM	are	now	known	 to	 inhabit	both	 tidal	 and	diked	wetlands	
at	similar	densities	 (Shellhammer	et	al.,	1982;	Smith	et	al.,	2020; 
Sustaita	 et	 al.,	2011),	 their	 affinity	 towards	 both	wetland	 types	
puts	a	 large	proportion	of	 the	population	at	 risk	under	 sea-	level	
rise	scenarios	 (Stralberg	et	al.,	2011).	Flooding	and	sea-	level	 rise	
also	 are	 expected	 to	 increase	 avian	 predation	 of	 tidal	 wetland	
wildlife,	further	threatening	the	survival	of	species	like	the	SMHM	
(Thorne	et	al.,	2019).	Our	findings	suggest	that	preserving	higher-	
elevation	wetland	habitat	features	such	as	levees	and	supporting	
a	 heterogeneous	mixture	 of	 shorter	 and	 taller	 vegetation	 types	
will	 benefit	 SMHM	 populations.	 These	 findings	 are	 consistent	
with	current	 recommendations	which	 focus	on	maintaining	pick-
leweed	presence,	access	to	adjacent	high-	marsh	transition	zones	
for	 refugia,	 and	 a	 mixture	 of	 short	 and	 tall	 vegetation	 species	
(USFWS,	2013).	Continuing	to	prioritize	habitats	that	provide	the	
criteria	described	in	this	study	could	benefit	SMHM	conservation,	
especially	in	the	face	of	climate	change.
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