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Amyotrophic lateral sclerosis (ALS) is a complex, fatal neurodegenerative disease. Disease pathophysiology is incom
pletely understood but evidence suggests gut dysbiosis occurs in ALS, linked to impaired gastrointestinal integrity, 
immune system dysregulation and altered metabolism. Gut microbiome and plasma metabolome have been separ
ately investigated in ALS, but little is known about gut microbe-plasma metabolite correlations, which could identify 
robust disease biomarkers and potentially shed mechanistic insight. Here, gut microbiome changes were longitudin
ally profiled in ALS and correlated to plasma metabolome. Gut microbial structure at the phylum level differed in ALS 
versus control participants, with differential abundance of several distinct genera. Unsupervised clustering of mi
crobe and metabolite levels identified modules, which differed significantly in ALS versus control participants. 
Network analysis found several prominent amplicon sequence variants strongly linked to a group of metabolites, pri
marily lipids. Similarly, identifying the features that contributed most to case versus control separation pinpointed 
several bacteria correlated to metabolites, predominantly lipids. Mendelian randomization indicated possible caus
ality from specific lipids related to fatty acid and acylcarnitine metabolism. Overall, the results suggest ALS cases and 
controls differ in their gut microbiome, which correlates with plasma metabolites, particularly lipids, through specific 
genera. These findings have the potential to identify robust disease biomarkers and shed mechanistic insight into 
ALS.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a complex, clinically hetero
geneous, fatal neurodegenerative disease.1 Patients generally only 
survive 2–4 years post-diagnosis and treatment primarily focuses 
on symptom management and palliative care.2 Most ALS cases, 

around 85%, are sporadic and lack a known genetic aetiology.3

Recent research has focused on the environmental contributions 
to ALS,4 including the gut microbiome,5,6 which correlates with dis
ease progression in human7 and animal studies.8-10

The human gastrointestinal tract is inhabited by millions of mi
croorganisms, which communicate bidirectionally with the host, 
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including through the gut–brain axis.11 The microbiome and 
bacterially-derived metabolites exert important regulatory activ
ities in the host, such as immune modulation,5,8 energy and meta
bolic homeostasis5,9 and intestinal barrier integrity.12 In turn, host 
lifestyle, dietary habits and exposures e.g. to antibiotics,13 shape 
the microbiome. During health, the microbiome exists in exquisite 
balance with the host, but dysbiosis, an imbalance in microbial 
communities, occurs during disease, including ALS.5 The micro
biome intersects with several aspects of ALS pathophysiology. 
Neuroinflammation and immune system dysregulation are ALS 
hallmarks,14 which correlate with specific microbiome signatures 
in rodent studies.8,10 ALS patients also have distinct plasma meta
bolomic profiles,15,16 which may, in part, be influenced by specific 
microbes in the gut.9 Moreover, structural, functional and biochem
ical gastrointestinal abnormalities occur in ALS patients,17 correlat
ing with shifts in the intestinal microbiome.12

Little is known about the associations between the gut micro
biome to host plasma metabolites in ALS patients at disease onset 
and with progression. However, gut microbiome signatures in ALS 
may suggest potential biomarkers and treatment avenues. We pre
viously performed untargeted metabolomics on cohorts of ALS and 
control participants, identifying dysregulated circulating metabo
lites linked to disease status,15 especially lipids.16 Herein, we longi
tudinally profiled the gut microbiome of ALS versus control 
participants and integrated the initial microbiome profile with cir
culating plasma metabolites, in the first study, to our knowledge, to 
examine microbiome-plasma metabolome correlations in ALS. We 
found altered gut microbial structure at the phylum level in ALS, 
along with differential abundance in several distinct genera. Our 
integrated microbiome-plasma metabolome analysis identified 
several prominent amplicon sequence variants (ASVs) strongly 
linked to several metabolites, especially lipids. Finally, we per
formed Mendelian randomization to examine potential causality 
from metabolites, identifying lipids, especially species related to 
fatty acid and acylcarnitine metabolism, as possible candidates. 
Overall, our findings point to a gut microbiome signature in ALS 
linked to distinct host plasma lipid profiles, which may provide po
tential biomarkers and future treatment avenues.

Materials and methods
Study participants and sample processing

Study recruitment is already published.15,16 Briefly, this was a case- 
control study from samples collected between April 2016 to July 
2020. ALS patients 18 years or older and able to communicate in 
English, seen at the Pranger ALS Clinic at Michigan Medicine, 
were invited to participate. ALS patients were diagnosed based on 
original and/or revised El Escorial criteria,18 EMG and clinical and 
family history. All ALS patients meeting the inclusion criteria of de
finitive, probable, probable with laboratory support, possible or sus
pected ALS were eligible to participate in the study. All participants 
met current Gold Coast Criteria. Control participants 18 years or 
older without a neurodegenerative condition or family history of 
ALS were recruited through a university-managed recruitment 
website at the University of Michigan Institute for Clinical and 
Health Research. Controls were compensated for participating in 
the study. Demographics, including sex, age, height, weight and 
body mass index (BMI), were collected from all participants. ALS 
disease characteristics, including onset segment and phenotype 
(with frontotemporal dementia), days from symptom onset to diag
nosis, days from diagnosis to stool sample, diagnosis by El Escorial 

criteria, disease severity by ALS Functional Rating Scale-Revised 
(ALSFRS-R) and percutaneous endoscopic gastrostomy (PEG) status, 
were additionally collected from ALS patients. All participants pro
vided informed consent for this research, which was approved by 
the University of Michigan Medical School Institutional Review 
Board (HUM00028826).

Microbiome profiling and analysis

Approximately 200 µl faecal samples were seeded into PowerMag 
Glass Bead plates (MO BIO Laboratories) and bacterial DNA was iso
lated using a MagAttract PowerMicrobiome DNA/RNA Kit (Qiagen) 
and an epMotion 5075 liquid handling system. The V4 region of the 
bacterial 16S rRNA gene was amplified on an Illumina MiSeq at the 
University of Michigan Microbiome Core, as previously reported.19

Raw FASTQ files were read into a microbial package (https://github. 
com/guokai8/microbial), which integrated multiple functions from 
DADA2,20 phyloseq21 and DESeq222 packages. The reads were pro
cessed by the ‘processSeq’ function, which de-replicated, de-noised, 
removed chimeras, generated tables of ASVs and assigned tax
onomy based on the SILVA (v138.1) database.23

ASVs of unknown species at the phylum level and present in few
er than three samples were filtered out from subsequent analyses. 
Richness within samples was measured by alpha diversity and rela
tive abundance was then calculated for principal coordinate analysis 
(PCoA) based on the Bray-Curtis dissimilarity distance score. 
Differential abundance analysis was performed with P < 0.05 and 
|log2(fold-change)|- > 1 to identify significant ASVs. The Tax4Fun2 R 
package24 was used to predict the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) functional profiling for each sample using 
the ‘Ref99NR’ database. Adjusted P-values of < 0.05 were considered 
significant after multiple testing of the resultant KEGG pathways 
with the Benjamini-Hochberg (BH) method. Butyrate-producing bac
teria in our dataset were identified as previously,25 using a curated 
literature-derived taxonomy file of commensal butyrate-producing 
bacterial species.26-29

Logistical regression models

General logistic regression analysis regressed bacterial abundance 
against the ALS versus control comparison, adjusted for age, sex 
and BMI. Benjamini-Hochberg correction accounted for multiple 
testing.

Plasma metabolomics

This study used a subset of a previously published metabolomics 
dataset.15,16 Briefly, whole blood samples from consented partici
pants were drawn without fasting as it was deemed unethical to re
quest fasting from ALS patients. Blood was collected into EDTA 
tubes and plasma was obtained. Plasma metabolites were profiled 
by ultra-high-performance liquid chromatography-tandem mass 
spectroscopy (Metabolon). A subset of ALS and control participants 
from the metabolomics cohort, which overlap with participants in 
the microbiome cohort, was used to determine plasma metabolite- 
gut microbiome associations using weighted gene co-expression 
network analysis (WGCNA) and two-way orthogonal partial least 
square with discriminant analysis (O2PLS-LDA).

Weighted gene co-expression network analysis

Biological interactions between gut bacteria and circulating plasma 
metabolites in ALS were determined with WGCNA v1.7130,31 to build 
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unsigned co-expression networks. Microbiome (relative abundance 
of ASVs) and metabolites were profiled for ALS (n = 53) and control 
(n = 80) participants at the first collection point (T1). To use a homo
genous approach for handling both datasets, the microbiome and 
metabolomics data were combined into a single array. The merged 
array was filtered to include members, i.e. ASVs and metabolites, 
which were present in at least 10 participants. The co-expression 
network was built using the standardized (scaled) microbiome and 
metabolome data. The WGCNA framework was applied to the 
merged dataset to identify members, i.e. ASVs and metabolites, 
with similar profiles suggesting they are strongly correlated. 
Sample clustering was conducted to detect outliers. A soft power 
of 3 was chosen by the WGCNA ‘pickSoftThreshold’ function to con
struct the co-expression network, which was built by computing the 
Pearson correlation coefficient between any pair of nodes, i.e. ASVs 
and metabolites. The selected soft threshold guarantees a scale-free 
network topology of unsigned R-squared > 0.9.

The WGCNA module that most significantly correlated with 
ALSFRS-R was further analysed for associations to change in 
ALSFRS-R with time. First, ALSFRS-R scores closest to the time of 
faecal (microbiome) and blood (metabolome) collection were iden
tified. Second, all subsequent ALSFRS-R scores from the participant 
database were collected. Next, the rate of change between the an
choring ALSFRS-R score (i.e. closest to faecal and blood collection) 
and all subsequent ALSFRS-R evaluations was calculated. Finally, 
Spearman correlation analysis was applied to explore potential as
sociations between this rate of change in ALSFRS-R and the abun
dance of significant ASVs and metabolites in the WGCNA module.

Two-way orthogonal partial least square with 
discriminant analysis

O2PLS-DA was performed using the R package o2plsda (https:// 
cran.rstudio.com/web/packages/o2plsda/index.html). O2PLS-DA is 
a bidirectional multivariate regression and derivative method of 
partial least squares derivative analyses (PLS-DA). O2PLS-DA sepa
rates the covariance between different datasets from the systemat
ic sources of variance specific to each dataset separately. The 
abundances of microbiome and metabolomics data were scaled 
and group-balanced Monte Carlo cross-validation was used to de
termine the optimal number of latent variables for each model 
structure to avoid overfitting the model. The discriminant analysis 
was performed based on the systematic predictive variation from 
the two datasets.

Mendelian randomization

Mendelian randomization32 was performed using the TwoSampleMR 
v 0.5.7 R package (https://mrcieu.github.io/TwoSampleMR/index. 
html).33 TwoSampleMR performs Mendelian randomization using 
genome-wide association studies (GWAS) summary data, which are 
obtained automatically from the MRC Integrative Epidemiology 
Unit (IEU) open GWAS database (https://gwas.mrcieu.ac.uk/). Two 
sample Mendelian randomization (2SMR) estimates the causal 
effect of an exposure on an outcome using only GWAS summary 
statistics. For exposure, the metabolite dataset embedded in the 
TwoSampleMR v 0.5.7 R package was employed, which contains a 
GWAS of 452 metabolites in whole human blood.34 This database 
contains many specific metabolites that were linked to ALS in this 
study. Five ALS GWAS studies were obtained from IEU GWAS data
base (Supplementary Table 1).

To perform 2SMR of a specific metabolite against ALS, single- 
nucleotide polymorphisms (SNPs) were identified that influence 
that specific metabolite (i.e. extracted the instrumental variables) 
and then extracted those SNPs from ALS GWAS datasets. 
Extracted SNPs were harmonized to ensure the effect of an SNP 
on the exposure and the effect of the same SNP on the outcome cor
respond to the same allele. Next, instrumental variables for each 
exposure-metabolite were obtained, with per-allele beta coefficient 
estimates (β) and standard errors. Finally, significant effects in the 
2SMR analysis were estimated by inverse variance weighted, MR 
Egger, weighted median, weighted mode and simple mode.

Statistical methods for demographics

Participant demographics were represented as the mean ± stand
ard deviation (SD) for continuous variables, assessed by two-tailed 
Student’s t-test, and n (%) for categorical variables, assessed by 
Fisher’s exact test.

Results
Microbiome and overlapping 
microbiome-metabolomics participants

The microbiome cohort consisted of 43 male (57.3%) and 32 female 
(42.7%) participants in the ALS group (n = 75 total), which differed 
significantly by per cent from the 44 male (44.0%) and 66 female 
(60.0%) control participants (n = 110 total; P = 0.025) (Table 1 and 
Fig. 1). Moreover, ALS participants were significantly older on aver
age than controls (P = 0.010), although they had similar age ranges. 
Of the ALS participants, 48 (64.0%) had limb onset and 27 (36.0%) 
had bulbar onset, and 67 (89.3%) reported no family history of 
ALS. For participants that were both profiled for microbiome and 
plasma metabolomics (n = 54 total), 33 were male (61.1%) and 21 
were female (38.9%), which differed significantly in sex ratio from 
the control participants with 30 males (38.0%) and 49 females 
(62.0%) (n = 79 total; P = 0.013) (Table 2 and Fig. 1). Of these ALS par
ticipants, 36 (66.7%) had limb onset and 18 (33.3%) had bulbar onset, 
and six (11.1%) reported a family history of ALS, indicating most 
cases were sporadic.

Microbial structure differs in ALS cases versus 
controls

Gut microbiome composition in faecal samples from ALS versus 
control participants was determined by 16S rRNA sequencing of 
bacterial DNA, identifying 542 unique ASVs at the genus level after 
filtering.35 We observed significantly lower intracommunal micro
bial diversity by alpha diversity at baseline (T1) in ALS cases versus 
controls using three different metrics (P < 0.01; Fig. 2A), which per
sisted, albeit non-significantly, at the T2 time point. Inter-group 
beta-diversity analysis based on the Bray-Curtis distance matrix 
did not clearly separate ALS cases from controls, although it was 
statistically significant at T1 (P = 0.005; Fig. 2B), but not at T2.

Next, we examined the eight most abundant phyla using 
stacked blot plots of raw relative abundance. Firmicutes (P = 4.7 ×  
1016) and Cyanobacteria (P = 0.010) differed significantly in cases 
versus controls at T1, whereas only Firmicutes differed significantly 
at T2 (P = 7.4 × 1016) (Fig. 2C). When we examined phyla abundance 
by segment onset, we found that Bacteroidetes (P = 0.022) signifi
cantly differed at T1 while Firmicutes (P = 0.0014) differed at T2 in 
bulbar versus limb onset ALS (Fig. 2D). Lastly, we evaluated phyla 
abundance differences by the time between symptom onset and 
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time of faecal sample collection (Supplementary Table 2). There 
were no statistically significant differences between samples col
lected 0–24 months or >35 months from disease onset. However, 
Synergistota differed significantly in samples taken 25–35 months 
from disease onset versus samples collected 0–24 months or over 
35 months (Fig. 2E). Thus, overall, microbial structure by phyla dif
fers in ALS cases, even by segment onset, compared to controls.

Next, we investigated more granular microbial information, 
examining genera and ASV differences by case/control status. We 
examined butyrate-producing bacteria due to their central role in 
energy36 and immune tolerance.37 We observed a slightly lower 
relative abundance of butyrate-producing bacteria in ALS versus 
controls at T1 (P < 0.05; Fig. 2F). Among genera, Spearman correl
ation found age and BMI associated differentially with specific gen
era by case/control status (Fig. 2G). Most correlations occurred 
within control participants, for both age and BMI. The most signifi
cant and most positive correlation by age was to Ruminococcus in 
control participants, whereas the most significant and most posi
tive correlation by BMI was to Lachnospiraceae UCG-010, also in con
trol participants. The most significant negative correlation was by 
BMI for X Eubacterium eligens group in control participants.

Consequently, we identified differential genera by case/control 
status at T1 using logistic regression analysis, adjusted for age, 
sex and BMI. Six genera differed significantly, with higher relative 
abundance in ALS of Bacteroides (ASV9; phylum Bacteroidetes), 

Parasutterella (ASV24; phylum Proteobacteria) and Lactococcus 
(ASV38; phylum Firmicutes) and higher relative abundance in con
trol of Faecalibacterium (ASV36, ASV2; phylum Firmicutes) and 
Bifidobacterium (ASV37; phylum Actinobacteria) (Fig. 2H).

Finally, functional analysis of gut microbiota in ALS versus con
trol participants was performed to infer metagenomic pathways by 
KEGG enrichment. In sum, we identified 24 enriched biological 
pathways, of which 11 were overrepresented in ALS, related to lipid 
metabolism (‘linoleic acid metabolism’, ‘propanoate metabolism’, 
‘sphingolipid signaling pathway’) and amino acid metabolism and 
degradation (‘tryptophan metabolism’, ‘lysine degradation’, ‘val
ine, leucine and isoleucine degradation’) (Fig. 2I). Conversely, 13 
biological pathways were under-represented in ALS, related to nu
cleotide metabolism (‘pyrimidine metabolism’), DNA replication, 
ribosome, protein metabolism (‘autophagy’, ‘protein processing in 
endoplasmic reticulum’) and infection.

Lipids are linked to distinct amplicon sequence 
variants in ALS

The gut microbiome influences the host plasma metabolome.38 Thus, 
we next integrated the faecal microbiome dataset with the plasma 
metabolomics dataset at baseline, i.e. the T1 time point, to identify mi
crobial communities significantly correlated to plasma metabolite 
abundance in ALS. First, we performed WGCNA, a network-based, 

Table 1 Clinical characteristics of participants in the microbiome cohort

Characteristics ALS group (n = 75) Control group (n = 110) P-value

Age, yearsa 65.7 ± 10.0 (36.3–84.8) 62.0 ± 8.6 (38.81–86.26) 0.010b

Sex – –
Male 43 (57.3%) 44 (40.0%) 0.025c

Female 32 (42.7%) 66 (60.0%)
Family history of ALS – –

Yes 7 (9.3%) 0 (0%)
No 67 (89.3%) 110 (100.0%)
Unknown 1 (1.3%) 0 (0%)

Race – –
White 75 (100.0%) 110 (100.0%)

ALS with frontotemporal dementia 1 (1.33%) –
Onset segment – –

Bulbar 25 (33.3%) –
Cervical 24 (32.0%) –
Lumbar 24 (32.0%) –
Respiratory 2 (2.67%) –

El Escorial criteria – –
Definite 16 (21.6%) –
Probable 30 (40.5%) –
Probable, lab supported 17 (23.0%) –
Possible 9 (12.2%) –
Suspected 2 (2.70%) –
Missing 1 (1%) –

ALS Functional Rating Scale-Revisedd 37.0 (34.0–40.0) –
Days from symptom onset to diagnosisd 343.0 (216.5–617.5) –
Feeding tube – –

Yes 6 (8.0%) –
No 69 (92.0%) –

Days from diagnosis to stool sampled 98.0 (39.5–191.5) –

Bold font indicates significant P-values. 

ALS = amyotrophic lateral sclerosis. 
aMean ± standard deviation (range). 
bStudent’s t-test. 
cFisher’s exact test. 
dMedian (interquartile range).
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unsupervised clustering method.30,31 WGCNA did not identify any 
sample outliers in the dataset after dendrogram clustering nor any 
distinct ALS versus control clusters (Supplementary Fig. 1A). We, 
therefore, reran WGCNA using a soft threshold (power of β = 3) to min
imize noise and maximize clustering (Supplementary Fig. 1B). The fi
nal network generated 12 modules, which contained 34 to 647 
members (Supplementary Fig. 1C and Supplementary Table 3).

The blue module contained 77 members, all plasma metabolites 
without any ASVs. The pink module comprised 40 members, includ
ing five ASVs and 35 plasma metabolites. The black module had seven 
ASVs and 36 metabolites. Finally, the grey module was the largest and 
encompassed 647 members, which could not be assigned to any other 
module due to outlying profiles. The blue (P = 4.9 × 10−8), pink (P =  
1.8 × 10−6) and black (P = 0.0058) modules significantly differed be
tween ALS versus controls (Fig. 3A); all other modules were non- 
significant (Supplementary Fig. 2). Moreover, the black module had 
a high correlation coefficient (r = 0.7) and low P-value (P = 1.7 × 10−7) 
of both ASVs and plasma metabolites, suggesting they may contribute 
to the observed ALS phenotype (Supplementary Fig. 3). Indeed, when 
we examined the link of modules to the functional status of ALS cases, 
the ALSFRS-R, the black module was most significant, with a negative 
correlation (Fig. 3B), i.e. higher levels of black module components 
with lower ALSFRS-R score and more progressive disease.

Network analysis of the black module found that the seven 
ASVs, corresponding to the families Akkermansiaceae (ASV7), 

Lachnospiraceae (ASV148, ASV235, ASV391), Rikenellaceae (ASV51), 
Marinifilaceae (ASV426) and Anaerococcus (ASV1611) strongly corre
lated to the 36 plasma metabolites, which were mostly (75%), related 
to and enriched in ‘lipids’ (Fig. 3C and D, Supplementary Fig. 4 and 
Supplementary Table 3). The lipids belonged to acylcarnitines 
(37%), medium-chain fatty acids (11%), long-chain fatty acids (7%), 
various fatty acids (11%), monoacylglycerol (4%), primary (19%) and 
secondary (7%) bile acids, and sterol (4%). Other biological pathways 
represented in the black module were ‘amino acid’ (14%), ‘nucleo
tide’ (6%), ‘cofactors and vitamins’ (3%) and ‘partially characterized 
molecules’ (3%). Overall, lipids were linked to ALS, mediated by se
ven ASVs of various families, especially Lachnospiraceae, through 
the black module.

As the WGCNA module that correlated most significantly with 
functional status, we also further analysed the association of black 
module ASVs and metabolites to changes in ALSFRS-R score over 
time. We found that 26 out of the 36 black module metabolites sig
nificantly correlated to decline in ALSFRS-R scores (Supplementary 
Table 4). Intriguingly, most metabolites exhibited negative correla
tions, i.e. higher metabolite levels corresponded with a decrease in 
ALSFRS-R scores over time. This potentially suggests a role for these 
metabolites in ALS pathogenesis or, alternatively, as biomarkers 
of disease progression. Specifically, metabolites such as 7-alpha- 
hydroxy-3-oxo-4-cholestenoate, cystine and glutarate (C5-DC) dis
played consistent significant correlations, even at 1-year and 

Figure 1 Study design. Top: Gut microbiome was longitudinally profiled in faecal samples from amyotrophic lateral sclerosis (ALS) (n = 75) versus control 
(n = 110) participants by 16S rRNA sequencing at baseline (T1), T2 and T3. Bottom: Plasma metabolites were profiled in plasma samples from ALS (n = 350) 
versus control (n = 175) participants by untargeted metabolomics using ultra-high-performance liquid chromatography-tandem mass spectroscopy 
(UPLC-MS/MS) at baseline (T1), published in Goutman et al.15,16 Middle: Fifty-three ALS cases and 80 controls overlap between the baseline microbiome 
and metabolome cohorts. Significantly associated bacteria and circulating metabolites were identified by weighted gene co-expression network 
analysis (WGCNA) and two-way orthogonal partial least square with discriminant analysis (O2PLS-DA).
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2-year post-profiling intervals (Supplementary Fig. 5). There were 
also several acylcarnitines, intermediates of fatty acid metabolism, 
that correlated negatively with ALSFRS-R in the analysis of all scores. 
Additionally, of the seven ASVs in the black module (Supplementary 
Table 4), ASV_148 and ASV_1611 notably correlated with a decline in 
ALSFRS-R scores.

Next, we examined microbiome-metabolome correlations using 
multivariate regression O2PLS, a derivative of the widely used 
PLS-DA, which separates groups by maximizing covariance be
tween datasets based on systematic sources of variance within 
each dataset separately. O2PLS identifies systematic trends across 
datasets, e.g. microbiome and metabolome. Our O2PLS analysis 
selected several metabolites and ASVs that were significantly inter
correlated. The optimal model comprised 10 joint variance compo
nents between ASV relative abundance and metabolite levels. The 
unique variance was 2.8% in ASVs and 20.1% in metabolites 
(Fig. 4A). Noise variance was 81.6% for ASVs and 48.9% for metabo
lites. Using the joint variance in microbiome to predict metabolites 
explained 85.5% of variance, while using joint variance in metabo
lites to predict microbiome explained 88.1% of variance. The joint 
variance explained 15.6% of variance in ASVs and 31.0% of variance 
in metabolites. The considerable extent of joint variance suggests 
that bacterial variation was accompanied by changes in metabolite 
levels.

The family Lachnospiraceae represented 50% of the top 20 high
ly correlated ASVs (Fig. 4B), while lipid pathways comprised 50% of 

highly inter-correlated metabolites (Fig. 4C). Lipid sub-pathways 
corresponded to sphingomyelins (40%), long-chain polyunsatur
ated fatty acids (30%), long-chain monounsaturated fatty acids 
(10%), fatty acid dicarboxylate (10%) and phosphatidylcholine 
(10%). Notably, long-chain polyunsaturated and monounsaturated 
fatty acids correlated positively with ASVs, while the other lipids 
correlated negatively.

Next, we performed the O2PLS discriminatory analysis 
(O2PLS-DA) based on the joint variance from the O2PLS model. 
We found that most ALS cases could be separated from control par
ticipants based on the model (Fig. 5A). We used the variable import
ance in projection (VIP) score, a measure of importance to group 
separation between ALS cases versus controls, with a cut-off value 
of VIP > 1, identifying 133 significant ASVs (Supplementary Table 5). 
Most ASVs responsible for group separation belonged to the 
Lachnospiraceae family (Fig. 5B). In addition, among the top 20 
ASVs with VIP >1, ASV126 (Lachnospiraceae family), ASV78 
(Lachnospiraceae family), ASV49 (Erysipelatoclostridiaceae family) 
and ASV1719 (Anaerofustaceae family) were also highly inter- 
correlated with metabolites (Fig. 4C).

There were 247 metabolites with VIP > 1 (Supplementary 
Table 5) and of the top 20 metabolites contributing to group separ
ation, most were from the ‘lipid’ and ‘xenobiotic’ super-pathways 
(Fig. 5C). Lipids represented 50% of the top 20 metabolites, of which 
40% corresponded to fatty acid branched lipids, 30% to long-chain 
fatty acids, 20% to long-chain polyunsaturated fatty acids and 

Table 2 Clinical characteristics of participants overlapping between microbiome and metabolomics cohorts

Characteristics ALS group (n = 54) Control group (n = 79) P-value

Age, yearsa 66.7 ± 9.4 (43.1–84.8) 61.2 ± 8.3 (38.8–86.3) 0.004b

Sex – –
Male 33 (61.1%) 30 (38.0%) 0.013c

Female 21 (38.9%) 49 (62.0%)
Family history of ALS – –

Yes 6 (11.1%) 0 (0%)
No 47 (87.0%) 79 (100.0%)
Unknown 1 (1.9%) 0 (0%)

Race – –
White 54 (100.0%) 79 (100.0%)

ALS with frontotemporal dementia 0 (0%) –
Onset segment – –

Bulbar 17 (31.5%) –
Cervical 19 (35.2%) –
Lumbar 17 (31.5%) –
Respiratory 1 (1.9%) –

El Escorial criteria – –
Definite 7 (13.0%) –
Probable 23 (42.6%) –
Probable, lab supported 13 (24.1%) –
Possible 8 (14.8%) –
Suspected 3 (5.6%) –

ALS Functional Rating Scale-Revisedd 38.0 (34.0–40.8) –
Days from symptom onset to diagnosisd 370.5 (231.8–588.5) –
Feeding tube – –

Yes 4 (7.4%) –
No 50 (92.6%) –

Days from diagnosis to stool sampled 82.5 (44.0–193.2) –

Bold font indicates significant P-values. 
ALS = amyotrophic lateral sclerosis. 
aMean ± standard deviation (range). 
bStudent’s t-test. 
cFisher’s exact test. 
dMedian (interquartile range).
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Figure 2 Microbial structure differs in ALS cases versus controls. (A) At the first time point (T1), intragroup alpha-diversity was significantly lower in 
amyotrophic lateral sclerosis (ALS) (n = 75) versus control (Ctrl, n = 110) faecal samples, represented by box plots [median by horizontal line; interquar
tile range (IQR) by box; maximum/minimum by vertical lines]; *P < 0.01 by t-test. (B) At T1, intergroup beta-diversity differed significantly between ALS 
versus control faecal samples, represented by principal coordinate analysis based on Bray-Curtis dissimilarity analysis; P = 0.005 by ANOVA. (C) 
Relative abundance of phyla (Actinobacteria, Bacteroidetes, Cyanobacteria, Desulfobacterota, Firmicutes, Proteobacteria, Synergistota, 
Verrucomicrobiota) shown as stacked bar plots for ALS versus control; at T1 Firmicutes (P = 4.7 × 1016), Cyanobacteria (P = 0.010), at T2 Firmicutes 
(P = 7.4 × 1016), in ALS versus control, by Wilcoxon test. (D) Relative abundance of phyla in faecal samples from ALS cases with bulbar 
(n = 27) versus limb (n = 47) onset at T1 and T2; at T1 Bacteroidetes (P = 0.022), at T2 Firmicutes (P = 0.0014), in ALS versus control, by Wilcoxon test. 
(E) Relative abundance of phyla in faecal samples from ALS cases from disease onset to sample collection stratified by 0–24 months (mo; n = 87), 25–35 
months (n = 26) and >36 months (n = 26); Synergistota (P = 0.0074) in 0–24 months versus 25–35 months, Synergistota (P = 0.0074) in 25–35 months versus 
>36 months, by ANOVA. (F) At T1, butyrate-producing bacteria abundance was lower in ALS versus control focal samples, represented by box plots with 
data distribution; P < 0.05 by Wilcoxon test. (G) At T1, relative abundance of faecal ASVs at the genus level in ALS cases and controls by age (left) and BMI 
(right) represented by heat map; gradient colour scale represents correlation r-value. *P < 0.05, **P < 0.01, ***P < 0.001 by Spearman’s rank correlation. (H) 
At T1, genera ASVs driving gut microbial differences in ALS versus control faecal samples, assessed by logistic regression adjusted for age, sex and BMI. 
(I) At T1, significant biological pathways associated with gut microbial relative abundance in ALS cases versus control faecal samples represented by 
heat map using KEGG functional annotations; gradient colour scale shows over-represented (positive) and under-represented (negative) pathways in 
ALS; values scaled by row; significant pathways between groups with adjusted P < 0.05, by Wilcoxon test. BMI = body mass index.
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10% to long-chain saturated fatty acids. Other identified metabo
lites belonged to ‘amino acids’, ‘carbohydrates’, ‘cofactors and vita
mins’ and ‘partially characterized molecules’ super-pathways. 
Among the top 20 metabolites with VIP >1, 10-heptadecenoate 
(17:1n7), mannose, 3-phenylpropinate and docosatrienoate were 
also highly inter-correlated with ASVs (Fig. 4B). Moreover, function
al enrichment analysis for metabolites with VIP > 1, identified long- 
chain saturated fatty acid pathways as the most significant, along 

with significant enrichment of long-chain fatty acids and benzoate 
metabolism (Fig. 5D).

Mendelian randomization suggests a potential 
causal role of lipids in ALS

Both the WGCNA and O2PLS-DA analyses pinpointed potential links 
between microbiome and metabolites in ALS, especially through 
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lipids (Supplementary Table 6). However, both analyses are correla
tive and do not shed light on possible causation. We therefore per
formed Mendelian randomization of five ALS GWAS datasets of 
diverse racial and/or ethnic background39-42 against SNPs regulating 
a panel of 452 blood metabolites.34 The 452-metabolite blood panel 
examined correlations to broader metabolite and lipid classes, sev
eral that we found correlated to ALS in this study. This facilitated a 
direct comparison of our Mendelian randomization analysis to spe
cific species selected by the black, blue and pink WGCNA modules, as 
those differing significantly in ALS cases versus controls, and by the 
O2PLS-DA, which selected metabolites most responsible for the 
group separation of ALS cases from controls.

Eleven metabolites from the black module out of 36 members 
(31%) were significant in the Mendelian randomization analysis 
along with eight metabolites from the blue module out of 77 mem
bers (10%) and two in the pink module out of 35 members (6%). The 
black module was especially of interest as that most correlated to 
functional status by ALSFRS-R and as containing the most species 
of any WGNCA module identified by Mendelian randomization. 
All 11 overlapping metabolites, modulated by 105 SNPs, were lipids, 
primarily acylcarnitines of fatty acid metabolism, along with a 
range of fatty acid, monoacylglycerol and primary bile acid species. 

Between the blue module and Mendelian randomization, seven of 
the eight overlapping metabolites were lipids, mostly long-chain 
saturated fatty acids. Twenty-three of the metabolites with VIP >  
1 out of 247 (9%) from the O2PLS-DA analysis were significant in 
our Mendelian randomization analysis. Most were lipids, at eight 
species primarily of long-chain fatty acids, followed by six amino 
acids, four cofactors and vitamins and other various super- 
pathway members. Thus, overall, our Mendelian randomization 
analysis suggested potential genetically determined causality of 
blood metabolites, especially lipid species linked to fatty acid and 
acylcarnitine metabolism, to ALS, warranting further investigation.

Discussion
There is evidence suggesting gut dysbiosis occurs in ALS.5 The mi
crobiome regulates host gastrointestinal integrity, immune system 
activity and metabolism,38 which are all impacted in ALS.8-10,12,15-17

Although microbiome5,7,43-45 and plasma metabolome15,16,46-50

have been separately investigated in ALS, this is the first study, to 
our knowledge, to identify specific microbiome-plasma metabolite 
correlations in ALS, which could strengthen the robustness of 
potential biomarkers and offer mechanistic insight. Herein, we 
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longitudinally profiled gut microbiome changes in ALS and corre
lated the initial gut microbiome profile to the plasma metabolome. 
We found that gut microbial structure at the phylum level differed 
in ALS versus control participants, with differential abundance of 
several distinct genera. Unsupervised clustering of microbe and 
metabolite co-expression levels identified three modules that dif
fered significantly in ALS versus control participants. Network ana
lysis of the module, which was most significantly correlated to ALS 
functional status, found several prominent ASVs strongly linked to 
a group of metabolites, primarily lipids. Similarly, examining the 
microbes and metabolites that most deeply contribute to case ver
sus control separation again identified several ASVs correlated to 
metabolites, predominantly lipids.

Our earlier investigation into the microbiome of the mutant 
SOD1G93A ALS mouse model found gut dysbiosis, which evolved 
with time.8 We launched the present study to examine the micro
biome longitudinally in ALS in humans. First, we examined the 
overall community structure and found lower intra-communal al
pha diversity at baseline in ALS cases versus controls, meaning a 
less diverse gut microbiome in ALS. Inter-group beta-diversity did 
not clearly separate ALS cases from controls but differed signifi
cantly, indicating a distinct gut microbiome in ALS. Trends were 
maintained but were non-significant at subsequent time points. 

Lower alpha-diversity in ALS was noted by a human study,43 but 
not by others.7,44,45,51,52 Generally, although diminishing alpha- 
diversity is linked to unhealthy ageing, it is actually dependent on 
the loss or gain of ‘core’ microbes,53 which may account for differ
ences across studies, in addition to study size. Lack of evident group 
separation but with significant differences in beta-diversity in 
cases versus controls was usually noted in the literature7,43,44 al
though not universally.45,52,54

When we broke down community structure by phyla, we noted 
that Firmicutes and Cyanobacteria differed significantly in ALS 
cases versus controls at baseline. Cyanobacteria43 abundance was 
elevated and Firmicutes51 reduced in the ALS microbiome in 
some studies, but without differences by phyla in some.7 We also 
found Bacteroidetes significantly differed at T1 and Firmicutes at 
T2 in bulbar versus limb onset ALS. Few reports have examined mi
crobiome composition differences by ALS onset segment; however, 
no variation or non-significant variation was observed by studies 
that did investigate the dependence on onset segment or clinical 
phenotype.7,52 Dependence of microbiome composition on survival 
was noted by one study.7 Since the microbiome evolves with ageing 
or disease course,53 discordances across studies may have arisen 
from the time of sample collection relative to disease onset. 
Indeed, we noted differences in phyla abundance by the time of 
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sample collection relative to disease onset, which may, in part, ex
plain study variation. Thus, future investigations of the micro
biome in ALS should account for the time of sample collection.

Next, we homed in on microbiome differences in ALS at the 
genus level to generate finer-grained information. Certain bacterial 
genera provide energy to host cells through short-chain fatty acids, 
e.g. butyrate,36 which may be dysregulated in disease.55 Indeed, ALS 
cases had a slightly lower relative abundance of beneficial butyrate- 
producing bacteria versus controls. These findings align with previ
ous studies45,52,56 although one report found no difference.44 In our 
cohort, ALS cases were characterized by a higher relative abun
dance of Bacteroides (ASV9; phylum Bacteroidetes), Parasutterella 
(ASV24; phylum Proteobacteria) and Lactococcus (ASV38; phylum 
Firmicutes) and lower relative abundance of Faecalibacterium 
(ASV36, ASV2; phylum Firmicutes) and Bifidobacterium (ASV37; 
phylum Actinobacteria). Other studies have noted ALS cases with 
elevated Bacteroides45,56 and diminished Faecalibacterium56 and 
Bifidobacterium7,45; otherwise, distinct ASVs were identified across 
different studies, which may underlie ALS heterogeneity.52

Since microbiome restructures with ageing53 and metabolic 
status,57 we examined genera correlations with age and BMI. 
Additionally, ALS patients are characterized by significant BMI 
changes58 linked to hypermetabolism,6,59,60 which may potentially 
reflect in their microbiome. Associations were strongest and most 
significant among control participants, although three genera cor
related significantly in ALS participants, Veillonella positively with 
age and X Eubacterium eligens group and Family XIII AD3011 group 
negatively with BMI. Previous studies similarly identified a genetic 
correlation of Veillonella with age by Mendelian randomization.61

One other study found links between BMI43 and also disease pro
gression52 to specific genera in ALS, but associations were to distinct 
ASVs.

Our last examination solely of gut community was a functional 
analysis of the inferred metagenome. Multiple pathways were up
regulated in ALS microbiota, including lipid and amino acid metab
olism, whereas nucleotide metabolism, DNA replication, ribosome, 
autophagy, protein processing in endoplasmic reticulum and vari
ous infection pathways were downregulated. This is partly aligned 
with a recent study of faecal microbiome and metabolites from ALS 
participants, which also highlighted diminished nucleotide metab
olism but also decreased amino acid and carbohydrate metabol
ism.51 Another study identified 41 differential faecal metabolites 
in ALS cases versus controls, which were primarily lipids along 
with peptides, nucleic acids and various other metabolite species.62

By contrast, other studies reported no functional or inferred meta
genomic differences in ALS versus control microbiome.7,54 The 
relevance of dysbiosis in ALS presently remains incompletely 
understood; however, Mendelian randomization studies have ex
amined causality, finding a bidirectional relationship between gut 
microbiota and ALS.63,64

We next integrated the faecal microbiome and plasma metabo
lome datasets to seek microbe-plasma metabolite correlations. The 
first approach was unsupervised clustering of ASV abundance and 
metabolite levels by WGCNA, which identified three significant 
modules. Network analysis of the black module, which most strong
ly correlated with ALS and functional status, found seven ASVs, 
Akkermansia muciniphila (ASV7), Lachnospiraceae (ASV148, ASV235, 
ASV391), Rikenellaceae (ASV51), Marinifilaceae (ASV426) and 
Anaerococcus (ASV1611), correlated to 36 plasma metabolites, 75% 
of which were lipids. The second integrative method, O2PLS, identi
fied ASVs and metabolites that considerably contributed to the joint 
variance, suggesting that bacterial variation occurred in tandem 

with metabolite variation. Of the top 20 candidates, half were of 
the Lachnospiraceae family, along with Ruminococcaceae, 
Streptococcaceae and Anaerococcus, among others, and again, li
pids represented 50% of metabolites. O2PLS-DA further highlighted 
Lachnospiraceae UCG-010 (ASV126), Lachnospiraceae ND3007 group 
(ASV78), Erysipelotrichaceae UCG-003 (ASV49) and Anaerofustaceae 
Anaerofustis stercorihominis (ASV1719), along with four highly inter
correlated metabolites, which contributed to ALS versus control 
group separation, advocating them as potential biomarkers.

The ASVs that clustered or correlated with metabolites have 
documented relevance to ALS and neurogenerative disease. 
Akkermansia muciniphila is downregulated in the colon of SOD1G93A 

ALS mice,8 and colonization improves motor function and survival.9

ASV391 is of the genus Hungatella, which is positively associated with 
Parkinson’s disease65 and gastrointestinal symptoms.66 At the fam
ily level, Lachnospiraceae (genus bacterium A4) correlates strongly 
with disease progression in SOD1G93A ALS mice.67 In human studies, 
several genera of the Lachnospiraceae family differentiate ALS 
cases from controls,7,43,45 including Lachnospiraceae Dorea and 
Lachnospiraceae Blautia.7 Additionally, ASVs of the families 
Ruminococcaceae and Rikenellaceae also differentiate ALS cases 
from controls.7,43 ASVs of the Streptococcaceae family encompass 
the Streptococcus genus; although frequently commensal, a few 
Streptococcus species are pathogenic. Early reports suggest that 
infection, such as by virulence factors68 from Streptococcus pneumoniae 
and immune system activation,69 might aggravate ALS disease course, 
although this is debatable.70 Marinifilaceae Butyricimonas (ASV426), 
Peptoniphilaceae Anaerococcus (ASV1611), Erysipelotrichaceae UCG-003 
(ASV49) and Anaerofustaceae Anaerofustis stercorihominis (ASV1719) 
are, to our knowledge, the first instances shown to be potentially 
linked to ALS at the family and genus level.

Herein, lipids were the plasma metabolites most frequently cor
related to ASVs, including acylcarnitines, medium- and long-chain 
fatty acids of various saturation and branching, sphingomyelins 
and primary and secondary bile acids. Additional associated meta
bolites belonged to carbohydrates, nucleotides, amino acids, cofac
tors and vitamins, partially characterized molecules and benzoate 
metabolism. Furthermore, correlation of the black module to 
functional status prompted examination of member ASVs and meta
bolites to change in ALSFRS-R over time. Several significant 
candidates emerged; among them was 7-alpha-hydroxy-3-oxo-4- 
cholestenoate, which is involved in primary bile acid biosynthesis. 
Cystine is the oxidized form of the amino acid cysteine, the precur
sor to the antioxidant glutathione, and is essential for maintaining 
redox balance. Astrocytic expression of the cystine/glutamate anti
porter is elevated in ALS71; oxidative stress raises the need for gluta
thione, stimulating cystine import concomitant with glutamate 
export,72 which could trigger excitotoxicity, as seen in ALS. 
However, we found cystine increased with ALSFRS-R decline, indica
tive of an alternative or compensatory mechanism. Glutarate 
(C5-DC) is produced from amino acid metabolism, including lysine 
and tryptophan degradation. Excessive glutarate can deplete carni
tine, with implications for energy metabolism and, along with other 
similar intermediates, is neurotoxic and contributes to the neurode
generative disease glutaric aciduria type I.73

Changes in plasma lipids are a recurrent theme in ALS partici
pants.15,16,48 Our Mendelian randomization analysis using a rich 
GWAS dataset of genetically determined blood metabolites nar
rowed down the lipids potentially causal to ALS to fatty acid and 
acylcarnitine metabolism. Altered acylcarnitines and fatty acids 
could point to impaired β-oxidation.16 In our analysis to change in 
ALSFRS-R, several acylcarnitines increased in level as functional 
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score decreased with time. Primary and secondary bile acids, which 
correlate with BMI in ALS,58 could indicate maladapted intestinal li
pid absorption and dysregulated cholesterol metabolism,74 which 
may be causal in ALS.75-79 Glycochenodeoxycholate is a primary 
bile acid that was selected by the black WGNCA module and 
Mendelian randomization and is a very closely structurally related 
and derivatized species80 to a recently trialled ALS treatment, taur
oursodeoxycholic acid.81 To our knowledge, no study has examined 
microbiome-plasma correlations in ALS. However, relatively small 
studies of the faecal microbiome-metabolome noted a few correla
tions, including between microbes to bile acids51,62 and an 
acylcarnitine.51

The gut microbiome is intimately linked with host metabolism, 
including lipids.82 Under homeostatic conditions, specific benefi
cial gut microbes degrade dietary fibre, generating short-chain fatty 
acids, such as butyrate. Short-chain fatty acids serve as energy or 
biosynthesis substrates to the host, sensitize metabolically active 
tissue to insulin83 and promote host immune tolerance.37 The gut 
microbiota also metabolize primary bile acids into secondary bile 
acids. Bile acids primarily aid in lipid digestion within the gastro
intestinal tract, but additionally bind to various receptors, stimulat
ing host metabolism.82 Under pathologic conditions, gut dysbiosis 
occurs and may correlate or potentially causally promote impaired 
host metabolism, e.g. in obesity.84 Indeed, in addition to changes in 
plasma lipid levels, ALS is characterized by impaired metabolism,85

such as hypermetabolism and elevated energy expenditure,59,60

along with altered fatty acid β-oxidation.86,87 Overall, dysregulated 
lipids are a persistent theme in ALS and our findings here suggest 
that these changes may be potentially mediated by microbiome 
differences in patients. However, further investigation is needed, 
especially in animal models to assess causality. Indeed, the evi
dence to date supports this possibility; modifying lipid metabolism 
by ablating carnitine palmitoyl transferase 1, the transporter that 
shuttles fatty acids into mitochondria, from mutant SOD1 ALS 
mice simultaneously alters microbiome composition.88,89

This study has several strengths, such as the longitudinal design 
in a relatively large cohort of ALS cases and controls. Moreover, 
bacteria were identified down to the genus level using ASVs, and 
metabolomics analysis was untargeted using a highly validated 
platform, which accounts for instrument and process variability 
along with data curation. Computationally, we integrated the faecal 
microbiome and plasma metabolome datasets using two methods, 
WGCNA and O2PLS-DA. Our Mendelian randomization analysis uti
lized a large dataset of SNPs for genetically determined levels in 452 
blood metabolites to examine possible causality of metabolites to 
ALS, the most fine-grained analysis, to our knowledge. Our study 
also has limitations. We did not ask ALS participants to fast as it 
was deemed unethical. Moreover, since we did not collect dietary 
information, we could not match dietary habits, which influence 
microbiome90 and plasma metabolome,91 in ALS cases versus con
trols. Environment, e.g. dwelling, cohabitation, also impacts gut mi
crobiome composition,92 but we did not recruit controls from the 
same household. Furthermore, microbiome samples from ALS 
cases were collected at different time points relative to symptom 
onset. Finally, our study employed 16S RNA sequencing, which gen
erally only identifies microorganisms to the genus level, and we in
ferred functional profiles computationally. Thus, our study may 
have missed important species-level or functional information, 
such as horizontal gene transfer, which are only captured by higher 
resolution methods, such as shotgun metagenomics.24

In conclusion, our study revealed significant differences in the gut 
microbiome structure of ALS cases versus controls, both at the 

phylum and genus levels. Our integration of the microbiome and 
plasma metabolomics datasets identified specific ASVs that showed 
significant correlations to lipids, as revealed by two bioinformatics 
methods. Moreover, we identified ASVs and metabolites that strongly 
associated with ALSFRS-R decline, unlocking novel avenues for re
search into molecular mechanisms underlying ALS, developing po
tential therapeutic interventions and biomarker discovery. These 
findings are in line with previous reports on altered plasma lipidome 
in ALS. Moreover, Mendelian randomization advocates potential 
causality from particular lipid species, especially fatty acid and acyl
carnitine metabolism, and promotes future research avenues into 
targeted treatment approaches. Given the critical role of the gut mi
crobiome in regulating host immune system health and the occur
rence of immune dysregulation in ALS, future integration of the 
microbiome and/or the plasma metabolome with the inflammasome 
may constitute a fruitful line of investigation.
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