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� The LPS-induced tree shrews
exhibited severe shortness of breath,
resulting in hypoxemia.

� The induced group of animals
exhibited 72 � 120 h endpoints, and
none of them recover.

� Diffuse alveolar damage was
observed in the lungs of the tree
shrew, which is the histological
hallmark for the acute phase of ARDS.

� 3D reconstruction of the lung CT
images was used to accurately
measure the extent and distribution
of the whole lung injury in LPS-
induced tree shrews.
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Introduction: Acute respiratory distress syndrome (ARDS) is a leading cause of respiratory failure, with
substantial attributable morbidity and mortality. The small animal models that are currently used for
ARDS do not fully manifest all of the pathological hallmarks of human patients, which hampers both
the studies of disease mechanism and drug development.
Objectives: To examine whether the phenotypic changes of primate-like tree shrews in response to a one-
hit lipopolysaccharides (LPS) injury resemble human ARDS features.
Methods: LPS was administered to tree shrews through intratracheal instillation; then, the animals
underwent CT or PET/CT imaging to examine the changes in the structure and function of the whole lung.
The lung histology was analyzed by H&E staining and immunohistochemical staining of inflammatory
cells.
Results: Results demonstrated that tree shrews exhibited an average survival time of 3–5 days after LPS
insult, as well as an obvious symptom of dyspnea before death. The ratios of PaO2 to FiO2 (P/F ratio) were
close to those of moderate ARDS in humans. CT imaging showed that the scope of the lung injury in tree
alth, The
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shrews after LPS treatment were extensive. PET/CT imaging with 18F-FDG displayed an obvious inflam-
matory infiltration. Histological analysis detected the formation of a hyaline membrane, which is usually
present in human ARDS.
Conclusion: This study established a lung injury model with a primate-like small animal model and con-
firmed that they have similar features to human ARDS, which might provide a valuable tool for transla-
tional research.
� 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Acute respiratory distress syndrome (ARDS) is a major clinical
problem worldwide; it is caused by diffuse inflammation within
hours to days after an injury to the pulmonary parenchyma, and
it has few effective treatment options other than supportive
mechanical ventilation [1]. Despite the great efforts made to
understand the pathogenesis of ARDS and to improve the ability
of intensive care therapy, the mortality rate of ARDS patients is still
unacceptably high: in the range of 34.9–46.1%, depending on the
severity of critically ill patients [2–4]. The New Berlin Definition
for ARDS defined the disease as involving pathological changes in
the lungs, including massive inflammation, acute severe hypox-
emia, increased edema, diffuse alveolar hemorrhage, and the for-
mation of hyaline membranes [5–7]. The pulmonary hyaline
membrane—considered to be a blood derivative that is composed
of a mixture of cellular debris, immunoglobulin, fibrin, and plasma
protein—can impair gas exchange in clinical patients [6].

Although numerous pharmacological strategies have demon-
strated effectiveness in animal studies, none of them have success-
fully been translated into practice [8,9]. A variety of animal species
have been used for years in the study of ARDS, including both small
and middle animals (mice, rats, and rabbits) as well as large ani-
mals (sheep, pigs, and dogs) [10–13]. Because mice and rats often
die of shock upon LPS injury, the evaluation duration in these stud-
ies is usually no more than 24 h, and the researchers have to focus
primarily on detecting inflammatory cytokines and pulmonary
vascular permeability [14]. In addition, the hyaline membrane
structure is rarely observed in small rodent species. The applica-
tion of larger animal models requires both expertise manipulation
and special feeding facilities, and their pathophysiology remains an
ongoing controversy [10,15].

The tree shrew (Tupaia belangeri chinensis), which belongs to the
family Tupaiidae, is a squirrel-like small mammal (about 120–150 g
body weight) with many similar genomic and phenotypic features
to primates [16]. Other advantages that make the tree shrew an
ideal animal model include its easy breeding and rapid reproduc-
tion. As yet, this unique ‘low-grade primate’ has been widely used
in multiple studies of human diseases, including myopia, depres-
sion, cancer, hepatitis, depression, drug addiction, bacterial infec-
tion, fibrosis, and thrombosis [17]. The immune responses in tree
shrews were recently shown to resemble those in humans
[18,19], and the usage of this species for immune-related research
on viral infections is increasing, due to the animal’s susceptibility
to several human viral pathogens [20–22].

Animal models of ARDS can either simulate community-
acquired pneumonia by intratracheal administration of bacterial
LPS or reproduce aspiration pneumonia by injection of acid. Sepsis
from pulmonary or non-pulmonary infections is still the most
common etiology of ARDS [23]. The usage of LPS has been preferred
in establishing animal models, particularly in small-animal studies
[24,25].

In terms of the evaluation methodologies in ARDS animal stud-
ies, several pathological parameters have routinely been deter-
mined in both small and large animals, including inflammatory
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infiltration, vascular permeability, and alveolar hemorrhage [6].
In addition, Computed Tomography (CT) imaging of the lung, as
well as continuous monitoring of the animal’s respiratory syn-
drome and body weight, have also been performed in middle and
large animal models [26,27].

In the current study, tree shrews were subjected to intratra-
cheal instillation of high-dose LPS, and the ARDS-related manifes-
tations were comprehensively investigated. The major findings
here include the following: firstly, the one-hit LPS insult induced
obvious ARDS, which occurred within 3–5 days after insult; sec-
ondly, both micro-CT and positron emission tomography (PET)/
CT imaging techniques were used to provide dynamic data report-
ing on the structural and functional characteristics of the whole
lungs; thirdly, the hyaline membrane that is absent in conven-
tional small animals was prominently observed in tree shrews.
Therefore, we provide compelling evidence that the tree shrew,
as a ‘small’ but primate-like animal, can manifest many of the traits
of human ARDS.
Materials and methods

Preparation of animals and ethical approval

The study protocol was approved by the Institutional Animal
Care and Use Committee at Jinan University (No. IACUC-
20191014-01). Experiments were performed on 2-years-old tree
shrews, weighing 120～150 g (Animal Experimental Centre of Kun-
ming Medical University, Kunming, China). Generally, put a tree
shrew in each cage and was housed under controlled temperature
(15～24 �C), lighting (12:12 h light–dark cycle), humidity (50～
70%) conditions and provided with free access to food and sterile
water. In addition, mealworms were supplied once a week.
LPS-induced lung injury model

In order to accurately determine the depth of the tracheal intu-
bation, a tree shrew was firstly euthanized to detect the distance
from the larynx to branch of the lobar bronchus. Tree shrews were
intranasally with 180～200 mg/kg UltraPure LPS (Escherichia coli
O111:B4, sc-221855B, Santa Cruz Biotechnology, USA). PBS
group–Tree shrews were exposed to PBS and euthanized after
120 h; LPS group–Tree shrews were exposed to LPS and euthanized
after observed clinical symptoms, and breathing difficulties
(Table s1). The animals were premedicated by respiratory anesthe-
sia of isoflurane within isoflurane (3.5%) and 0.8 free oxygen
(Shenzhen Ryward Life Technology Co., Ltd., Shenzhen, China).
After loss of consciousness, endotracheal intubation of tree shrews
with modified child laryngoscope (simeite 2012–58, Jiangsu, China,
Figure s2) and indwelling needle (16GA � 5.25IN, Becton Dickin-
son Medical Devices Co., Ltd, Suzhou, China, Figure s3) to tracheal
LPS. Lung samples of each tree shrew was collected as shown in
Figure 1, and lung lobe marked NO.7 were fixed in 4% buffered
paraformaldehyde solution. An arterial blood gas sample catheter
was placed in the abdominal aorta and blood gas analysis was
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performed (SIEMENS Rapidpoint500, SIEMENS healthineers,
Germany).

Micro-Computed tomography

Tree shrews were transferred to the microscopic computed
tomography (PINGSENG Healthcare Inc., SNC-100, Jiangsu, China).
The scanning was performed during end inspiratory hold (70 kV,
0.55 mA, 44*44*88 lm pixel size, 0.088 mm slice thickness). After
being anesthetized with isoflurane, NO.1 tree shrew underwent
lung imaging with high resolution micro-CT on days 0, 3 and 5
respectively. Transmit CT scan images to 3D Slicer software for
analysis (https://www.slicer.org), such as segmentation, 3D recon-
struction, and volumetric analysis. In order to accurately character-
ize global changes in the lung during LPS lesion progression, a
manual segmentation is needed to correctly identify lung areas
that cannot be clearly detected due to lack of aeration, jagged or
severely damaged parenchyma and lack of clear boundaries.
Briefly, the segmentation using region growth algorithm is semi-
automatic. The lack of aeration regions was determined by manu-
ally drawing the outer boundary and the severely damaged lung
parenchyma inside. Based on the CT attenuation densities, differ-
ent aerated lung regions were divided into 4 categories: aerate
area, �1000 to � 121 HU; non-aerated, �120 to 121 HU [28].
The airway and vessels were carefully eliminated by manually
segmentation.

CT score

Both lungs were divided into the upper zone, middle zone, and
lower zone. A respiratory physician and two researchers scored
manually based on CT images. The degree of involvement of each
lung zone was scored according to the following criteria: score 0
(no involvement), score 1 (< 25% involvement), score 2 (25%
to < 50% involvement), score 3 (50% to < 75% involvement), and
score 4 (> 75% involvement) [29].

Micro-PET/CT imaging

Dynamic micro-PET imaging studies were conducted in tree
shrews using the InveonMicro PET/CT scanner (SIEMENS, Erlangen,
Germany). After being anesthetized with isoflurane, tree shrews
were injected intravenously within 14.8～18.5 MBq of 18F-FDG
into the animal through the tail vein and placed on a heating pad
to maintain body temperature during the process. The animal’s
breathing and any other signs of pain were visually monitored
throughout the entire imaging period. 10 min static PET images
were acquired at 60 min post injection, and then the imaging
started with a low-dose CT scan, shortly followed by a PET scan.
The CT scan was used for attenuation correction and localization
of lesion. The images were reconstructed by two-dimensional
ordered-subsets expectation maximum (OSEM). For data analysis,
the regions of interest (ROIs) were manually drawn over the
inflammatory site and lung on decay-corrected whole-body coro-
nal images using Inevon Research Workplace 4.1 software. The
radioactivity concentration (accumulation) in the inflammatory
site or lung was obtained from the averagen pixel values within
the multiple ROI volume.

SUV-bw = Tissue concentration (Bq/g)/[injected dose (Bq)/body
weight (g)].

Lung water content

At the end of experiment, the right upper lung of each tree
shrew was harvested and weighed, as the wet weight; and then
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dried to a constant weight at �80 �C for 72 h, as the dry weight.
The lungs were then wet-dry-ratios (W/D) were calculated.

Histopathological analysis and scoring

The left lower lungs of every tree shrew were embedded in
paraffin, cut into 4 lm-thick slices and stained with hematoxylin
and eosin (H&E). 10 fields were randomly selected on each slide
to score the total lung injury as previously described [30]. Digital
slide images were scanned using Pannoramic SCAN (3D Histech,
Hungary) and pathological changes including necrosis, atelectasis,
edema, hemorrhage, alveolar and interstitial inflammation, and
hyaline membrane formation were observed and scored on scale
of 0–4. The lung injury score referenced by Smith score was calcu-
lated as the sum of all individual injury scores [31]. The percentage
of pulmonary alveolar area (PAA) and mean alveolar number
(MAN) were calculated by morphological analysis. All the image
calculation and analysis were performed by case viewer 2.4 (3D
Histech, Hungary) and Image Pro Plus software 6.0 (Media Cyber-
netics, Silver Spring, USA).

Immunofluorescence and immunohistochemical analysis

Tissue sections for immunofluorescence were labeled with anti-
body F4/80 (Servicebio, GB11027, Wuhan Servicebio Trchnology
Co., Ltd, China). Tissue sections were immunostained using anti–
CD68 antibodies (Servicebio, GB11067, Wuhan Servicebio Trchnol-
ogy Co., Ltd, China). Macrophages were immunostained and
counted in randomly 10 high-power fields (HPF) and quantified
with positive area density by using the Image Pro Plus software
6.0 (Media Cybernetics, Silver Spring, USA).

Statistical analysis

The results are expressed as means ± SD. The two groups’ com-
parisons were made, using t test. Data were analyzed with Graph-
Pad Prism software, version 8.0 (GraphPad Software Inc., La Jolla,
CA, USA). A p value < 0.05 was considered statistically significant.
Results

The functional changes of tree shrew lungs in response to LPS insult

In order to dynamically characterize both the functional and the
structural alterations in tree shrew lungs upon LPS treatment, 6
tree shrews received endotracheal instillation of LPS and then were
subjected to both CT and PET/CT imaging at the indicated time
points; once obvious dyspnea occurred, they were euthanized (Fig-
ure 1a). The symptoms of respiratory failure in all six animals were
observed to occur between day 3 and day 5 (Figure 1b). During the
evolution of the LPS-induced lung injury, all LPS-induced tree
shrews exhibited obvious behavioral abnormalities starting on
day 3, including less activity, piloerection, and tachypnea.

The P/F ratio is widely used to evaluate the severity of ARDS, as
suggested by the 2012 New Berlin Definition of ARDS [32]. Accord-
ing to these guidelines, a P/F ratio of < 100 is severe ARDS, 100 to <
200 is moderate ARDS and 200 to < 300 is mild ARDS [33]. In this
study, the P/F ratios of only three animals were documented at
either day 3 or day 4; the rest of the tree shrews were close to
death after deep anesthesia when this assay was conducted. Unlike
the PBS-treated animals, which had an average P/F ratio of
300 mmHg, LPS-treated counterparts showed values of only 160–
200 mmHg, with a severity close to moderate ARDS in humans
(Figure 1c, Table s1). In addition, since the wet-to-dry (W/D) ratio
is another important indicator of the integrity of pulmonary
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Figure 1. Acute lung injury following LPS-induced in tree shrews. (a) Workflow of induction of tree shrew by LPS intratracheally instilled. (b) The percent survival of PBS
and LPS-induced tree shrews. (c) Arterial oxygenation (P/F) was evaluated following obvious symptoms of dyspnea. (d) Changes in alveolar-capillary barrier are measured by
the wet-to-dry ratio (W/D). n = 3～6. **p < 0.01, ***p < 0.001 vs PBS.
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alveolar-capillary barrier function [34,35], this parameter was cal-
culated for one lung lobe from all six animals after their euthanasia
(Online Supplementary Materials and method). As shown in Fig-
ure 1d, the average lung W/D ratio in LPS-treated tree shrews was
dramatically much higher than that in the PBS group. These results
collectively demonstrated that a high dose of LPS was able to trig-
ger a moderate-intensity ARDS response in tree shrews.
LPS challenge aggravates lung injury, as evaluated by micro-CT

As CT imaging can render the complete pictures of not only lung
structure but also pulmonary aeration function [36,37], this non-
invasive technique was applied to LPS-treated tree shrews at 3 or
5 days after injury. The CT images from the one animal that sur-
vived up to 5 days demonstrated that the consolidated areas
(�120 to +121 HU) and aerate areas (�1000 to �121 HU) of the
tree shrew lungs [28,38] were gradually enlarged before the advent
of respiratory failure (Figure 2a), indicating the irreversible nature
of LPS-induced lung injury in this species (Figure s1).

Because most LPS-insulted tree shrews started to show symp-
toms of respiratory failure at 3～5 days after treatment, the total
volume of non-aerated regions in all six animal lungs was calcu-
lated at the time point of day 3 (Table s2). As demonstrated in
the three-dimensional (3D) image (Figure 2b), LPS insult caused
bilateral patchy infiltrates, which were particularly prominent at
the basal parts of the lung, interlobar fissures, and lower lobes—a
distribution pattern similar to that in clinical ARDS patients
[38,39]. The ratios of non-aeration to total lung volume, observed
in the CT images of all six animals on day 3, ranged from 20 to
70%, with an average value of 37% (Figure 2c).
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Meanwhile, we used the traditional method (i.e., the lung score
method part) to assess the lung injury in the LPS-induced tree
shrews. As shown in Figure 2d, the overall CT score in the LPS-
treated group at day 3 (range 14.0～23.9) was significantly higher
than that in the PBS-treated group (range 0～5.3), which is consis-
tent with the manifestation of the main features of an experimen-
tal ARDS model under the Berlin Definition (Table s3) [33].
Collectively, the distributed region of lung injury in the LPS-
induced tree shrew model, as evaluated by micro-CT, triggered
typical diffuse alveolar damage, which is consistent with ARDS
patients.
Pulmonary inflammation, evaluated by 18F-FDG PET

Since PET scan tracking of 18F-fluorodeoxyglucose (18F-FDG)
uptake has been proven to reflect the neutrophil accumulation
and activation in experimental ALI [40–42], this imaging technique
was applied in our LPS-challenged tree shrewmodel. The represen-
tative coronal and sagittal images at 1 h after caudal vein injection
of 18F-FDG are shown in Figure 3a. The radioactivity signal was
clearly visualized in the lung parenchyma in the LPS-treated group
at 1 and 2 days, while no obvious signal was observed in the lung
parenchyma in the PBS-treated group. Furthermore, micro-PET
quantitative analysis showed that the 18F-FDG standardized uptake
value (SUV) mean of the pulmonary lung in the LPS-treated group
was notably higher than that in the PBS-treated group (1.07 ± 0.10
vs. 0.23 ± 0.02 at day 1, 1.10 ± 0.08 vs. 0.27 ± 0.07 at day 2,
p < 0.001; Figure 3b). These results indicate that the inflammation
response of LPS-induced ARDS lungs in tree shrews occurred
rapidly and persisted at a high level.



Figure 2. Micro-CT imaging of LPS-induced lung. (a) Representative micro-CT imaging of lung and colormap of NO.1 LPS-induced tree shrews at 0, 3, 5 days: transverse,
coronal and color maps of transverse and coronal respectively. 3D renderings of LPS-infected tree shrew at day 0, 3, 5 with the aerated region ([�1000, �121] HU) in the blue
and non-aerated region ([�120, +121] HU) in red. (b) Representative calculation of lung CT non-aerated volume of NO.1 tree shrew. (c) Quantitative CT volumetric evaluation
of lung aeration. (d) Scoring the lung injury through the traditional analysis. n = 6, Data are expressed as mean ± SD, **p < 0.01, ***p < 0.001.
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Figure 3. 18F-FDG uptake on retention in the lung at the peak of immune response. Decay-corrected whole-body coronal and sagittal micro-PET images of LPS-treated. (a)
and PBS-treated tree shrews a static scan at 1-h time point after injection of 18F-FDG. The white arrows indicated the inflammatory site. (b) Comparing the uptake of 18F-FDG
in the lung of LPS-treated and PBS-treated (n = 3～5). Data are represented as mean ± SD. ***p < 0.001.
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Lung histology

To further detect whether the pathological damage to the lungs
of LPS-treated tree shrews is consistent with the pathological char-
acteristics of human ARDS, we evaluated the histopathological
changes through H&E staining. As shown in Figure 4a and b, the
gross finding represented bilateral diffuse discoloration and focal
consolation of the lung in the LPS group, which indicated obvious
lung tissue injury in the tree shrews. The pathology results also
revealed an array of increased cell counts, including neutrophils,
macrophages, lymphocytes, which participate in inflammation.
Compared to the normal pulmonary histological structures (Fig-
ure 4c1 and c2), the thickened alveolar septum (Figure 4c4), hem-
orrhage (Figure 4c5), edema, the proteinaceous debris filling the
alveolar spaces and airspaces (Figure 4c6), the massive neutrophils
(black arrowhead) accumulation, and infiltration were observed in
the lungs of LPS-treated tree shrews, which was consistent with
typical histopathological characteristics of human ARDS. Interest-
ingly, the hyaline membrane (Figure 4c4, yellow arrow) was only
observed in one lung of the experimental tree shrews, which
makes it more similar to human ARDS than other small rodent
models. Based on these histopathological changes, we combined
lung injury score, MAN, and PAA analysis to semi-quantify the
degree of lung injury. As shown in Figure 4d, e, and f, the degree
of lung injury in LPS-treated tree shrews was dramatically more
severe than that in the PBS-treated group.

Another typical pathological characteristic of human ARDS is
potently increased alveolar macrophages, which is one of the main
inflammatory cells involved in the pathogenesis of ARDS in
humans and other animal models [43]. The alveolar macro-
phages—either immunohistochemically stained (brown particles)
or immunofluorescence stained (green particles)—were abun-
dantly greater in the LPS-treated group than in the PBS-treated
group (Figure 5a and b). Further semi-analysis demonstrated that
the number of macrophages and the positive area density in lungs
of LPS-treated tree shrews were both significantly greater
(Figure 5c and d). Collectively, the lung injury in the ARDS tree
shrews exhibited bilateral diffuse discoloration, massive
neutrophils accumulation, severe alveolar septum thickening, and
hemorrhage: these fulfill the main criteria of the histological
pattern of the diffuse alveolar damage in ARDS [14]. These results
strongly suggest that the typical pathological changes of lung
injury in LPS-treated tree shrews tends to be a serious pathological
injury, which is consistent with the pathological injury in the New
Berlin Definition of human ARDS.
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Discussion

Our present findings showed that tree shrew models of ARDS
triggered by a one-hit intratracheal instillation of LPS reproduced
many of the characteristics of the acute phase of ARDS in human
patients, such as prolonged endpoints, obvious symptoms of dysp-
nea, intensive inflammatory infiltration, and the formation of a
hyaline membrane in the lung (Figure 6).

Unlike mouse and rat models of ARDS, which often die of shock
after no more than 24 h of lung injury, the survival endpoints of all
tree shrews used here ranged between 72 and 120 h. The long-
lasting duration and non-resolution nature observed in tree shrew
models is a typical feature seen in human ARDS patients [6],
although it is in contrast with the self-resolved nature of ARDS in
middle and large animal models (such as rabbits and sheep) [44].
In addition to the manifestation of survival, the P/F ratios of tree
shrew models also matched the level of moderate ARDS patients,
as established by the New Berlin Definition. Hence, from the
aspects of survival duration and blood oxygen saturation in
response to lung injury, tree shrews appear to be very similar to
humans.

Using 3D quantitative assessments of lung CT imaging data,
we found that the injured lesions in tree shrew lungs were pre-
dominantly located in the basal parts. Interestingly, these regions
were also reported to be damaged in patients whose ARDS was
caused by SARS-CoV-2 infection [39]. In contrast to traditional
CT methods used in previous ARDS studies, which mostly demon-
strate the lung images of one specific transverse section, here we
not only provided the non-aeration regions across the whole lung
but also calculated their total volumes through a recently devel-
oped algorithm [45]. Non-invasive quantitative assessment of
the scope of lung injury might be particularly useful for future
studies of both disease progression and drug therapy effects in
ARDS.

It is well known that a higher W/D index and a massive infiltra-
tion of inflammatory cells are primary hallmarks of both ARDS
patients and classical animal models [46]. These histological fea-
tures were also observed as occurring in tree shrew lungs. In addi-
tion to pulmonary edema, hyaline membrane formation represents
another important pathological change in ARDS patients; notably,
the structure of a typical hyaline membrane was shown to be pre-
sent in the lung of one injured tree shrew, even though it is rarely
observed in small animal models [47]. This observation provides
more evidence supporting the proximity between tree shrews
and humans in ARDS response.



Figure 4. Histopathologic evaluation of lung injury from tree shrews after intratracheal instillation of LPS. (a) Gross finding of lungs from tree shrew represented
obvious lobe discoloration. 3 lobes on the left side (L) and 4 lobes on the right side (R) of the whole lung of the tree shrew. (b) The whole lung pathological section of marked
NO.7 lobe of the lung. (c) Representative images of pulmonary histopathology. The lung injury score (d), percentage of the pulmonary alveolar area (e), and mean alveolar
number (f) of the LPS-induced tree shrew group. Black arrow: neutrophil, black arrowhead: macrophage, yellow arrowhead: erythrocyte, yellow arrow: hyaline membrane,
yellow asterisk: exudate protein debris. ***p < 0.001 vs. PBS group (n = 6).
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Although this study is the first to reveal that LPS-induced tree
shrew lung injury manifests several of the same characteristics of
human ARDS patients, a number of questions still need to be
addressed in future studies. First, can longer survival of tree shrew
ARDS models be established by lower dose of LPS? Second, can
other types of conventional stimuli for ARDS (such as mechanical
ventilation, smoke, and oleic acid) similarly induce human-like
phenotypes of ARDS? Third, what kind of inducers or situations
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could exaggerate the formation of a hyaline membrane in tree
shrew lungs? Finally, it is necessary to utilize well-validated anti-
bodies against specific biomarkers of tree shrews in order to inves-
tigate the exact types of cells involved in the disease progression of
ARDS [46].

To summarize, the data from this investigation suggest that tree
shrews might represent the smallest species that can induce simi-
lar ARDS phenotypes to those found in humans, and thus these ani-



Figure 5. Counts for macrophages (green) increased in the ARDS group of tree shrews. (a) Slides stained immunohistochemically with CD68. Representative images of
lungs from the PBS-treated and LPS groups of tree shrews. (b) Slides stained with F4/80 (green) antibodies. (c) The numbers of macrophages of HPF. (d) and Semi-analysis of
positive area density revealed a significant difference between LPS and PBS-treated groups of tree shrews. ***p < 0.001 vs. PBS-treated group (n = 6).

Figure 6. Several advantages of one-hit LPS-induced ARDS tree shrew models compared to human ARDS. The pictures showed the signs and symptoms of tree shrew
model and human. This figure was created by Biorender (https://app.biorender.com/).

J. He, Y. Zhao, Z. Fu et al. Journal of Advanced Research 56 (2024) 157–165
mals could serve as a feasible model for preclinical evaluations of
ARDS drugs.
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