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Significance

Translation initiation is primarily 
governed by eIF4F, employing a 
“cap-dependent” mechanism, but 
eIF4F dysregulation may lead to a 
cap-independent mechanism in 
stressed cancer cells. We found 
frequent amplification of 
translation initiation genes and 
co-occurring copy number gains of 
EIF4G1 and EIF3E genes in human 
cancers. EIF4G1 amplification or 
duplication may be positively 
selected for its beneficial impact 
on the overexpression of cancer 
survival genes. The co-regulation 
of eIF4G1 and eIF4A1 protein 
levels, distinctly from eIF4E, reveals 
eIF4F dysregulation favoring 
cap-independent initiation. 
Alphafold predicts changes in the 
eIF4F complex assembly to 
accommodate both initiation 
mechanisms. These findings have 
significant implications for 
evaluating cancer vulnerability to 
eIF4F inhibition and developing 
treatments that target cancer cells 
with dependency on the 
translation initiation mechanism.
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The canonical eukaryotic initiation factor 4F (eIF4F) complex, composed of eIF4G1, 
eIF4A1, and the cap-binding protein eIF4E, plays a crucial role in cap-dependent trans-
lation initiation in eukaryotic cells. An alternative cap-independent initiation can occur, 
involving only eIF4G1 and eIF4A1 through internal ribosome entry sites (IRESs). This 
mechanism is considered complementary to cap-dependent initiation, particularly in 
tumors under stress conditions. However, the selection and molecular mechanism of 
specific translation initiation remains poorly understood in human cancers. Thus, we 
analyzed gene copy number variations (CNVs) in TCGA tumor samples and found 
frequent amplification of genes involved in translation initiation. Copy number gains 
in EIF4G1 and EIF3E frequently co-occur across human cancers. Additionally, EIF4G1 
expression strongly correlates with genes from cancer cell survival pathways including cell 
cycle and lipogenesis, in tumors with EIF4G1 amplification or duplication. Furthermore, 
we revealed that eIF4G1 and eIF4A1 protein levels strongly co-regulate with ribosomal 
subunits, eIF2, and eIF3 complexes, while eIF4E co-regulates with 4E-BP1, ubiquiti-
nation, and ESCRT proteins. Utilizing Alphafold predictions, we modeled the eIF4F 
structure with and without eIF4E binding. For cap-dependent initiation, our mode-
ling reveals extensive interactions between the N-terminal eIF4E-binding domain of 
eIF4G1 and eIF4E. Furthermore, the eIF4G1 HEAT-2 domain positions eIF4E near 
the eIF4A1 N-terminal domain (NTD), resulting in the collaborative enclosure of the 
RNA binding cavity within eIF4A1. In contrast, during cap-independent initiation, 
the HEAT-2 domain directly binds the eIF4A1-NTD, leading to a stronger interac-
tion between eIF4G1 and eIF4A1, thus closing the mRNA binding cavity without the 
involvement of eIF4E.

eukaryotic initiation factor 4F (eIF4F) | cap-independent translation initiation | eIF4F dysregulation |  
eIF3e | computational analysis

Translation initiation is the most crucial regulatory step in protein synthesis, where the 
eukaryotic initiation factor 4F (eIF4F) complex binds to activated mRNA and recruits 
ribosomes to translate it into a functional protein (1). Cancer cells rely heavily on eIF4F 
to drive aberrant protein synthesis that supports their survival, proliferation, and metastasis 
(2–4). The canonical eIF4F complex contains three core factors: the scaffold protein 
eIF4G1, the cap-binding protein eIF4E, and the RNA helicase eIF4A1. eIF4G1 has 
multiple binding domains, which variously can interact with the 5′UTR of mRNA, eIF4E, 
eIF4A1, the eIF3 complex, PABP1, and Mnk1/2 (5). When eIF4G1 binds to mRNA, its 
interaction with eIF4E can force proximity between eIF4E and the 7-methylguanosine 
cap at the 5′ end of mRNAs, stabilizing the cap and eIF4E interaction (6, 7). eIF4E in 
turn modulates eIF4G1's ability to stimulate eIF4A1, which unwinds the mRNA second­
ary structure for the ribosome attachment (8). The eIF3e subunit of the eIF3 complex 
directly interacts with eIF4G1, as a connection between eIF4G1 and the 40S ribosomal 
subunit (9, 10).

Overexpression or activation of eIF4F subunits by oncogenic signaling pathways can 
increase protein synthesis, promoting tumor growth (11). Cancer development involves 
genetic alterations enabling cell transformation, survival, drug resistance, and metastasis 
(12, 13). Selective genetic alterations in translation initiation genes are likely critical for 
tumor adaptation. However, quantification of positive selection in translation initiation 
across human cancers is lacking, impeding efforts to target eIF4F inhibition effectively.

eIF4F can initiate translation through a cap-dependent mechanism (with eIF4E) or a 
cap-independent mechanism (without eIF4E) (1, 14). eIF4E in its own right plays a dual 
role, in translation initiation, and the export of cell cycle gene mRNAs from the nucleus 
to cytoplasm through the nuclear pore complex (NPC) (15). Nutrient deprivation can 
cause eIF4E to accumulate in the nucleus in favor of mRNA transport, reducing its 
availability for eIF4F (16). Imbalanced expression of EIF4G1 and EIF4E genes have been 
suggested to dysregulate cap-dependent initiation and favor cap-independent initiation 
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in human cancers (17). Factors such as eIF4E binding protein 1 
(4E-BP1) can facilitate cap-independent mechanisms under 
hypoxia (18) by preventing eIF4E from participating in eIF4F. 
On a molecular level, translation initiation typically requires 
eIF4A1 to interact with eIF4G1’s HEAT-1 domain. For cap- 
independent initiation, eIF4A1 must furthermore interact with 
eIF4G1’s HEAT-2 domain (19, 20). However, cellular pathways 
contributing to cap-independent initiation remain incompletely 
understood, and structural insight into eIF4F complex assembly 
for both mechanisms is limited. Addressing these questions is 
crucial for the development of cancer treatment drugs that target 
translation initiation.

To understand the importance of eIF4F components, we 
employed computational methods on large public datasets to 
investigate the impact of positive selection on eIF4F dysregulation 
in cancer. By analyzing copy number variation (CNV) and 
RNA-Seq data from over 10,000 tumors in The Cancer Genome 
Atlas (TCGA), we found that translation initiation genes often 
exhibit co-occurring amplification in tumors. We observed a 
strong correlation between the expression of EIF4G1 and genes 
associated with cancer survival, in tumors with EIF4G1 amplifi­
cation or duplication (gain). Our analysis of proteomics data from 
the Cancer Cell Line Encyclopedia (CCLE) and CRISPR loss-of- 
function screen data from the Cancer Dependency Map (DepMap) 
revealed that eIF4E and eIF4G1 are essential for cancer cell sur­
vival but co-regulate with different protein complexes. Employing 
AlphaFold, we generated structural predictions for eIF4F com­
plexes with and without eIF4G1–eIF4E binding. Our analysis 
revealed that the eIF4G1 HEAT-2 domain can adopt distinct 
conformations, facilitating both cap-dependent and 
cap-independent initiation mechanisms.

Results

Co-Occurring Copy Number Gain of Translation Initiation Genes 
in Tumors. Although the EIF4G1 gene is frequently amplified 
in human cancers and is considered to be a driver gene (17), its 
frequency of amplification has not been assessed in the context 
of copy number variations (CNVs) across all genes in human 
cancers. To address this, we identified 703 genes amplified in 
a minimum of 5% of TCGA tumor samples across 33 cancer 
types (Fig. 1A and SI Appendix, Table S1). Gene amplification 
was less frequent than duplication (SI  Appendix, Fig.  S1A), as 
it often occurs through multiple steps following duplication 
(21). We focused on amplifications over duplications, because 
amplifications represent more persistent genomic changes under 
selection pressure (22).

Among the 703 most frequently amplified genes in human cancers, 
we found a significant enrichment of biological functions related to 
translation initiation, glycosylphosphatidylinositol-anchored protein 
synthesis, and FGFR2 signaling pathways (Fig. 1 B and C). Initiation 
factors such as EIF4G1, EIF3E, EIF3H, EIF4A2, EIF2B5, and 
PABPC1, and several genes encoding cellular and mitochondrial ribo­
somal large subunits, were among the most frequently amplified in 
TCGA cancers (SI Appendix, Fig. S1B). In addition, we analyzed the 
correlation of their copy number values across tumor samples. 
EIF4G1, EIF4A2, and EIF2B5 display strong statistical associations 
(SI Appendix, Fig. S1C), likely due to their chromosomal proximity 
at 3q27. Similarly, we found strong statistical associations between 
EIF3E, EIF3H, and PABPC1, likely due to their chromosomal prox­
imity at 8q23.

EIF4G1, EIF4A2, EIF3E, and EIF3H are frequently duplicated 
or amplified in most TCGA cancer types, particularly in lung 
squamous cell carcinoma and head & neck squamous cell 

carcinoma (Fig. 1D and SI Appendix, Figs. S1D and S2 A and B). 
Furthermore, we observed that a significant portion of the tumors 
had copy number gain in both EIF4G1 and EIF3E (Fig. 1E and 
SI Appendix, Fig. S2C), even though they are located on different 
chromosomes. Fisher’s exact test showed that the co-occurrence 
of copy number gains in these genes was significantly higher than 
what would be expected by chance (Fig. 1F and SI Appendix, 
Fig. S2D). We observed a comparable co-occurrence between the 
copy number gains of EIF4G1 and EIF3H.

Kaplan–Meier analysis revealed that patients with copy num­
ber gains in either EIF3E or EIF4G1 had significantly worse 
survival probabilities than those with diploid status for both genes 
in all TCGA cancer types (Fig. 1G and SI Appendix, Fig. S2E). 
Patients with copy number gains in both EIF3E and EIF4G1 had 
even worse survival probabilities than those with gain in only 
EIF3E. Similar patterns were observed in many cancer types 
(SI Appendix, Fig. S3 A to F). These findings indicate that genes 
from the eIF4F and eIF3 complexes often exhibit co-occurring 
copy number gains, which is associated with cancer progression. 
Moreover, the benefits tumor cells derive from copy number gain 
in EIF4G1 may depend on the co-occurring gain of other trans­
lation initiation genes.

A Strong Correlation of Expression between EIF4G1 and Cancer 
Survival Genes in Tumors with EIF4G1 Copy Number Gain. To 
determine whether the observed gene amplification is due to 
positive selection for the tumor-promoting effects of translation 
initiation genes or simply due to the susceptibility of these loci 
to amplification (23), we studied the cellular impact of initiation 
gene amplification on the cellular transcriptome. We identified 
genes that differentially correlate with EIF4G1 mRNA expression 
in TCGA tumors categorized based on their EIF4G1 CNV statuses 
and in GTEx healthy tissues.

We divided the correlating genes into five clusters (Fig. 2A) and 
performed pathway enrichment analysis (Fig. 2B). We found that 
the genes in “cluster 4” had strong positive correlations with 
EIF4G1 expression in tumors that contained EIF4G1 copy num­
ber gain. However, the strength of these correlations decreased in 
tumors with EIF4G1 diploid or deletion, as well as in healthy 
tissues. In contrast, when we performed similar analyses on EIF3E 
and EIF3H, we did not identify any gene clusters that had stronger 
correlations in tumors with a gain of EIF3E or EIF3H (SI Appendix, 
Fig. S4 A to D).

Moreover, the cluster 4 genes from EIF4G1 analysis (Fig. 2 A 
and B) are involved in the pathways crucial for cancer cell survival, 
such as regulation of cell cycle, cholesterol synthesis and lipogenesis, 
and cell adhesion pathways (24–26) (Fig. 2C). In contrast, the genes 
in clusters 3 and 5 had strong positive correlations with EIF4G1 in 
healthy tissues, but not in tumors, and are involved in housekeeping 
pathways such as translation and ribosomal RNA processing 
(SI Appendix, Fig. S5 A and B). These findings suggest that EIF4G1 
positively influences pathways beneficial for cancer survival, espe­
cially in tumors with EIF4G1 gain. However, in tumors, EIF4G1’s 
influence on housekeeping pathways is weaker compared to healthy 
tissues. Interestingly, in healthy tissues, cluster 1 and cluster 2 genes 
exhibit anti-correlations with EIF4G1 expression (Fig. 2A), which 
include genes for neuronal proteins, G proteins, and ion channels.

To verify whether the observed differential expression correlations 
reflect differential gene expression, we used the dimensionality 
reduction algorithm, uniform manifold approximation and projec­
tion (UMAP) (27), to assess cluster 4 gene expressions in healthy 
tissues and tumors. The UMAP analysis clearly distinguished 
healthy tissue samples from tumor samples based on the differential 
expression of cluster 4 genes. Multiple distinct clusters were observed 
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among healthy tissues (green dots in Fig. 2D), likely indicating 
tissue-specific separation. Most tumors with EIF4G1 amplification 
or duplication (red or orange dots in Fig. 2D) formed separate 
groupings from tumors with EIF4G1 diploid or deletion, indicating 
differential expression of cluster 4 genes within tumor groups. 
Additionally, UMAP was employed for the expression of clusters 3 
and 5 genes in healthy tissues and tumors, which confirmed the 
differential expression of clusters 3 and 5 genes between healthy 
tissue and tumors (SI Appendix, Fig. S5 C and D).

Finally, we confirmed that the expressions of EIF4G1 and sev­
eral cluster 4 genes were significantly elevated in tumors with 
EIF4G1 gain (Fig. 2 E to J and SI Appendix, Fig. S5 E to H), 
suggesting increased activities of cancer survival genes co-regulated 
with EIF4G1, particularly in tumors with EIF4G1 gain. Altogether, 
these findings suggest that EIF4G1 gain is likely a result of positive 
selection for its tumor-promoting effects.

Dysregulated eIF4F Complex Subunits Are Essential for Cancer 
Cell Survival. Co-occurring amplification of specific initiation 
factors may indicate dysregulation of initiation complexes in 
cancers. To investigate the dysregulation of eIF4F, we first analyzed 
the correlations among eIF4G1, eIF4A1, eIF4E, 4E-BP1, eIF3E, 
and eIF3H protein levels in 375 cancer cell lines from CCLE (28). 
Strong positive correlations were found between eIF4A1 and eIF4G1 
(r = 0.632), eIF4E and 4E-BP1 (r = 0.534), eIF3E and eIF3H (r = 
0.885), eIF4G1 and eIF3E (r = 0.634), eIF4G1 and eIF3H (r = 
0.563), eIF4A1 and eIF3E (r = 0.679), and eIF4A1 and eIF3H  
(r = 0.650) (Fig.  3A). However, eIF4E showed weak positive 
correlations with eIF4G1 (r = 0.358) and no correlations with 
eIF4A1, eIF3E, or eIF3H.

We then identified cellular proteins strongly correlated with 
these proteins, grouped them into four clusters (Fig. 3B), and 
conducted pathway enrichment analysis (Fig. 3C). Cluster 3 
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Fig. 1. Translation initiation genes frequently co-amplify in TCGA tumor samples. (A) The Kernel density estimate plot shows the frequency of cellular gene 
amplification in 10,845 tumors across 33 cancer types in the TCGA database. The highlighted region includes genes amplified in more than 5% of tumors (right 
of dashed line). (B) The dot plot displays pathway enrichment analysis results for the top 703 frequently amplified genes identified in (A). Gene ratio represents 
the ratio of pathway-associated genes to total genes of interest. Dot size indicates the number of genes in each pathway. “P-adjust” is the adjusted P-value using 
a hypergeometric distribution test for multiple comparisons. (C) The star network plot illustrates the genes in the enriched pathways from (B). Central node size 
represents the number of genes in each pathway. Peripheral node color indicates the amplification frequency of corresponding genes. (D) The stacked bar plot 
displays EIF4G1 copy number variation (CNV) status in different cancer types. (E) The Venn diagrams show the co-occurrence of copy number gain (amplification 
or duplication) for indicated genes in TCGA tumors. (F) presents the co-occurrence analysis of copy number gain events for two genes using a contingency table. 
A positive odds ratio indicates a trend toward co-occurrence. A one-sided Fisher’s exact test was performed to test the null hypothesis of no relationship between 
the copy number gain events for the two genes. A low P-value suggests that the observed pattern is unlikely due to chance and more likely driven by a specific 
biological mechanism. (G) The Kaplan-Meier plot displays the survival probabilities of 10,746 TCGA patients with cancer based on gene copy gain of EIF4G1 and/
or EIF3E statuses within their tumors (indicated inside each box). The statistical significance of differences was determined by P values from log-rank tests. The 
shaded areas represent a 95% confidence region for the curve.
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proteins positively correlate with eIF4G1, eIF4A1, eIF3E, and 
eIF3H and are involved in translation initiation and ribosomal 
large and small subunits (SI Appendix, Fig. S6A). Cluster 4 pro­
teins positively correlate with eIF4E and 4E-BP1, but not with 
eIF4G1, eIF4A1, eIF3E, or eIF3H. These proteins are involved 
in ubiquitination, nucleotide metabolism, and endosomal sorting 
complexes required for transport machinery (ESCRT) pathways 
(SI Appendix, Fig. S6D). Cluster 1 proteins negatively correlate 
with eIF4G1, eIF4A1, eIF3E, and eIF3H and are involved in 
mRNA splicing (SI Appendix, Fig. S7A), while cluster 2 proteins 
negatively correlate with eIF4E and 4E-BP1 and participate in 
extracellular matrix organization and viral infection pathways 

(SI Appendix, Fig. S8A). These findings indicate distinct co- 
regulation mechanisms for eIF4A1, eIF4G1, eIF3E, and eIF3H 
compared to eIF4E and 4E-BP1, suggesting dysregulation of cap- 
dependent initiation and potential cap-independent initiation 
mechanisms in cancer cells.

To identify the protein complexes involved in co-regulation 
pathways, we constructed a protein–protein interaction network 
using the STRING dataset (Fig. 3D). Cluster 3 contains numer­
ous subunits from complexes such as the ribosome, eIF2, eIF3, 
and eIF4F. Our analysis of the cluster 3 network’s degree centrality 
(Fig. 3E and SI Appendix, Fig. S6B) revealed extensive interactions 
among its proteins. Additionally, we investigated the relationship 
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Fig. 2. A strong correlation of expression between EIF4G1 and cancer survival genes in tumors with EIF4G1 amplification or duplication. (A) The heatmap 
illustrates the differential expression correlation between cellular genes and EIF4G1 in TCGA tumor samples with different EIF4G1 CNV statuses. Pearson’s 
correlation coefficients between EIF4G1 and each of 58,582 other genes were calculated separately across 10,323 TCGA tumor samples with different EIF4G1 
CNV statuses [labeled as Amplification, Duplication, Diploid or Deletion (heterozygous and homozygous deletion)], or across 7,414 GTEx healthy samples from 
different tissue types (labeled as Normal). Genes with significant positive (r > 0.3) or negative (r < −0.3) correlations were selected for further analysis. Each row 
indicates the correlation of a gene with EIF4G1 in the groups with the indicated EIF4G1 CNV status. The heatmap cells’ color and intensity correspond to Pearson’s 
correlation coefficient values. The dendrogram at the top shows the hierarchical relationship between the columns. The rows were ordered and partitioned 
into five non-overlapping subgroups using a K-means clustering algorithm. (B) The dot plot displays the enriched pathways identified through REACTOME 
pathway analysis for the heatmap row clusters in (A). The six most significantly enriched pathways of each cluster are plotted, ranked by their adjusted P-values.  
(C) The star network plot illustrates the genes that belong to the significantly enriched pathways in cluster 4. (D) The UMAP plot illustrates the clustering of 
10,323 TCGA tumor samples with varying EIF4G1 CNV statuses, alongside 7,414 GTEx healthy samples from diverse tissue types. The clustering is based on 
the gene expression levels within cluster 4 genes identified from (A) within each sample. Normal (healthy) samples are shown in green, while other colors 
represent tumor samples with different EIF4G1 copy number variation statuses. (E–J) The box plots compare the median expression of genes from cluster 4 in 
healthy samples and tumor samples with different EIF4G1 copy number variation statuses. The two-tailed Student’s t tests were performed. ns, not significant;  
∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001; ∗∗∗∗P ≤ 0.0001.
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between protein connectivity and essentiality by examining the 
depscores (30) of nodes. We found a significant number of high- 
connectivity protein nodes in cluster 3, and these proteins also 
displayed essential depscores (Fig. 3G and SI Appendix, Fig. S6C). 
Within the cluster 4 network, two ubiquitin ribosomal fusion 
proteins, Uba52 and Rps27A (31), were heavily connected to 
other proteins (Fig. 3F and SI Appendix, Fig. S6E) and are highly 
essential based on depscores (Fig. 3H and SI Appendix, Fig. S6F). 
These findings hint at a co-regulatory relationship between eIF4E 
activity and ubiquitination in cancer cells. Furthermore, the 
cluster 1 network exhibited modest connectivity with essential 
subunits, primarily consisting of the mRNA splicing complex 

(SI Appendix, Fig. S7 B to E). In contrast, the cluster 2 network 
showed low connectivity and lacked essential components 
(SI Appendix, Fig. S8 B to E).

Finally, to compare the essentiality of eIF4F and eIF3 subunits, 
we plotted the distribution of their depscores across CCLE cancer 
cell lines (Fig. 3I). eIF4G1, eIF4A1, eIF4E, eIF3E, and eIF3H 
are essential for viability in most cancer cell lines, whereas eIF4A2 
is not. In summary, eIF4G1 and eIF4A1 co-regulate with essential 
ribosome, eIF2, and eIF3 complexes in cancer cell survival. 
Additionally, eIF4E strongly co-regulates with vital ubiquitin- 
synthesis complexes. These findings indicate dysregulations of 
eIF4E and eIF4G1 in cancer cells, suggesting the existence of 

A B C
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I

Fig. 3. The eIF4F complex components are vital for cancer cell survival and show dysregulation. (A) The scatter plots display the correlation between the protein 
expression levels of eIF4G1, eIF4A1, eIF4E, 4E-BP1, eIF3E, and eIF3H across CCLE cancer cell lines. Bold font denotes strong positive correlations. The colors in the 
plot represent the tissue origins of the cancer cell lines. Scatterplot axes show the protein expression levels (quantified as the relative abundance of detected 
peptides to reference, and log2 transformed) from CCLE proteomics data. The histograms show the binned expression distribution of each protein (by column) 
across cancer cell lines. For histograms, x-axes match scatterplot x-axes by column, y-axes (unlabeled) depict frequency counts, and coloring matches scatterplots. 
(B) The heatmap displays the differential expression correlation between cellular proteins and eIF4G1, eIF4A1, eIF4E, 4E-BP1, eIF3E, or eIF3H across CCLE cancer 
cell lines. Pearson’s correlation coefficients between eIF4G1 and each of 12,755 other cellular proteins were calculated separately across 375 CCLE cancer cell 
lines. Proteins with strong positive (r > 0.5) or negative (r < −0.5) correlations were selected for analysis. (C) The dot plot shows the enriched pathways for the 
heatmap row clusters in (B), according to REACTOME pathway analysis. (D) The protein–protein interaction network shows the potential interactions between 
the proteins within clusters identified in the heatmap (B). The network was generated using evidence from the STRING database and includes proteins from all 
clusters. The colors in the network represent the cluster to which each protein (node) belongs and the potential interactions (edges) between them. (E and F) 
The histograms depict the distribution of node degree for the networks built from proteins in clusters 3 and 4 (as shown in the Insets). In the Insets, the node 
size reflects its degree—the number of connections it has to other nodes. (G and H) The histogram displays the distribution of the dependency score [a metric 
for gene essentiality measured through CRISPR knockout screens in cancer cell lines (29)] for each node in the network. In the Insets, the node size represents 
the degree, and the color reflects their median dependency score across CCLE cancer cell lines. (I) The kernel density plots show the distribution of dependency 
scores for a protein across all CCLE cancer cell lines. A lower score indicates that the gene is more likely to be essential for cancer cell survival in a particular cell 
line. A score of 0 indicates that the gene is not essential, while a score of −1 represents the median of all commonly essential genes.

http://www.pnas.org/lookup/doi/10.1073/pnas.2313589121#supplementary-materials
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separate initiation mechanisms: cap-dependent and cap-independent, 
both crucial for cancer cell viability.

Predictive Structure Modeling Indicates Distinct Conformations 
of eIF4F Complex with and without eIF4E Binding. Using 
Alphafold multimer prediction, we modeled the two probable 
forms of the eIF4F complex crucial for translation initiation 
in cancer. We modeled the canonical eIF4F complex for cap-
dependent initiation, consisting of eIF4G1557–1437 [including 
eIF4E binding domain (4E-BD), HEAT-1, and HEAT-2], along 
with full-length eIF4A1 and eIF4E (Fig. 4A). We also modeled a 
dysregulated conformation of eIF4F for cap-independent initiation 
by including only eIF4G1557–1437 and full-length eIF4A1.

In both eIF4G1•eIF4A1•eIF4E (Fig. 4 B and C and SI Appendix, 
Fig. S9 A and B) and eIF4G1•eIF4A1 complexes (Fig. 4 D and E 
and SI Appendix, Fig. S9 C and D), the two eIF4A1-binding 
domains in eIF4G1 (HEAT-1 and HEAT-2, colored yellow and 

orange, respectively) are modeled on opposite sides of eIF4A1. 
In both complexes, HEAT-1 interacts with the eIF4A1 
C-terminal domain (CTD, light blue) and N-terminal domain 
(NTD, dark blue). However, in the eIF4G1•eIF4A1•eIF4E com­
plex, HEAT-2 positions the cap-binding pocket of eIF4E adjacent 
to the RNA-binding cavity on eIF4A1-NTD (32). In contrast, in the 
eIF4G1•eIF4A1 complex, HEAT-2 directly interacts with eIF4A1- 
NTD. These findings indicate that in the absence of eIF4E, HEAT-2 
takes a different conformation, resulting in a stronger interaction 
between eIF4G1 and eIF4A1.

Both the eIF4G1•eIF4A1•eIF4E and eIF4G1•eIF4A1 complexes 
(Fig. 5A) share three experimentally confirmed interaction interfaces 
between eIF4G1 and eIF4A1 (33). The first interface involves 
hydrogen bonds between residues R766 and N770 of HEAT-1-NTD 
and T269, L270, and I272 of eIF4A1-CTD (Fig. 5B). The second 
interface is characterized by Van der Waals interaction between 
F978 of HEAT-1-CTD and Y48 of eIF4A1-NTD (Fig. 5C). The 

A

B D

C E

Fig. 4. The HEAT-2 domain of eIF4G1 adopts distinct conformations in eIF4F complexes with or without eIF4E. (A) The diagram illustrates the domain organization 
of eIF4G1, eIF4A1, and eIF4E constructs used in this work. (B and C) The cartoon representations of the structure of eIF4G1557-1437•eIF4A1•eIF4E complex in two 
orientations, predicted by the AlphaFold2 multimer approach. Residues critical for RNA interaction and the formation of the RNA-binding cavity in eIF4A1 (R110, 
P159, G160, F163, D164, N167, Q195, D198, R282, D305, and G304) are highlighted in green. Additionally, residues crucial for the cap-binding pocket in eIF4E 
(W56, W102, E103, R112, R157, K159, K162, and W166) are highlighted in lime green. These residues are more visible from the back view compared to the front. 
(D and E) The predicted protein structures for the eIF4G1557-1437•eIF4A1 complex in two orientations.

http://www.pnas.org/lookup/doi/10.1073/pnas.2313589121#supplementary-materials
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third interface involves salt bridges among R283 of eIF4A1-CTD, 
D1259, D1262, and Q1265 of the α-helix2 of HEAT-2 (Fig. 5D).

In the eIF4G1•eIF4A1 complex, a fourth interface between 
eIF4A1-NTD and α-helix3 and α-helix5 of HEAT-2 was predicted, 
involving a hydrogen bond between E1289 of HEAT-2 and Q195 
of eIF4A1-NTD (Fig. 5E). The proximity between eIF4A1-NTD 
and α-helix3 and α-helix5 of HEAT-2 has recently been experimen­
tally confirmed in the HEAT-2•eIF4A1 complex (34), potentially 
contributing to the closure of the mRNA binding cavity in the 
cap-independent initiation mechanism. In contrast, two additional 
interactions were predicted in the eIF4G1•eIF4A1•eIF4E complex 
(Fig. 5F). K202 of eIF4A1-NTD interacts with V217 of eIF4E 
(Fig. 5G), while α-helix3 and α-helix5 of HEAT-2 interact with 

eIF4E (Fig. 5H), forming a hydrogen bond between E1289 of 
HEAT-2 and S209 of eIF4E. These two unverified interactions 
likely tether eIF4E close to the eIF4A1 mRNA binding cavity in 
the cap-dependent mechanism.

Moreover, in the eIF4G1•eIF4A1•eIF4E complex, three inter­
action interfaces are depicted in the eIF4G1-4E-BD•eIF4E com­
plex (SI Appendix, Fig. S10 A and D). The first interface involves 
residues Q621, D626, D638, V639 and N645 on the non-canonical 
loop (NC-loop) of eIF4G1-4E-BD, interacting with E70, N77 and 
Q80 on the lateral side of eIF4E (SI Appendix, Fig. S10B). The 
second interface features R611, Y612, and Q621 on the canonical 
α-helix motif of eIF4G1-4E-BD, interacting with P38, G139, and 
D143 on the dorsal side of eIF4E (SI Appendix, Fig. S10E). These 

A
D

E

F

H

B

C

G

Fig. 5. Conformational stabilization of the eIF4F complex through multivalent interactions. (A) An overview of the four interaction interfaces between eIF4G1 and 
eIF4A1 in eIF4G1557-1437•eIF4A1 complex. (B) Close-up view of hydrogen bonds (indicated by dashed black lines) between HEAT1-NTD and eIF4A1-CTD residues. 
(C) Close-up view of Van der Waals interaction between HEAT1-CTD and eIF4A1-NTD residues. (D) Close-up view of salt bridges formed between HEAT2 and 
eIF4A1-CTD residues. (E) Close-up view of hydrogen bonds between HEAT2 and eIF4A1-NTD residues. (F) An overview of the two interfaces between eIF4G1 
and eIF4E residues, as well as eIF4A1 and eIF4E in the eIF4G1557-1437•eIF4A1•eIF4E complex. The three interfaces between eIF4G1 and eIF4A1 remain identical to 
(B–D) (G) Close-up view of hydrogen bonds between eIF4A1-NTD and eIF4E residues. (H) Close-up view of hydrogen bonds between HEAT2 and eIF4E residues.

http://www.pnas.org/lookup/doi/10.1073/pnas.2313589121#supplementary-materials
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two interfaces have been experimentally confirmed (35–37). Addi­
tionally, a third unverified interaction was predicted between G663 
and D665 of eIF4G1-4E-BD, and T116 of eIF4E (SI Appendix, 
Fig. S10C). These findings reveal extensive interactions between the 
N-terminal eIF4E-binding domain of eIF4G1 and eIF4E.

Discussion

The frequent amplification of translation initiation genes in TCGA 
tumor samples highlights their potential importance in tumor 
function. Our study identified translation initiation genes includ­
ing EIF4G1, EIF3E, EIF3H, EIF4A2, EIF2B5, and PABPC1, as 
well as several ribosomal large-subunit genes, are co-located in two 
highly amplified chromosome loci, 3q27 and 8q23, in human 
cancers. The co-occurrence of copy number gain of EIF4G1 at 
3q27 and EIF3E at 8q23 from unlinked loci is noteworthy, as their 
encoded proteins play an essential role in ribosome recruitment 
on mRNA (9). Furthermore, we found that PABPC1 proximal to 
EIF3E at 8q23 is also co-gained with EIF4G1. This co-occurrence 
aligns with the known biochemical interaction between their 
encoded proteins, which enhances initiation and ribosome recruit­
ment (38). Functionally related metabolic genes often demonstrate 
genetic linkage by clustering closely in the genome to facilitate 
co-expression, making them susceptible to similar structural var­
iations (39). Yet, it’s also common for genetically unlinked driver 
genes, which activate collaborative oncogenic pathways, to display 
the co-occurrence of genetic alterations (40). Our findings suggest 
positive selections for interactions between eIF4G1 and subunits 
from other initiation complexes, implying their potential coordi­
nated roles in human cancers.

Positive selection of EIF4G1 amplification likely results from 
a feedback mechanism that regulates the expression of cell cycle 
and lipogenesis genes. EIF4G1 expression strongly correlates with 
both cell cycle genes and SREBF-controlled lipogenesis genes in 
tumors exhibiting EIF4G1 gain. The cell cycle and lipogenesis 
genes, as identified in Fig. 2, are not genetically linked to EIF4G1, 
yet they are overexpressed in tumors with EIF4G1 gain. This sug­
gests that cancer clones harboring EIF4G1 gain may be positively 
selected because it facilitates the overexpression of cancer survival 
genes. Additionally, research has shown that SREBF1 translation 
relies on cap-independent initiation under stress conditions that 
inhibit cap-dependent initiation (41). Further studies are required 
to evaluate whether inhibition of translation initiation could break 
the feedback loop and impede tumor growth, through the SREBF 
lipogenesis axis.

The strong co-regulation of eIF4G1, eIF4A1, eIF3E, and 
eIF3H, along with the independent co-regulation of eIF4E and 
4E-BP1, suggests additional regulatory mechanisms for eIF4E 
beyond its role in the eIF4F complex. The co-regulation of 
eIF4G1, eIF4A1, eIF3E, and eIF3H with ribosomal subunits and 
various initiation complexes underscores their role in initiating 
translation, vital for cancer cell survival (Fig. 4). Interestingly, 
eIF4E is essential for cancer cell viability, and it also co-regulates 
with 4E-BP1, ubiquitination, and ESCRT proteins. Previous 
studies have shown that ubiquitination and 4E-BP1 can reduce 
eIF4E’s ability to bind to eIF4G1, thus hindering cap-dependent 
initiation (42). Dysregulation of eIF4E and eIF4G1 in cancer cells 
could enable cap-independent mechanisms to meet critical trans­
lation initiation needs (2). Furthermore, ESCRT’s role in binding 
to ubiquitinated proteins and its known regulation of the nuclear 
pore complex (NPC) (43), may facilitate eIF4E’s mRNA export 
function. Dysregulation in cap-dependent translation initiation 
may result from an increased allocation of eIF4E to nuclear 
mRNA export, reducing its availability in the cytoplasmic eIF4F 

pool. Hence, eIF4E’s essentiality may stem from both its mRNA 
transport function alongside its crucial role in cap-dependent 
initiation.

The Alphafold-predicted structures suggest potential mecha­
nisms for regulating cap-dependent and cap-independent initia­
tion through eIF4G1’s HEAT-2 domain. α-helix3 and α-helix5 of 
HEAT-2 can interact with either eIF4E or eIF4A1-NTD. In the 
canonical eIF4F complex, eIF4G1 positions the cap-binding site 
of eIF4E close to the mRNA binding cavity of eIF4A1, facilitating 
the enclosure of the cavity by eIF4E and HEAT-2. In the absence 
of eIF4E, the interaction between HEAT-2 and eIF4A1-NTD 
(Fig. 5D) might enhance eIF4G1 and eIF4A1 interaction, result­
ing in a tighter enclosure of the mRNA binding cavity. The pivotal 
role of HEAT-2 in interacting with eIF4A1-NTD or eIF4E may 
help maintain the integrity of the eIF4F complex in both 
cap-dependent and -independent initiations. Further experimental 
investigations are needed to validate the impact of HEAT-2’s inter­
action with either eIF4E or eIF4A1-NTD on cap-dependent or 
cap-independent initiation activity. This research will uncover 
promising drug-targetable sites within the eIF4F complexes and 
facilitate the design of inhibitors for specific initiation mechanisms 
in cancers.

Finally, our study proposes an intriguing hypothesis: eIF4E is 
crucial for cap-dependent initiation in human cancers; however, 
in situations of elevated mRNA transport demands, eIF4E may 
dissociate from the eIF4F complex. In this scenario, we postulate 
that the dysregulated eIF4F complex, mainly consisting of eIF4G1 
and eIF4A1, could remain on the mRNA, potentially enabling 
cap-independent initiation via eIF3, ribosome, and mRNA cir­
cularization. Nonetheless, further experimental investigations are 
essential to validate this hypothesis.

Materials and Methods

Copy Number Variation Data and Co-Occurrence Analysis. Gene-level 
copy number data for 33 TCGA cancer types were obtained from the UCSC Xena 
data hub (44) (https://tcga.xenahubs.net and https://pancanatlas.xenahubs.net). 
To classify copy number variation statuses, the TCGA pan-cancer gene-level CNV 
threshold dataset we used, which combined GISTIC2-thresholded data from all 
TCGA cohorts, accessed through the Xena dataset ID: TCGA.PANCAN.sampleMap/
Gistic2_CopyNumber_Gistic2_all_thresholded.by_genes. We grouped the esti-
mated gene-level CNV values using thresholds 2, 1, 0, −1, −2, to represent high-level 
copy number gain (amplification), low-level copy number gain (duplication), diploid, 
shallow (possibly heterozygous) deletion, or deep (possibly homozygous) deletion.

To generate Likert plots of CNV statuses across different cancer types, we 
utilized clinically relevant phenotype information for TCGA samples, such as 
sample type and primary disease annotations, obtained from individual TCGA 
cohorts through the Xena dataset ID: TCGA_phenotype_denseDataOnlyDown-
load.tsv.

To conduct the co-occurrence analysis, we employed the VennCounts() func-
tion from the R package “limma” to calculate the number of overlapping genes 
between gene groups. We then utilized these counts to create proportional Venn 
diagrams using the euler() function from the R package “eulerr”. Statistical anal-
ysis was performed using the fisher.test() function from the R package “stats”.

Kaplan–Meier analysis was conducted using curated clinical data from the 
TCGA Pan-Cancer Clinical Data Resource (45), obtained through the Xena data-
set ID: Survival_SupplementalTable_S1_20171025_xena_sp. Survival anal-
ysis utilized the fit() function from the class KaplanMeierFitter() in the Python 
package “lifelines”. Differences in survival curves were evaluated using the 
log-rank test with the logrank_test() function from the statistics() class in the 
lifelines package.

RNA-Seq and Gene Expression Analysis. The original RNA-Seq data of 
tumor samples were obtained from TCGA and RNA-Seq data of healthy sam-
ples from GTEx (46). To ensure consistency and minimize computational 

http://www.pnas.org/lookup/doi/10.1073/pnas.2313589121#supplementary-materials
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batch effects on read alignment and quantification, we used the reprocessed 
RNA-Seq read count data for both sources, available from the UC Santa Cruz 
computational genomics Lab, which was computed with the Toil-based RNA-
Seq bioinformatic pipeline (47). We accessed the RNA-Seq datasets from the 
UCSC Xena data hub (https://toil.xenahubs.net) using the Xena dataset IDs: 
TcgaTargetGtex_RSEM_hugo_norm_count.

For the differential correlation analysis, we utilized the corrwith() function 
from the Python package “pandas” to calculate Pearson’s correlation coefficient 
(r). To perform UMAP, we standardized the gene expression data by scaling it to 
unit variance using the fit_transform() function from the class StandardScaler() 
of the Python package “sklearn.preprocessing”. Next, we used the fit_transform() 
function from the class UMAP() of the Python package “umap” to embed the 
standardized data into a Euclidean space.

Proteomics and Network Analysis. The CCLE proteomics data were obtained 
from the publication (28). We obtained the dependency score data of CRISPR 
knockout screens and sample information from the depmap portal, using the 
file name “CRISPR_gene_effect.csv” and “sample_info.csv”. To construct the 
protein–protein interaction network, we used protein network data from the 
STRING database with the file name “9606.protein.physical.links.detailed.
v11.5.txt”. We constructed the protein–protein interaction networks using the 
from_pandas_edgelist() function and plotted them with the draw_networkx() 
and kamada_kawai_layout() functions from the Python package “networkx”. We 
conducted the centrality analysis on the network using the degree_centrality() 
function from networkx.

Heatmap, Clustering, and Pathway Enrichment Analysis. To create heat-
maps, we utilized the Heatmap() function from the R package “ComplexHeatmap”. 
The heatmap rows were ordered and grouped into subgroups using the K-means 
clustering method while the heatmap columns were ordered by the hierarchical 
clustering method. To analyze the enriched biological pathways of the genes 
within each cluster, we used the enrichPathway() function from the R pack-
age “ReactomePA”, which employed Reactome as a source of pathway data. 

We performed statistical analysis and visualization of these pathways using the 
compareCluster() function from the R package “clusterProfiler”, by applying an 
over-representation analysis (ORA) method. The statistical significance (P-value) 
of the overlap between genes from a given pathway and the gene list was deter-
mined using the hypergeometric distribution test, and the P-values were adjusted 
for multiple comparison using Hochberg’s and Hommel’s method.

Protein Complex Structure Prediction. We employed the AlphaFold multimer 
approach, which is an extension of the AlphaFold2 algorithm and is capable of 
predicting the structure of a protein complex as a single entity (48). All tasks 
were performed on the GPU cluster of Harvard medical school, with the default 
AlphaFold2 multimer settings. We used the amino acid sequences from the NCBI 
database with the following accession number: eIF4E, NP_001959.1; eIF4G1, 
NP_886553.3; eIF4A1, NP_001407.1; and 4E-BP1, NP_004086.1. We evaluated 
the consistency of the five prediction models generated by each task and selected 
the top-ranked model for illustration using PyMOL.

Data, Materials, and Software Availability. The detailed source code, which 
reproduces the results reported in this manuscript, is available online at https://
github.com/a3609640/pyEIF (49) in the form of R and Python scripts. All the data 
utilized in our analyses are publicly accessible and the scripts for downloading 
them from the relevant data repositories are provided in our software repository. 
All other data are included in the manuscript and/or SI Appendix.
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