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Significance

When people are repeatedly 
performing the exact same task, 
their performance fluctuates 
over time. One of the causes of 
this behavioral variability is 
spontaneous fluctuations in 
arousal. According to the 
Yerkes–Dodson law, task 
performance is optimal at 
moderate levels of species’ 
arousal, with impaired 
performance at very low or high 
arousal levels. However, until 
now, the evidence supporting 
this law as a general mechanism 
in human decision-making is 
mixed, and a neural mechanism 
that may explain the inverted 
U-shaped arousal–performance 
relationship is lacking. We show 
that the Yerkes–Dodson law is a 
general law that holds for human 
observers across decision-
making tasks and settings. 
Furthermore, we present a 
simple and neurobiologically 
plausible mechanistic model that 
can explain its existence.
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Perceptual decision-making is highly dependent on the momentary arousal state of the 
brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The 
textbook relationship between momentary arousal and task performance is captured 
by an inverted U-shape, as put forward in the Yerkes–Dodson law. This law suggests 
optimal performance at moderate levels of arousal and impaired performance at low or 
high arousal levels. However, despite its popularity, the evidence for this relationship 
in humans is mixed at best. Here, we use pupil-indexed arousal and performance data 
from various perceptual decision-making tasks to provide converging evidence for the 
inverted U-shaped relationship between spontaneous arousal fluctuations and perfor-
mance across different decision types (discrimination, detection) and sensory modalities 
(visual, auditory). To further understand this relationship, we built a neurobiologically 
plausible mechanistic model and show that it is possible to reproduce our findings by 
incorporating two types of interneurons that are both modulated by an arousal signal. 
The model architecture produces two dynamical regimes under the influence of arousal: 
one regime in which performance increases with arousal and another regime in which 
performance decreases with arousal, together forming an inverted U-shaped arousal–per-
formance relationship. We conclude that the inverted U-shaped arousal–performance 
relationship is a general and robust property of sensory processing. It might be brought 
about by the influence of arousal on two types of interneurons that together act as a 
disinhibitory pathway for the neural populations that encode the available sensory evi-
dence used for the decision.

task performance | decision-making | spontaneous arousal | computational modeling

Repeated presentations of the same noisy sensory input often lead to varying perceptual 
decisions (1, 2). One of the factors that contribute to this behavioral variability is the arousal 
state of the brain, which fluctuates spontaneously over time, causing variability in neuronal 
responsiveness to sensory stimulation (also often referred to as brain state) (3–6). The main 
drivers of these arousal fluctuations are the catecholaminergic and cholinergic neurotrans-
mitter systems originating from the locus coeruleus and the basal forebrain, respectively. 
These neuromodulators have widespread effects throughout the brain, from controlling 
global cortical dynamics (e.g., low frequency power ref. 7) to tuning the gain of sensory 
processing (8–10). Pupil dilation reflects the activity of neuromodulatory nuclei and can 
therefore be used to non-invasively approximate fluctuations in arousal state (11–16).

Although changes in arousal state affect decision-making abilities in both humans and 
mice (17–22), it remains unclear which level of arousal supports optimal performance. 
In mice, decision-making seems optimal at intermediate levels of arousal (7, 8), reflecting 
an inverted U-shaped relationship, in line with the well-known Yerkes–Dodson law (23). 
In humans, however, evidence is mixed. While some studies indeed show U-shaped 
arousal–performance associations in humans (18–20, 22, 24, 25), others report linear 
associations (17, 18, 26).

Here, we addressed these mixed results in the (human) literature and aimed to improve 
our understanding of the neural mechanisms underlying the arousal–performance asso-
ciation, which is not well understood in any species. To do so, we collected a large dataset 
containing six behavioral tasks that differed in terms of the decision type (detection versus 
discrimination response) and the sensory modality being recruited (audition versus vision) 
using a within-subject design (Fig. 1A). This dataset allowed us to explore the shape of 
the relationship between naturally occurring spontaneous fluctuations in pre-stimulus 
pupil-linked arousal and perceptual decision-making in humans. Aside from different 
sensory modalities and decision types, all tasks had comparable trial structures and behav-
ioral accuracy was matched across all tasks (see Methods for details). To anticipate our 
findings, we observed that the arousal–performance relationship was clearly inverted 
U-shaped, regardless of the sensory modality or decision type at hand.
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After having established a robust inverted U-shaped relationship 
between spontaneous pupil-linked arousal fluctuations and task 
performance, and given that inverted U-shaped relationships have 
been observed in both mice and humans (7, 8, 18–20, 22, 24, 25), 
we aimed to increase our understanding of the arousal–perfor-
mance relationship by developing a minimal network model repro-
ducing the observed results. We reasoned that explanations that 
rely on biological constraints common to both species are most 
prominent candidates to explain its underlying mechanisms. 
Optimal signal detection properties have been linked with main-
taining a certain excitation-inhibition balance in neural circuits 
(27–30) and in mice, a balanced competition between inhibition 
and excitation (or rather, disinhibition) has been found in circuits 
with pyramidal neurons and inhibitory cells expressing parvalbu-
min (PV), somatostatin (SST), and vasoactive intestinal peptide 
(VIP) (31–35). As such circuitry is also present in human and 
non-human primates (36, 37), mechanisms based on this inhibi-
tion/disinhibition balance could provide an explanation for the 
observed phenomenon across species.

To provide a mechanism that might explain the inverted 
U-shaped arousal–performance relationship in our detection and 
discrimination tasks, we built a minimal computational model, 
adapted from well-known population-based models of neural 
dynamics used to describe performance on decision-making tasks 
(38). Our model describes in detail the temporal evolution of the 
global synaptic conductances corresponding to N-methyl-d-aspartate 
(NMDA) and gamma-aminobutyric-acid (GABA) receptors of two 
competing excitatory populations that are indirectly modulated by 
an arousal signal. Based on our computational model, we conclude 
that the inverted U-shaped arousal–performance relationship might 
result from the influence of arousal on two types of interneurons 
that together act as a disinhibitory pathway for the neural popula-
tions that encode sensory evidence.

Results

Participants (N = 28) took part in three all-day (9am to 4pm) exper-
imental sessions in which six different tasks were performed (see 
Methods for details). In brief, in the auditory domain, participants 
either discriminated between high and low pitch tones in one task 

or they detected a low pitch tone versus noise in another (present/
absent judgment). In the visual domain, two versions of a visual 
Gabor detection task and two versions of a visual Gabor orientation 
discrimination task were performed. Trials of all tasks followed a 
similar structure with a baseline period, stimulus interval, response 
interval, and a variable inter-trial interval (ITI) (Fig. 1A), although 
visual tasks were generally faster paced than auditory tasks (see 
Methods for details). All tasks were titrated to reach 75% accuracy 
(the mean accuracy across tasks was 76.3%). First, we tested whether 
the overall relationship between pupil-indexed arousal and percep-
tual decision-making was linearly or U-shaped, irrespective of spe-
cific task parameters. To this end, we combined the data of all six 
behavioral tasks, harnessing the large statistical power of our com-
plete dataset (3,570 trials per participant on average). This analysis 
across tasks gives us a general indication of the arousal–performance 
relationship, irrespective of sensory modality and decision type. For 
each run separately, the trials were distributed across twenty equally 
populated bins based on the average pupil size in the pre-stimulus 
baseline period (500-ms window preceding the target, Fig. 1 B and 
C). Note that all bins contained equal numbers of trials, and that 
therefore the bins did not have equal widths (Fig. 1 B and C). Next, 
we calculated Signal Detection Theoretic sensitivity [SDTs d′ (39)] 
and average reaction time (RT) for each pupil bin across all tasks. 
We used linear mixed models and formal model comparison to 
assess whether the arousal–performance relationship was linear or 
quadratic. Using both AIC [Akaike information criterion (40)] and 
BIC [Bayesian information criterion (41)], we directly compared 
evidence for linear versus quadratic models. A difference in AIC or 
BIC values of more than 10 is considered evidence for the winning 
model to capture the data significantly better (42). In our case, both 
ΔAIC and ΔBIC were strongly in favor of a quadratic relationship 
between pre-stimulus pupil size and sensitivity (ΔAIC = 31.0, ΔBIC 
= 26.7) and RT (ΔAIC = 20.3, ΔBIC = 16.0). In other words, the 
overall arousal–performance relationship was inverted U-shaped, 
with the highest sensitivity and shortest RTs at intermediate levels 
of pupil-linked arousal (Fig. 2, “All”). The association between pupil 
size and sensitivity was much more pronounced than the association 
between pupil size and RT, which becomes especially clear when 
both performance measures are expressed in percent signal change 
(SI Appendix, Fig. S1).

2
3

1

4
5

Auditory

or

or

D
ec

is
io

n 
ty

pe

Fr
eq

. (
kH

z)

A

Visual

D
et

ec
tio

n
D

is
cr

im
in

at
io

n

or

or

Sensory modality

C

1
2
3
4

Run

Baseline pupil size

Sample subject

BinMean

Bin

1

2
3

Pu
pi

l s
iz

e

Stimulus onset

4

5

Time

Baseline period 
B

Stimulus onset Stimulus onset

Auditory
trial

Baseline Stimulus interval

0.5s0.6s

Response 
interval 

Max. 2.5s
Aborted at response

3-4s

ITI
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We performed several control analyses to further understand 
these results. First, it has been argued that the (quadratic) rela-
tionship between pupil-linked arousal and performance may be 
driven by time on task (43), but we found no evidence for this. 
After regressing out the influence of time on task on pre-stimulus 
pupil size, the quadratic relationship remained intact (Methods 
and SI Appendix, Fig. S2). Next, we performed three additional 
analyses to test whether the quadratic arousal–performance rela-
tionship was driven by significant behavioral or pupil events on 
the previous trial. Specifically, 1) we excluded all trials that fol-
lowed erroneous responses (23.1% of all trials), possibly upregu-
lating arousal, 2) we performed the analyses after regressing out 
task-evoked pupil responses on the previous trial (3, 44, 45), and 
3) we tested whether the quadratic arousal–performance relation-
ship would also be revealed if the task-evoked pupil response in 
the previous trial was used as the measure of the pupil-linked 
arousal state. These analyses further solidified our main conclu-
sions and indicated that the inverted U-shaped relationship 
between pre-stimulus (baseline) pupil size was not driven by 
response errors or task-evoked pupil responses on the previous 
trial (SI Appendix, Fig. S3). Taken together, these control analyses 
indicate that the inverted U-shaped arousal–performance relation-
ship described here (Fig. 2) is likely driven by spontaneous fluc-
tuations in pupil-indexed arousal.

Next, we addressed whether the arousal–performance relation-
ship depends on the decision type (detection versus discrimina-
tion) or the sensory modality (visual versus auditory). To test this, 
we performed polynomial regression for each sensory modality 
and decision type separately, averaging across tasks that fell into 
each category (see Methods for details). This allowed us to step 
aside from specific experimental manipulations of each of the six 
tasks individually, which will be reported elsewhere (in the future) 
(see e.g., ref. 46, and focus on generalities across these tasks, 
namely which sensory modality was recruited (visual or auditory) 
and what was the task to be performed (discrimination or detec-
tion). Additionally, this ensured enough trials per analysis to reli-
ably compute regressions across pupil bins. To further warrant 
statistical power, these analyses of subsets of the data were per-
formed with five pupil size bins to account for lower trial numbers 
after splitting the data (Fig. 1 B and C).

Similar to the first analysis, perceptual sensitivity (d′) was highest 
and RT lowest at intermediate levels of pupil-linked arousal for 
both auditory and visual tasks (auditory d′ ß2: t(26) = −2.79,  
P = 0.005, d = −0.55, visual d′ ß2: t(27) = −3.88, P < 0.001,  
d = −0.75; auditory RT ß2: t(26) = 2.41, P = 0.01, d = 0.47; visual 
RT ß2: t(27) = 3.26, P = 0.002, d = 0.63), and for both detection 
and discrimination tasks (detection d′ ß2: t(27) = −3.96, P < 0.001, 
d = −0.76, discrimination d′ ß2: t(27) = −2.39, P = 0.01, d = −0.46; 
detection RT ß2: t(27) = 2.65, P = 0.006, d = 0.51, discrimination 
RT ß2: t(27) = 2.05, P = 0.03, d = 0.39; Fig. 2). Again, the associ-
ation between pupil size and sensitivity was much more pronounced 
than the association with RTs (SI Appendix, Fig. S1). Note that two 
out of four RT analyses additionally showed positively linear rela-
tionships (auditory RT ß1: t(26) = 3.29, P = 0.003, d = 0.70; dis-
crimination RT ß1: t(27) = 2.30, P = 0.03, d = 0.43), further 
elaborated on in the Discussion. Interestingly, the pupil-sensitivity 
relationship appeared to be mainly driven by an effect of 
pre-stimulus pupil size on hit rate, rather than false alarm rate 
(SI Appendix, Fig. S4), in line with observations in mice (7, 8). In 
sum, the inverted U-shaped arousal–performance relationship can 
be observed for both decision types and for both sensory modalities 
(most prominently for d′), despite general differences in the overall 
timing of these tasks (visual tasks were faster paced). Therefore, 
optimal performance at moderate levels of spontaneous pupil-linked 
arousal appears to be a general and robust characteristic of percep-
tual decision-making.

Even though the inverted U-shaped arousal–performance rela-
tionship has been reported before, it remains unclear how it can 
emerge from neural interactions. In principle, inverted U-shapes 
would require a change in the dynamical regime of the underlying 
cortical circuits, and these are not well known. One plausible 
candidate mechanism is the interplay between different interneu-
ron types expressing PV, SST, and VIP, since it seems to play a 
role in disinhibitory and paradoxical dynamics (defined as a coun-
terintuitive response of a circuit to a given external input) in cor-
tical circuits (35, 47–50). We therefore explore whether the 
interplay between PV, SST, and VIP can explain the nonlinear 
responses to arousal input observed.

We built a firing rate-based computational model of a cortical 
circuit performing a detection and/or discrimination task (38) 
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under the influence of a hypothetical arousal signal that is highly 
correlated with pupil size. The circuit describes the continuous 
temporal evolution of biophysical variables—such as firing rates 
and synaptic conductances of neural populations (see Methods for 
more details) and describes the interactions between two excitatory 
neural populations (EA and EB; encoding the two behavioral 
choices A and B) mediated by synapses with NMDA receptors 
(Fig. 3A). The model incorporates a non-selective population of 
PV interneurons, whose role is to provide a baseline level of inhi-
bition and to mediate the competition between both excitatory 
populations. In the absence of any modulatory signal or further 
components, this constitutes a well-studied model (38) which 
reflects competitive dynamics between choices A and B. More 
precisely, both excitatory populations receive sensory input, which 
propels them to ramp up their own activity and suppress the 
activity of the other excitatory population—a process mediated 
by the inhibitory population PV. This gives rise to a winner-take-all 
decision process (38), which corresponds in our case to a detection 
(A: present, B: absent) or a discrimination task (choice A, choice 
B). A decision is made when the firing rate of one of the excitatory 
populations reaches a certain predefined threshold (Fig. 3B).

To incorporate the effects of arousal modulation, which were 
not considered in previous work (38), our model here also incor-
porates populations of SST and VIP cells, one of each per behav-
ioral choice, as these cells have been found to be choice specific 
(51). Following experimental evidence, VIP, and SST cells form 
a connectivity motif which may disinhibit the activity of the 

corresponding excitatory populations (31) and receive top-down 
input from other brain areas. We assumed that these neural 
populations act as a disinhibitory pathway to excitatory cells 
(31), although we also considered that the dynamics of the 
VIP-SST-excitatory cell circuit can switch from disinhibition to 
inhibition depending on the input level and other conditions 
(35). Finally, we considered that sensory input was delivered to 
the excitatory populations and that a hypothetical arousal signal 
reached both VIP and SST populations (similar to a top-down 
modulatory signal).

An example trial of the model in the absence of any modulation 
by the arousal signal, and therefore equivalent to the situation 
modeled in previous work (38), is shown in Fig. 3B, where the 
competition between both excitatory populations is won by choice 
A as the corresponding firing rate EA reaches the threshold of 15 
spikes/s. To verify that the model showed basic detection behavior, 
we first varied the signal strength of the sensory input. Sensitivity 
and chronometric curves of the model output choices (Fig. 3 C 
and D), reflected that input detections became easier and were 
quicker for trials with higher signal strength, similar to the case 
for decision-making tasks (52) and in agreement with previous 
models (38).

When we simulated the model for different strengths of the 
arousal signal arriving at SST and VIP populations, while keeping 
signal strength constant as in the human experiments, we observed 
that the sensitivity of the model followed an inverted U-shape 
with respect to the arousal level (Fig. 3E). In the model, this 
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behavior emerges due to the existence of two dynamical regimes, 
one for low arousal levels (i.e., arousal strength smaller than 0.4), 
and another for high arousal levels (larger than 0.4) (Fig. 3H; also 
see SI Appendix, Fig. S6). For low arousal levels, the system is 
typically in a suboptimal state—in the sense that the firing rates 
evoked by the sensory input are rarely elevated enough to trigger 
a detection decision. As the arousal level increases, the VIP activity 
inhibits the firing of SST cells, which in turn disinhibits the excit-
atory populations. This provides an additional input, which makes 
it easier for the circuit to correctly detect the sensory signal, and 
the sensitivity overall increases. This trend is maintained until 
arousal levels of ~0.4 are reached in the model, corresponding to 
optimal detection, when VIP cells are strongly driven by the 
arousal signal and high or even saturated firing rate levels of VIP 
firing are reached. For higher arousal levels, VIP inhibition to SST 
is not able to compensate for the excitatory effects of the arousal 
signal to SST. Therefore, the net effect of the arousal signal in SST 
cells now becomes excitatory, leading to the inhibition of the 
excitatory populations. This leads to a decrease in performance 
with further increasing arousal levels as the circuit returns to a 
suboptimal state, thus completing the inverted U-shape. See 
SI Appendix, Fig. S6 for a graphical depiction of the inhibitory 
strengths provided by SST and VIP at each of these conditions.

As easier trials (i.e., with stronger sensory input) lead to quicker 
RTs in the model, we also obtained the corresponding U-shaped 
relationship between RTs and arousal levels (Fig. 3F) that we also 
found experimentally. In a realistic setting in which the arousal 
level would slowly fluctuate across trials within a given session, 
this mechanism would lead to changes in the detection probability 
across the session (Fig. 3G). Due to the symmetry that the model 
assumes between excitatory populations A and B (Fig. 3A), the 
results of the model are the same for the case of a discrimination 
task, in which the model must react to input for either excitatory 
population A or B.

Discussion

We showed that perceptual variability of repeated identical near-
threshold stimuli was predicted by ongoing fluctuations in cortical 
arousal, as indexed by pupillometry. More specifically, we demon-
strated that the arousal–performance relationship is inverted 
U-shaped, with optimal performance at moderate levels of pupil-
indexed arousal. This nonlinear relationship does not appear to 
depend on the sensory modality (vision/audition) or decision type 
(discrimination/detection) at hand and was also robust to potential 
differences in task-related factors, such as time on task (i.e., fatigue), 
potential upregulation of arousal by decision errors, task-evoked 
pupil responses on the previous trial, and general differences in the 
overall timing of these tasks. Therefore, the inverted U-shaped 
arousal–performance relationship appears to reflect a general, flex-
ible, and robust property of sensory processing in humans.

To provide a potential neural mechanism explaining these obser-
vations, we built a simple computational model that incorporated 
different types of interneurons, VIP and SST, which are both mod-
ulated by an arousal signal. In the case of humans and other pri-
mates, similar action may be expected from interneurons expressing 
calbindin and calretinin, which are thought to be analogous to SST 
and VIP in rodents (53) and similarities between both circuits have 
been well documented (36). When we simulated different arousal 
strengths, this architecture produced two dynamical regimes that 
depend strongly on the firing rate of the interneurons. In the first 
regime, VIP firing increases under the influence of increasing 
arousal, thereby inhibiting SST firing and disinhibiting the firing 
of the excitatory populations, leading to increasing performance 

with increasing arousal. Conversely, in the second regime, perfor-
mance decreases with increasing arousal as a result of saturated VIP 
firing, disinhibition of SST firing, and subsequent inhibition of 
the excitatory populations (Fig. 3H). Together, these regimes form 
the inverted U-shaped relationship between arousal and perceptual 
decision-making that we observed in our empirical data.

The computational model proposed to explain the observed 
experimental findings constitutes only a first step toward a complete 
understanding of the mechanisms underlying the Yerkes–Dodson 
law. The model also relies on several hypotheses, which will need 
to be tested in future experimental studies, although some hypoth-
eses are already partially supported by existing data. For example, 
our model requires the presence of a disinhibitory mechanism 
involving SST and VIP cells. It is unclear which brain region is 
responsible for the inverted U-shape relationship, but SST and 
VIP cells are found throughout the neocortex (54) and such dis-
inhibitory mechanisms have been found across multiple areas, 
including visual and somatosensory cortex (31, 47, 49). We also 
assumed that arousal signals should be able to modulate the firing 
of SST and VIP cells, which is plausible given that these cell types 
are known to be modulated by top-down signals (31). Finally, the 
saturation of VIP activity is crucial for our mechanism to replicate 
the inverted U-shape. Electrophysiological and optogenetics stud-
ies have shown that VIP cells indeed display spike frequency adap-
tation (55, 56), which should be able to limit the response of VIP 
cells receiving large arousal signals. In addition, strong short-term 
synaptic depression effects have been found in GABAergic cells 
in layer 2/3 (57), where VIP cells are the most common interneu-
ron type (32, 58). Previous computational work has shown that 
the combination of spike frequency adaptation (or other types of 
neuron-level adaptation) and short-term synaptic depression is 
highly effective to drastically reduce signal transmission and gen-
erate saturation of activity (59–61), suggesting that VIP saturation 
is a biologically plausible scenario in this context.

More precise descriptions of the influence of arousal signals on 
task performance will be necessary to extend and improve our 
current model in the future. For example, it is well known that 
acetylcholine and catecholamines have a wide range of modulatory 
effects on task performance, which are not explicitly included in 
our present model. Likewise, we have focused here on the effects 
of arousal signals on SST and VIP cells, which constitutes a sim-
plification. In this approach, we do not consider how arousal-related 
signals, such as cholinergic modulation for example, affect the 
physiological properties of pyramidal cells, such as excitability  
(62, 63), spike frequency adaptation (64–66) and modulation of 
both GABAergic and glutamatergic transmission (67). Future 
modeling work should aim to incorporate some of these properties 
and investigate their potential effects on the Yerkes–Dodson law.

Besides providing a mechanistic explanation for our experimen-
tal results, our computational model also makes some testable pre-
dictions. As these predictions involve the activity of VIP and SST 
cells, we propose that optogenetic techniques used in mice per-
forming tasks during different arousal conditions (68) would be a 
potential way to validate these predictions experimentally. First, we 
predict that inhibitory and disinhibitory dynamics mediated by 
SST and VIP cells play a fundamental role in the emergence of 
optimal levels of arousal for decision-making tasks, and interfering 
with these mechanisms should abolish (or modify) the inverted 
U-shaped relationship. Second, we anticipate that VIP firing will 
be moderate for low arousal levels and, due to VIP saturation, will 
be elevated and similar for both intermediate and high arousal 
levels. Likewise, SST will display moderate firing rates for low and 
high arousal levels, and low firing rates for intermediate arousal 
levels. We expect that further development of this model will 

http://www.pnas.org/lookup/doi/10.1073/pnas.2312898121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2312898121#supplementary-materials
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provide additional insight into the role of arousal in detection and 
discrimination tasks, for example by extending this model to 
include more cortical areas—in line with recent advances (68, 69).

Our results bear a strong resemblance to various findings of an 
inverted U-shaped relationship between pre-stimulus oscillatory 
power dynamics in the 8 to 12 Hz (alpha) band and perceptual 
decision-making (70, 71). Indeed, pupil size and pre-stimulus 
alpha power are believed to be two sides of the same coin: High 
arousal states go hand in hand with alpha power suppression and 
pupil dilation (6, 11), and alpha power and pupil diameter appear 
to be coupled during quiet wakefulness (72). Yet, there also appear 
to be dissociations between the effects of pre-stimulus alpha power 
and pupil-linked arousal on behavior (16), and there is evidence 
that suggests that the relationship between alpha power and pupil 
size is nonlinear (18, 73). Moreover, a set of studies indicates that 
pre-stimulus alpha oscillations drive decision bias by modulating 
neuronal excitability (74–77), rather than perceptual sensitivity 
as we report here. Future work should aim to bridge the gap 
between these parallel fields that investigate arousal through 
pre-stimulus pupil size and pre-stimulus oscillatory dynamics to 
further our understanding of the influence of the cortical state on 
perceptual decision-making.

The relationship between arousal and sensitivity in our study 
was clearly inverted U-shaped across both sensory modalities and 
decision types. For RTs, however, we observed additional linear 
relationships for two out of four task variations (note that 
arousal-RT associations were less strong than for d′ however). We 
cannot completely rule out the possibility that the arousal-RT 
relationship depends on sensory modality or decision type, and 
future work is needed to address the issue. In fact, although the 
observed quadratic arousal-sensitivity relationship was clearly 
robust to task parameters, some previous studies in humans have 
also reported linear effects. In mice, primarily U-shaped functions 
are observed (7, 8, 45): Mice perform best at an auditory detection 
task during quiet wakefulness, and worse during states of low and 
high arousal (including locomotion) (8). In humans, however, the 
shape of the arousal–performance relationship appears to be less 
clear. Some studies have suggested that increased arousal linearly 
improves perceptual decision-making (17, 18, 26), while others 
report optimal performance at intermediate levels of arousal  
(18–20, 22, 24, 25).

Although we have not been able to find clear consistencies in 
the available literature causing this dichotomy, we identify (at least) 
four possible explanations. First, it is possible that the studies that 
report linear effects employed easier tasks than we did here [or less 
perceptually complex tasks (78)]. The seminal work by Yerkes and 
Dodson (23) predicts a quadratic effect of arousal on performance 
for difficult tasks, but a (positive) linear effect for easy tasks. There 
is hardly any behavioral evidence for the difference in the shape of 
arousal–performance relationships between easy and difficult tasks 
in the domain of perception, but this issue deserves further inves-
tigation (78). Second, studies reporting linear effects might inves-
tigate different parts or only a limited range of the arousal spectrum. 
To illustrate, it may be that if one only samples the low end of the 
arousal spectrum (low to medium arousal), one may end up with 
a positive linear relationship between arousal and performance 
(hence missing the downward going part for high arousal states). 
Third, it is possible that the quadratic relationship that we report 
only holds for spontaneous fluctuations in arousal during task per-
formance while sitting still—and not for other arousal levels, such 
as pharmacologically manipulated states (26) or arousal levels rang-
ing from quiet wakefulness to locomotion (24). Fourth, quadratic 
relationships are not always considered, for instance when only two 
arousal states are compared (21). This may relate to a potential lack 

of statistical power (e.g., number of trials) that is necessary to dis-
sect the data in (enough) bins to properly uncover the quadratic 
relationship between arousal and decision behavior.

In conclusion, our findings attribute a general role to sponta-
neous arousal fluctuations in the modulation of perceptual 
decision-making. Independent of task parameters, behavioral 
performance appears to be optimal at intermediate levels of 
pupil-linked arousal. Based on a computational model, we propose 
that this inverted U-shaped arousal–performance relationship 
might result from the influence of arousal on VIP and SST 
interneurons that together act as a disinhibitory pathway for the 
neural populations that encode the available sensory evidence.

Methods

Subjects. For this study, 30 right-handed Dutch-speaking male participants 
(aged between 18 and 30 y) were recruited from the University of Amsterdam. 
Because this study involved a pharmacological manipulation, all participants 
underwent extensive medical and psychological screening to rule out any medical 
or mental illnesses. All participants gave written consent for participation and 
received monetary compensation for participation. This study was approved both 
by the local ethics committee of the University of Amsterdam and the Medical 
Ethical Committee of the Amsterdam Medical Centre. All participants provided 
written informed consent after explanation of the experimental protocol. Two 
participants decided to withdraw from the experiment after the first experimental 
session. The data from these participants have been excluded from further anal-
yses, resulting in N = 28. Due to technical malfunction, one participant did not 
perform the auditory tasks, resulting in N = 27 for the auditory data.

Procedure. Participants took part in three experimental sessions that were sep-
arated by at least 1 wk each. On each session, participants received one of three 
drugs in a random and counterbalanced order: placebo, atomoxetine, or done-
pezil, but here we only analyze the placebo data. In the first 2 h of each session, 
participants performed auditory discrimination (sessions 1 and 2) and detection 
tasks (session 3). In the second half of all sessions, participants performed four 
versions of visual detection and discrimination tasks (all sessions; the order of 
the tasks was randomized between participants).

After arriving at the testing site, participants received either placebo (2 ses-
sions) or donepezil (1 session). Right after oral ingestion of the pharmaceutical, 
participants would perform an auditory staircase task. The staircase procedure 
lasted approximately 30 min and was immediately followed by the main auditory 
task, which lasted approximately 1.5 h. After the auditory task, participants then 
received placebo (2 sessions) or atomoxetine (1 session) to ensure that both 
donepezil and atomoxetine plasma concentrations would peak at the start of the 
visual tasks (4 h after the start of the session). The pharmacological intervention 
is not of interest to this work; therefore, we only analyze the placebo data of the 
visual tasks. As donepezil plasma concentrations peak after approximately 4 h, 
we assume that donepezil blood concentration levels were negligible during the 
auditory tasks (i.e., the first 2 h after donepezil ingestion). For the auditory tasks, 
we thus analyze the data from all sessions. Below, we provide a brief description of 
the behavioral tasks, for more details on the pharmacological manipulation, visual 
tasks, and additional results, please see ref. 46. During all tasks, participants were 
seated 80 cm from a computer monitor (69 × 39 cm, 60 Hz, 1,920 × 1,080 pixels) 
in a darkened, sound-isolated room. To minimize head movements, participants 
rested their heads on a head-mount with a chinrest. All tasks were programmed 
in Python 2.7 using PsychoPy (79) and in-house scripts.

Behavioral Tasks
Auditory detection and discrimination tasks. Participants performed two dif-
ferent auditory tasks on separate sessions. The first task was an auditory discrimi-
nation task (sessions 1 and 2), in which participants had to discriminate between 
a high pitch tone (50% of trials) and a low pitch tone (50% of trials) against a 
background of auditory noise (Fig. 1A). The other task was an auditory detection 
task (session 3) in which participants had to indicate whether they deemed a 
target tone to be present or absent alongside auditory noise that was presented 
on every trial (50% target present trials; Fig. 1A). Besides performing the dis-
crimination or detection task, participants were asked to report the confidence 
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(low or high) in each perceptual decision that they made (not analyzed here). 
The perceptual decisions and confidence reports were simultaneously given 
by pressing one of four buttons (A, S, K, and L) on the keyboard. Because the 
auditory stimuli in these tasks do not inherently convey any direction (such as 
the visual stimuli discussed below), the meaning of the buttons with respect 
to the perceptual decisions was counterbalance across subjects. The buttons’ 
mapping to confidence was the same for all participants (A and L for confident, 
S and K for not confident).

The auditory stimulus set consisted of dynamic noise and two pure tones (sine 
waves). The dynamic noise (so-called temporally orthogonal ripple combinations; 
TORCs) (8, 80) was present on every trial and was always played at the same 
volume (61.1 dB). On top of the dynamic noise, there was a low pitch sine wave 
(300 Hz) and a high pitch sine wave (350 Hz) in the discrimination task and only 
the low pitch tone was used for the detection task. For the discrimination task, 
the mean tone volume was 3.22% of the TORC volume. For the detection task, 
the mean tone volume was 3.75% of the TORC volume. Auditory stimuli were 
binaurally presented through over-ear headphones. The volume of the tones was 
determined per subject by means of a staircase procedure aimed at 75% correct 
(Staircasing procedure). To ensure that performance remained around 75%, the 
volume of the target tones was automatically adjusted between runs. If perfor-
mance in a run deviated between 5 and 10% of target performance (75%), the 
volume of the tones was adjusted with 5% of the current tone volume on the 
following run. If performance deviated more than 10% from target performance, 
target volume was adjusted with 10%.

Each auditory trial started with a baseline interval (600 ms), followed by the 
stimulus interval (500 ms) in which the auditory noise was always presented 
(Fig. 1A). Depending on the task at hand, a target tone was or was not presented 
for the entire duration of the stimulus interval. After the offset of the sounds, 
participants had 2.5 s to respond (response interval). The response interval was 
aborted at response or after 2.5 s if no response was given, followed by a variable 
ITI (randomly drawn from a uniform distribution between 3 and 4 s).

Participants performed 560 trials of the auditory tasks per session, distributed 
over four runs of 140 trials that lasted approximately 12 min each. As participants 
performed the auditory discrimination task on sessions 1 and 2, and the auditory 
detection task only on session 3, we have collected double the number of trials 
for the auditory task (1,120 trials).

During the auditory tasks, participants viewed a computer screen with a gray 
background and a black fixation shape in the center (81).
Visual tasks. Participants performed four visual tasks. Two of these were varia-
tions of a discrimination task, in which participants were asked to discriminate 
the orientation of a Gabor patch hidden in dynamic visual noise as being rotated 
clockwise (CW: 45°, 50% of trials) or counter-clockwise (CCW: −45°, 50% of 
trials; Fig. 1A). The other two tasks were detection tasks in which participants 
had to indicate whether they believed a Gabor patch (CCW or CW) to be present 
or absent (50% present trials). These two detection tasks differed in terms of 
response bias manipulation (conservative versus liberal, see below). Besides 
these main task characteristics, there were some additional instructions and 
manipulations that are discussed below. During all visual tasks, gaze position 
was measured online to ensure that participants were fixating. Trials during 
which gaze position diverted >1.5° from fixation on the horizontal axis were 
excluded from further analyses.
Cued visual discrimination task. The first visual discrimination task was an adap-
tation of the Posner cueing task (82). Target stimuli were presented unilaterally 
for 200 ms, on either the left or the right side of the monitor (50% left, 50% right). 
Prior to target presentation (−1,300 ms), a spatial cue that was predictive of the 
target stimulus location was presented for 300 ms (80% cue validity). Participants 
were instructed to use this spatial cue to covertly shift their attention toward 
the cued location. Participants could respond until 1,400 ms after the onset of 
stimulus presentation by pressing one of two buttons on the keyboard (S for CCW 
tilted Gabor patches, K for CW). A variable ITI randomly drawn from a uniform 
distribution between 250 and 350 ms started directly after a response or the end 
of the response window if no response was given. Participants performed 560 
trials per session of this task, distributed over two runs of 280 trials.
Uncued visual discrimination task. The other discrimination task was a classical 
visual discrimination task. Target stimuli were presented centrally for 200 ms and 
there were no further manipulations. Besides indicating the orientation of the 
target stimulus, participants were also asked to report the confidence in their 

decision. Participants were instructed beforehand to distribute their confidence 
reports evenly, to prevent participants from only reporting low confidence answers 
under this challenging task. Orientation and confidence reports were simultane-
ously given by pressing one of four buttons on the keyboard (A for high-confident 
CCW-tilted Gabor patches, S for low-confident CCW, K for low-confident CW, and 
L for high-confident CW). Again, participants had a 1,400-ms time window to 
respond (response window aborted at response), followed by a 250 to 350 ms 
ITI. In total, participants performed 600 trials of the uncued visual discrimination 
task per session, distributed over two runs of 300 trials.
Liberal and conservative visual detection task. During the liberal visual detec-
tion task, target stimuli were presented centrally for 200 ms as well. The noise 
stimulus (a circle containing dynamic noise) was presented on every trial, but 
target stimuli were only shown on 50% of trials. Participants were instructed to 
report whether they saw a target stimulus or not, by pressing S (for target absent) 
or K (for target present). Target stimuli were orientated CCW and CW as in the 
discrimination tasks, but this orientation was not task-relevant and could thus be 
ignored. The response window was again 1,400 ms from stimulus onset, followed 
by a 250 to 350 ms ITI. Response bias was manipulated toward more liberal 
answers by means of negative auditory feedback in the form of a buzzer sound 
after missed target stimuli (i.e., misses in signal detection theory), presented 
immediately after the response. Participants performed 480 trials (two runs of 
240 trials) of the liberal visual detection task on each session.

The conservative detection task was like the liberal detection task, with the only 
difference being that response bias was manipulated toward more conservative 
responses. In this case, negative feedback was provided after falsely reporting the 
presence of a target stimulus (i.e., false alarms in signal detection theory). Again, 
participants performed 480 trials (two runs of 240 trials) per session of this task.

Because the buzzer sounds might have increased participants’ arousal and 
pupil size on the following trial, we also performed the analyses described 
below after excluding trials that followed a buzzer sound. With this, we removed 
12.4% of trials of the liberal and conservative detection tasks (or 3.3% of all 
trials). Removing these trials from further analyses did not change the results 
(SI Appendix, Fig. S5).
Staircasing procedure. We titrated performance on all tasks to 75% correct. To 
this end, the volume of the target tones or the opacity of the Gabor patches (i.e., 
the signal strength) was varied according to the weighted transformed up/down 
method proposed by Kaernbach (83), while the (auditory or visual) noise was 
kept constant. In short, the signal strength was increased with one step after 
erroneous responses, and decreased with three steps after a correct response 
(i.e., “1-up-3-down staircase”).

Each experimental session started with a staircase procedure to find a good 
estimate of each subject’s auditory discrimination (sessions 1 and 2) or detection 
(session 3) threshold. Participants performed three runs of 60 trials each. We 
interlaced two Kaernbach staircases (30 trials each) to improve the threshold esti-
mate. The first run started with relatively high signal strength so that participants 
could get acquainted with the stimuli. The second and third runs started with the 
mean signal strength of the reversals (excluding the first reversal) of the first and 
second runs, respectively. After finishing all staircase runs, the signal strength 
for the main auditory tasks that would supposedly lead to 75% performance 
was calculated by averaging all reversals (excluding the first reversals) across 
the two interlaced staircases.

The auditory staircase task was similar to the main auditory tasks, but with a few 
differences. The staircase task had shorter ITIs (1,000 ms) and the task required 
a response on each trial. Participants did not have to indicate the confidence in 
their decisions during the staircase task, and they were stimulated to withdraw 
from responding until the offset of the target sounds by flashing the fixation dot 
in red if they had answered too quickly.

The visual tasks were titrated to 75% performance in a similar fashion in a 
separate intake session (46).

Eye-Tracking Acquisition and Preprocessing. Gaze position and pupil size 
were measured with an EyeLink 1000 eye tracker (SR Research, Canada) during 
the experiment at 500 Hz. Nine-point calibration was performed at the start of 
each run to ensure high data quality. Furthermore, we used a head-mount with 
chinrest to minimize participants’ head movements. Participants were instructed 
to move their heads as little as possible and to try to refrain from blinking during 
the trials.

http://www.pnas.org/lookup/doi/10.1073/pnas.2312898121#supplementary-materials


8 of 10   https://doi.org/10.1073/pnas.2312898121� pnas.org

The pupillometry data of all tasks were preprocessed in the exact same way. 
Pupil traces were lowpass filtered at 10 Hz, blinks were linearly interpolated and 
the effects of blinks and saccades on pupil diameter were removed via finite 
impulse-response deconvolution (84). We removed all trials for which the eyes 
were closed during the baseline period from further analyses.

Data Analysis.
Analysis for data collapsed across all tasks. To assess the overall shape of the 
relationship between prestimulus pupil-linked arousal and perceptual decision-
making, we first combined the data of all tasks (excluding all pharmacologically 
manipulated data). To quantify prestimulus pupil-linked arousal, we took the mini-
mally preprocessed pupil traces of all tasks, and we calculated the average pupil size 
in the baseline window (−500 to 0 ms) leading up to each stimulus presentation 
(Fig. 1B). Throughout this manuscript, we use the term pupil-linked arousal to refer 
to spontaneous fluctuations in arousal state as measured by pupil size (9, 11, 12). 
Note that for the cued visual discrimination task, we also took the 500 ms before 
target presentation (not cue presentation) as the baseline window. We excluded all 
trials for which the eyes were closed during the baseline window, as well as trials for 
which pupil size during the baseline window was smaller or larger than three SDs 
from a subjects’ mean baseline pupil size. Next, for each run of each task separately, 
we assigned each trial to one of twenty equally sized bins based on the average 
prestimulus pupil size (note that we use five bins for the analyses performed sep-
arately for each sensory modality and decision type). The binning procedure was 
performed per run because it is not possible to assess whether pupil size differences 
between runs are the result of arousal fluctuations or differences between the exact 
head location (even though we used a head-mount). Therefore, we are looking at 
arousal fluctuations that occur within experimental runs (Fig. 1C, shown for five bins).

After having assigned all trials to twenty bins, we calculated SDTs [d′ (39)] 
and average RT as our dependent measures of perceptual decision-making for 
each run. We also calculated the mean pupil size for each bin to replace (equally 
spaced) bin numbers with (not necessarily equally spaced) mean prestimulus 
pupil size values, to do justice to the true relationship between pupil size and 
decision behavior. Next, we subsequently averaged over runs, sessions (in the 
case of auditory discrimination, for which we have two sessions), and tasks, leaving 
us with mean d′ and RT for 20 bins for each subject. To assess the shape of the 
relationship between arousal and perceptual decision-making, we next used 
linear mixed models (Mixed linear models).
Mixed linear models. We used a mixed linear modeling approach implemented 
in the Python-package Statsmodels (85) to quantify the dependence of behavioral 
sensitivity and RT on pupil size bin (86). Specifically, we fitted two mixed models 
to test whether pupil response bin predominantly exhibited a monotonic effect 
(first-order), or a non-monotonic effect (second-order) on the behavioral metric 
of interest (y). The fixed effects were specified as:

	
[1]Model 1: y ∼ �01 + �1P

1,

 

	
[2]Model 2: y ∼ �01 + �1P

1 + �2P
2,

with β as regression coefficients and P as the average baseline pupil size in each 
bin. We included the maximal random effects structure justified by the design 
(87): Intercepts and pupil size coefficients could vary with participant. The mixed 
models were fitted through restricted maximum likelihood estimation. The two 
models were then formally compared based on the Akaike information criterion 
(AIC) (40) and Bayesian Information Criterion (BIC) (41).
Analyses performed separately for each sensory modality and decision type. 
After having assessed that the shape of the overall relationship between pupil-
linked arousal and perceptual decision-making was quadratically shaped, we inves-
tigated whether this relationship also held for the different sensory modalities and 
decision types in our dataset. We collapsed the data of all tasks over the relevant 
features [i.e., auditory (2 tasks), visual (4 tasks), detection (3 tasks), discrimination 
(3 tasks)]. We next treated the data as before (Analysis for data collapsed across all 
tasks), but this time we assigned the trials to five equally populated bins (instead 
of 20) to compensate for the lowered power after splitting the data (Fig. 1 B and C). 
Next, we performed polynomial regression (Polynomial regression) to assess the 
shape of the relationship between arousal and perceptual decision-making in the 
different sensory modalities and decision types in our dataset.

Polynomial regression. To assess the shape of the relationship between arousal 
and perceptual decision-making (quadratic or linear), we performed second-order 
polynomial regression. Because we were merely interested in the shape of the rela-
tionship, and to minimize the influence of pupil size differences between subjects 
on our results, we first normalized our data in the pupil dimension (i.e., essentially 
centering the data around a common mean). Next, we modeled the relationship 
between our observed behavior (d′ and RT) and prestimulus pupil size as a negative 
quadratic relationship, and as a (unsigned) linear relationship using ordinary least 
squares linear regression with freely varying intercepts. We extracted the relevant 
beta coefficient from each model (ß1 for the linear model and ß2 for the quadratic 
model) for each subject and tested whether the coefficients were significantly differ-
ent from 0 using one-sample t tests (α = 0.05). We first tested the significance of the 
linear model (two-sided), followed by the quadratic model. After having established 
that the overall relationship between prestimulus pupil and sensitivity/RT was neg-
atively/positively quadratically shaped, respectively, we performed one-sided tests 
for the quadratic beta coefficients. To further investigate the effect of pupil-linked 
arousal on sensitivity, we repeated the polynomial regression analyses with hit rate 
and false alarm rate as the dependent variables (SI Appendix, Fig. S4).
Regressing out time-on-task. To test whether the (quadratic) relationship 
between pupil-linked arousal and performance could be (partly) driven by time-
on-task (43), we linearly regressed time on task (trial number, per run) out of the 
pupil size data. After that, we repeated the linear mixed model analysis with 20 
bins and with data averaged across all tasks to test the shape of the relationship 
between prestimulus pupil size and perceptual decision-making after regressing 
out time-on-task (SI Appendix, Fig. S2).
Regressing out evoked pupil response on the previous trial. To test whether 
the (quadratic) relationship between pupil-linked arousal and performance could 
be (partly) driven by the evoked pupil response on the previous trial, we line-
arly regressed the preceding evoked pupil response out of the pupil size data. 
The evoked pupil response was calculated as percent signal change relative to 
the average pupil size of a given run. The stimulus-evoked pupil response was 
defined as the maximum pupil size in the 1 s (for the visual tasks) or 2 s (for the 
auditory tasks) after stimulus presentation as compared to the average base-
line pupil size before the target (baseline: −500 to 0 ms before target onset). 
After that, we repeated the Linear Mixed Model analysis with 20 bins and with 
data averaged across all tasks to test the shape of the relationship between pre-
stimulus pupil size and perceptual decision-making after regressing out the 
evoked pupil response to the preceding trial (SI Appendix, Fig. S3).
Binning analysis based on the evoked pupil response on the previous trial. 
To further test whether the (quadratic) relationship between pupil-linked arousal 
and performance could be (partly) driven by the evoked pupil response on the 
previous trial, we repeated the binning procedure described above (20 bins), but 
this time the bins were made based on the evoked pupil response on the previous 
trial. The stimulus-evoked pupil response was again defined as described above. 
After this binning procedure, linear mixed model analysis was performed as 
before to assess the shape of the relationship between the evoked pupil response 
on the preceding trial and performance on the current trial (SI Appendix, Fig. S3).

Computational Model. We considered a continuous-firing-rate-based, 
population-based model of neural dynamics to describe a generic decision-
making task (38), which we adapt here for our detection/discrimination task. 
The model describes in detail the temporal evolution of the global synaptic con-
ductances corresponding to the NMDA and GABA receptors of two competing 
excitatory populations and one inhibitory (PV) population (Fig. 3A). The model is 
described by the following equations:
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http://www.pnas.org/lookup/doi/10.1073/pnas.2312898121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2312898121#supplementary-materials
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Above, SA and SB correspond, respectively, to the NMDA conductances of 
selective excitatory populations A and B, and SC corresponds to the GABAergic 
conductance of the inhibitory population. The parameters in these equations 
take the following values: τN = 60 ms, τG = 5 ms, γ = 1.282, and γI = 2. The 
variables rA, rB, and rC are the mean firing rates of the two excitatory populations 
and one inhibitory population, respectively. We obtain their values by solving, at 
each time step, the transcendental equation ri = �i (Ii ) , with � being a transfer 
function of the population (specified below) and Ii being the total input current 
to population “i”, givfen by

	
[6]IA = JsSA + JcSB + JEISC + I0A + IA

SST
+xA(t) + IA

sensory
(t),

 

	
[7]IB = JcSA + JsSB + JEISC + I0B + IB

SST
+ xB(t) + IB

sensory
(t),

	

[8]IC = JIESA + JIESB + JIISC + I0C +xC (t).

The parameters Js and Jc are the self- and cross-coupling synaptic terms 
between excitatory populations, respectively. JEI is the coupling from the inhibi-
tory populations to any of the excitatory ones, JIE is the coupling from any of the 
excitatory populations to the inhibitory one, and JII is the self-coupling strength of 
the inhibitory population. The parameters I0i with i = A, B, C are background inputs 
to each population. Parameters in these equations take the following values: Js = 
0.49 nA, Jc = 0.0107 nA, JIE = 0.3597 nA, JEI = −0.31 nA, JII = −0.12 nA, I0A = I0B 
= 0.3294 nA, and I0C = 0.26 nA. Note that these last two parameters correspond 
to the background input that pyramidal (A, B) and PV cells (C) received from other 
circuits in the brain. Parameter values have been taken or slightly adapted from 
previous work (38, 69). The term Ii

SST denotes the input to each excitatory popu-
lation from its corresponding SST population (see details about this term below).

The term xi(t) with i = A, B, C is an Ornstein–Uhlenbeck process, which intro-
duces some level of stochasticity in the system. It is given by

	
[9]�noise

dxi
dt

= − xi +
√

�noise� i� i(t).

Here, ξi(t) is a Gaussian white noise, the time constant is τnoise = 2 ms, and the 
noise strength is σA, B = 0.03 nA for excitatory populations and σC = 0 for the 
inhibitory one.

The last term in Eqs. 6 and 7 represents the external sensory input arriving at 
both populations. Assuming a detection task in which the subject has to detect 
the sensory stimulus A, the input is given by

	
[10]IA

sensory
(t) = �0, IB

sensory
(t) = 0.

The average stimulus strength is μ0 = 0.01326 unless specified otherwise (such as 
in Fig. 3 C and D, where the performance and RT are studied for different stimulus 
strength values). The stimulus is present during the whole duration of the trial 
(for simulations in which multiple trials are simulated one after the other, as in 
Fig. 3G, the values for these currents can be switched depending on which input, 
A or B, is present in each trial). The discrimination task can be simply stimulated 
by alternating the population which receives the input in the equation above, 
and therefore provides equivalent results.

The transfer function ϕi(t) which transforms the input into firing rates takes 
the following form for the excitatory populations:

	
[11]�A,B(I) =

1

2

aI − b

1 − exp[ − d(aI − b)]
.

The values for the parameters are a = 135 Hz/nA, b = 54 Hz, and d = 0.308 s. For 
the inhibitory population, a similar function can be used, but for convenience, 
we choose a threshold-linear function:

	
[12]�C (I) =

[

1

gI

(

c1I− c0
)

+ r0

]

0,30

.

The notation [x]0,30 denotes a minimum value of 0 (rectification) and a maximum 
value at 30 spikes/s (saturation). The values for the parameters are gI = 4, c1 = 615 
Hz/nA, c0 = 177 Hz, and r0 = 5.5 spikes/s. It is sometimes useful for simulations 
(although not a requirement) to replace the transcendental equation ri = �i (Ii ) 
by its analogous differential equation, of the form

	
[13]� r

dri
dt

= − ri + �i (Ii ).

The time constant can take a typical value of τr = 2 ms. Note that, even though 
our model is only able to model continuous firing rates, the used of spike-based 
units such as Hertz or spikes/s is justified as our model is an extension of previous 
work (38) which is a mean-field equivalent to a spiking neural network model, 
and therefore, it provides accurate estimations of activity mapped to spikes/s.

In addition to the two selective excitatory populations and the PV population, 
our model also includes the effects of top-down input mediated by selective VIP 
and SST populations. To introduce this, we assume that the firing rate activity of 
VIP and SST cells is determined, respectively, by the following equations:

	 [14]r i
VIP

=
[

�VIP(Ibg+ zIarousal)+�VIP

]

0,20
,

 

	

[15]r i
SST

=
[

�SST

(

gSST(Ibg+ z Iarousal)+JVIP r
i
VIP

)

+�SST

]

0,20
.

The subindex “i” indicates the associated selective excitatory populations 
(Fig. 3A). Parameter values are αVIP = 50, βVIP = 0, αSST = 20, βSST = 32, gSST = 
2, JVIP = −0.1, z = 0.1, and Ibg = 0.36. Note that βSST and βVIP correspond to the 
background currents received by SST and VIP cells from other circuits of the brain 
and that the background current for SST is particularly high so that the elevated 
spontaneous activity of SST can be reproduced (31). Iarousal indicates the arousal 
level of the model (assumed 0.4 in Fig. 3 B–D and variable in Fig. 3 E–G). Finally, 
we link the firing rate of the SST populations in Eq. 15 with the input to excitatory 
populations given in Eqs. 6 and 7 by assuming that:

	 [16]Ii
SST

= JSST r
i
SST
.

The synaptic strength is given by JSST = –0.001.
For each simulated trial (such as the one displayed in Fig. 3B), we consider 

that the circuit makes a detection when the firing rate of either the excitatory 
population A (or B, in the case of a discrimination task) reaches a threshold of 15 
spikes/s. The duration of the trial is set to Ttrial = 1.5 s.

Data, Materials, and Software Availability. The data of all experiments, 
analysis scripts, as well as the computational modeling scripts can be found at 
https://osf.io/fcext/ (88).
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