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A B S T R A C T   

The combustion of liquid fuels as energy sources for transportation and power generation has 
necessitated governments worldwide to direct petroleum refineries to produce sulphur-free fuels 
for environmental sustainability. This review highlights the novel application of artificial intel-
ligence for optimizing and predicting adsorptive desulphurization operating parameters and 
green isolation conditions of nanocellulose crystals from lignocellulosic biomass waste. The 
shortcomings of the traditional modelling and optimization techniques are stated, and artificial 
intelligence’s role in overcoming them is broadly discussed. Also, the relationship between 
nanotechnology and artificial intelligence and the future perspectives of fourth industrial revo-
lution (4IR) technologies for optimization and modelling of the adsorptive desulphurization 
process are elaborately discussed. The current study surveys different adsorbents used in 
adsorptive desulphurization and how biomass-based nanocellulose crystals (green adsorbents) are 
suitable alternatives for achieving cleaner fuels and environmental sustainability. Likewise, the 
present study reports the challenges and potential solutions to fully implementing 4IR technol-
ogies for effective desulphurization of liquid fuels in petroleum refineries. Hence, this study 
provides insightful information to benefit a broad audience in waste valorization for sustain-
ability, environmental protection, and clean energy generation.   

1. Introduction 

The annual global energy demand trend revealed an increased demand for energy in three major economic sectors: industrial, 
residential, and transportation. Despite the environmental pollution from using fossil fuels (crude oil, natural gas, coal), they still make 
up a significant share of global energy consumption [1]. Crude oil is the most extensively utilized fuel for transportation. Hence, 
petroleum refineries are indirectly and directly perceived as significant environmental polluters [2]. As a result, petroleum refineries 
are mandated to produce cleaner fuels with reduced sulphur content. For instance, in South Africa, the use of fossil fuel as an energy 
source is over 87 %, of which 80 % is consumed in transportation [3]. The presence of active organic sulphur compounds in gasoline 
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has resulted in the deactivation of the catalytic converter, corrosion of metallic components, air pollution, environmental pollution, 
and formation of acid rain [4,5]. 

Sulphur–rich liquid fuels emit significant quantities of sulphur oxides (SOx) into the atmosphere during combustion, resulting in 
acid rain and environmental pollution that is detrimental to human health [5]. Similarly, high levels of organic sulphur compounds in 
fuel oil have led to severe corrosion issues in refining machinery and the deactivation of some catalysts in automotive catalytic 
converters [6]. Due to the serious environmental concerns caused by the combustion of liquid fuels for transportation and power 
generation, governments across the globe have given stringent regulations to lessen the discharge of sulphur compounds into the 
environment from the utilization of liquid fuels, and petroleum refineries are instructed to comply with these regulations [2]. This 
review explored the application of the fourth industrial revolution (4IR) technologies to the adsorptive desulphurization of refinery 
products to attain the globally acceptable sulphur level of ≤10 ppm. 

The Fourth Industrial Revolution (4IR) combines technology that distorts previously independent technologies between the digital, 
biological, and physical realms. The 4IR refers to cutting-edge technologies such as artificial intelligence (AI), Internet of Things (IoT), 
virtual reality (3D printing), nanomaterials, big data, blockchain, and biotechnology that are critical tools for ensuring the sustain-
ability of the future [7,8]. Artificial intelligence (AI), especially machine learning techniques, designs and models algorithms that 
enable the computer to automatically learn and predict the relationship between dependent and independent variables [9,10]. The 
simulation and modelling of the desulphurization process have been suggested in various studies to aid in a better understanding of the 
process activities. Besides, machine learning techniques are applied to predict multiple methods to save cost, time, and energy. 
Adaptive neuro-fuzzy interference systems (ANFIS), artificial neural networks (ANN), support vector machines (SVM), fuzzy logics, 
and genetic algorithms (GA) are some examples of machine learning techniques that are widely applied to optimize and predict in-
dustrial processes [9,11]. 

The optimization of the desulphurization process is mainly based on experimental values collected to develop empirical and 
optimization models [12], and most of the studies in this area focused on the hydrodesulphurization process. Al-Jamimi et al. [12] 
reviewed several studies on optimizing hydrodesulphurization using machine learning (ML) techniques. However, the hydro-
desulphurization is unable to achieve the global standard of sulphur content (≤10 ppm) in refinery products, and the process is 
expensive because this desulphurization technique involves a catalytic reaction of hydrogen with sulphur organic compounds in liquid 
fuels at elevated temperature (320–360 ◦C), and pressure (10–90 bar) to produce hydrogen sulphide that is later removed from liquid 
fuels [13]. Therefore, there is significant interest in utilizing ML models to predict the optimal operating conditions for desulphuri-
zation, find fossil fuel leaks from oil refineries, transport and collect natural gas, and reduce CO2 emissions by carbon capture and 
sequestration. 

This review aims to explore and outline the application of 4IR technologies in the adsorptive desulphurization of liquid fuels. The 
relationship between nanotechnology and artificial intelligence, the future perspectives of 4IR technologies for desulphurization of 
liquid fuels, and their roles in achieving cleaner fuels are highlighted in this review. Furthermore, the recent development in artificial 
intelligence applications for nanocellulose crystals extraction and the adsorptive desulphurization process is discussed. Also, the 
current issues and potential prospects for using artificial intelligence to build cutting-edge nanocellulose crystal extraction and 
adsorptive desulphurization systems are reported. The review offers valuable insight for researchers to develop precise scientific 
formulations and plan experiments for further studies on environmentally friendly isolation methods and artificial intelligence-assisted 
adsorptive desulphurization. 

2. The fourth industrial revolution (4IR) technologies for desulphurization of organic sulphur compounds 

2.1. Relationship between nanotechnology and artificial intelligence 

Nanotechnology integrates the principles of chemistry, physics, and engineering for different purposes, while artificial intelligence 
uses the human neural system to predict, optimize, and model the outcomes of scientific processes [14–16]. Artificial intelligence has 
been applied to develop numerical simulations, analytical approximations, and accurate interpretations of complex and experimental 
data. Because of this, artificial intelligence can be merged with nanotechnology to generate and scrutinize scientific data accurately for 

Fig. 1. Relationship between nanotechnology and artificial intelligence for desulphurization.  
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the advancement of nano-applications that will significantly improve our society and promote the Industrial Revolution. In addition, 
enhancing nano-applications such as nano-computing, nano-devices, and nanomaterials has increased the power of artificial intelli-
gence tools and shown the synergetic relationship between nanotechnology and artificial intelligence [14,15]. Moreover, this review 
focused on the integration of nanotechnology and artificial intelligence to solve complex engineering problems, reduce errors asso-
ciated with the size of materials or systems, and use the data obtained from adsorptive desulphurization systems to predict the 
behaviour of the systems and optimize the operating conditions. Additionally, combining nanotechnology and artificial intelligence, as 
seen in Fig. 1, would boost the desulphurization process of liquid fuels to achieve the globally acceptable sulphur level (<10 ppm), and 
this review elaborately discussed the novel approach of applying nanotechnology and artificial intelligence in the following sections to 
achieving cleaner fuel for environmental sustainability. 

2.2. Application of fourth industrial revolution (4IR) technologies for desulphurization of liquid fuels 

Artificial intelligence (AI) and nanotechnology are part of the fourth industrial revolution (4IR) technologies that have been 
relatively deployed in the desulphurization of liquid fuels. The technologies are essential for improving cleaner fuels and a sustainable 
environment. Recently, there has been remarkable development and broad applications of nanomaterial/nanotechnology in industrial 
processes [8]. Likewise, artificial intelligence via machine learning techniques has been applied for modelling and predicting different 
industrial processes. Machine learning approaches have recently been created and successfully used to tackle various nonlinear en-
gineering problems, raising interest in their potential applications in other fields [17]. Due to the usage of intelligent systems, they 
have grown since they are practical tools for modelling processes in the petroleum industry [18]. Therefore, this paper will examine 
how machine-learning tools model and optimize the desulphurization of liquid fuel operating conditions. 

Artificial intelligence tools have been invented to forecast the sulphur content of liquid fuel [12], and they are being used more 
frequently in a few energy sectors to track the adverse environmental and climatic effects of fossil fuels, which may then be used to 
mitigate such effects [19]. The reader can explore some publications on the successful application of artificial intelligence in the 
petroleum sector over a decade. A few of the applications include optimization and prediction of octane number loss while reducing 
olefin and sulphur contents in the gasoline refining process [20], prediction and modelling of petroleum reservoir characterization 
[21], forecasting of carbon dioxide corrosion in pipelines [22], leakage detection in gas and liquid fuel pipelines [23] and optimization 
and modelling of desulphurization process [24–26]. In addition, applying the fourth industrial revolution (4IR) technologies for 
desulphurization of liquid fuels will improve the global macro-economy, conserve energy, revolutionize petroleum refineries, and 
promote environmental sustainability [27]. 

Al-Jamimi et al. [12] reviewed the application of machine learning methods for optimization and modelling simulations of the 
desulphurization of refinery products. The study reported the relevant techniques involved in machine learning applications for the 
hydrodesulphurization of refinery products. It focused mainly on the supervised machine learning approach by considering parametric 
and non-parametric models to predict and optimize hydrodesulphurization. Nevertheless, hydrodesulphurization cannot remove ar-
omatic refractory sulphur such as thiophene and its derivatives from liquid fuel during the catalytic reactions at high operating 
conditions, making the technique expensive and inadequate to produce cleaner fuel. Moreover, the study by Mguni et al. [28] 
employed multiple linear regression (MLR) and random forest (RFs) as machine learning tools to explore the complex adsorptive 
desulphurization process using zeolites as adsorbents. The study used data from the literature and related traditional modelling ap-
proaches with RF to examine adsorptive desulphurization. The MLR analysis was accompanied by caveat violations of linearity using a 
pairwise linear model, and the plot has outliers due to the introduction of bias and assumptions. For the RF model, the initial con-
centration of the fuel could not be controlled, and the partition coefficient was used to assess the adsorbent’s performance, which is 
suitable for low concentrations. In addition, there are a few correlations that the study could not explain due to the limitation of using 
zeolites as adsorbent for desulphurization, and the study could not capture adequate data for micropore volume, mesopore volume, 

Fig. 2. Scientific publications on optimization of the desulphurization process using artificial intelligence (data obtained from www.sciencedirect. 
com on August 22, 2023 using the keywords “desulphurization” and “machine learning”). 
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and pore size. The ANN predictive model’s deep learning may have offered greater precision and predictive power than the RF model. 
Still, ANN’s interpretability is complex, and RF was chosen due to its straightforward interpretability [28]. 

In addition, there are 533 publications with the keywords: “desulphurization” and “machine learning” from 2013 to 2023, as shown 
in Fig. 2 (data obtained from Science Direct on August 22, 2023), thereby signifying the goal of this study on the recent developments 
in the machine learning for desulphurization of liquid fuels. From the number of publications, it can be inferred that there is a need for 
more studies to be carried out on applying machine learning to the desulphurization of refinery products for environmental sus-
tainability. Moreover, the challenges with incorporating 4IR technologies for desulphurizing liquid fuels and their future perspectives 
are elaborately highlighted in the next section to provide the reader with insightful information on the environmental sustainability of 
4IR technologies for producing cleaner fuels. 

3. Challenges and future perspectives of 4IR technologies for desulphurization of organic sulphur compounds in liquid 
fuels 

Implementing the fourth industrial revolution (4IR) technologies in the petroleum industries has been perceived to boost pro-
ductivity and mass production of refinery products. However, the full implementation of 4IR technologies for the desulphurization of 
liquid fuels ensures that some associated challenges threaten cleaner fuel production, and these challenges are amplified in most 
developing countries. The technologies are challenged by the large volume of liquid fuels to be desulphurized, and it is not cost- 
effective, specifically in the applications of nanotechnology and artificial intelligence techniques. Likewise, the instability in the ef-
ficiency of a fixed-bed adsorption column for the continuous desulphurization of liquid fuels using nanomaterial as an adsorbent is still 
a challenge [29,30]. Another challenge is the insufficient desulphurization process data and operation difficulties, which have hin-
dered the application of 4IR technologies, especially artificial intelligence technology, to learn and solve specific problems associated 
with the desulphurization process [12]. 

Modern machine learning (ML) models have demonstrated considerable promise in bioenergy research, although they have not yet 
been fully implemented. The availability of data for creating a particular ML model is another significant obstacle to the application of 
ML technology in bioenergy systems [19]. Creating ML-based models requires expensive and time-consuming enormous volumes of 
training data. The black-box character of some ML algorithms, which restricts the interpretability of models and data, makes it 
challenging to utilize a mechanistic understanding of the desulphurization process, another barrier to applying ML models for 
desulphurization [19]. Therefore, more precise and specialized prediction algorithms are required to generate more comprehensive 
models that foresee a broader range of crucial aspects, including scientific data [31]. Since the results of other processes vary with 
different levels of complexity, a single ML approach is inadequate to forecast and analyse various data sets [32]. Incorporating several 
machine learning models or integrating them with other advanced techniques, including metaheuristic optimization models or 
complex statistical tools, has shown promise in the petroleum industry. Researchers have lately investigated and analysed hybrid 
models to represent various industrial processes. Although they require more computing labour, these hybrid models often outperform 
standard models in accurate prediction [33,34]. In order to produce cleaner fuel, there remains a research discrepancy in the use of ML 
systems in an integrated biorefinery that needs to be filled by developing innovative studies. The various ML models can significantly 
lower associated process costs, aid in better decision-making, and effectively assist with achieving the SDGs. 

Nonetheless, the future perspectives of 4IR technologies are the growing demands to meet the global standard of sulphur content 
(≤10 ppm) in liquid fuels that have led to the invention of cost-effective, renewable, and efficient nanomaterials which can be used as 
adsorbents in the adsorptive desulphurization process. In addition, the incorporation of nanotechnology for the desulphurization of 
liquid fuels will lead to the selective adsorption of organo-sulphur and ultra-deep desulphurization of liquid fuels, thus producing 
cleaner fuels for further applications in automotive fuel cells and electric power generation [35]. Likewise, the removal efficiency of 
organic sulphur compounds from liquid fuels using nanomaterials as adsorbents can be simulated and modelled by applying artificial 
intelligence or machine learning techniques to predict and better understand desulphurization operations [12]. Hence, combining 
nanotechnology and artificial intelligence technology in desulphurization would yield outstanding results. 

Similarly, the adequate prediction of the process operations by applying 4IR technologies to develop optimization models will 
enable petroleum industries to save operation costs, reduce process time and energy consumption. Moreover, 4IR technologies will 
help engineers detect and solve complex problems associated with liquid fuel desulphurization. In addition, the technologies can 
predict product yield and quality, and optimize the desulphurization process conditions to meet the global standards for liquid fuels 
with sulphur content ≤10 ppm, thereby increasing the market value of the products [36]. Also, applying 4IR technologies to the 
desulphurization process will ensure safety, adequate equipment maintenance, and reduced inefficient process models. Besides, the 
technologies will cause the existing industries to upgrade their process to boost productivity and embrace the new technological 
reality, producing cleaner fuels for transportation and power generation to drive socio-economic development [36]. The following 
sections give a detailed overview of the different techniques of desulphurizing liquid fuels to equip the reader with fundamental in-
formation that might help in understanding the other parts of this review. 

4. Desulphurization of liquid fuels 

Refinery products are made up of different chemicals and fuels for various applications, and one of the main activities for removing 
undesirable components, such as sulphur, from liquid fuels is desulphurization [26]. Liquid fuels (e.g., gasoline) are used chiefly as 
transportation fuels, and the presence of sulphur in these fuels has led to the discharge of sulphur oxide into the atmosphere, which is 
detrimental to human health and the environment [20]. Therefore, desulphurization is required to remove sulphur compounds from 

O.A. Olawuni et al.                                                                                                                                                                                                    



Heliyon 10 (2024) e24732

5

liquid fuels for environmental sustainability. Numerous variables, including sulphur removal rates, feed compositions, operating 
conditions, and catalyst activity, continue to impact the desulphurization process and affect the economy and environment [26]. The 
standard techniques for desulphurization of liquid fuels are as follows: hydrodesulphurization (HDS), extractive desulphurization 
(EDS), biodesulphurization (BDS), adsorptive desulphurization (ADS), and oxidative desulphurization (ODS). In addition, these 
desulphurization techniques have advantages and challenges/limitations, as summarized in Table 1, and the following subsections 
discussed optimizing desulphurization parameters by integrating artificial intelligence tools. 

4.1. Optimization of desulphurization process conditions using artificial intelligence tools 

The concerns about the potential depletion of fossil fuels and their environmental damage have led to international legislation to 
reduce their dangers and promote the development of cleaner fuel alternatives [19]. It is critical to model and improve the adsorptive 
desulphurization process to promote the accomplishment of SDG 7 (cleaner energy) and ensure the incorporation of fossil fuels as 
lasting clean energy sources [19]. Various researchers have used different adsorbents for the adsorptive desulphurization of liquid fuel, 
as summarized in Table 2. However, the conventional techniques of modelling and optimizing the chemical process are used in 
refining. As a result of the diversity of equipment and nonlinear operating parameters, it is necessary to optimize the conditions and 
experimental parameters, which is costly and time-consuming [20]. The conventional methods necessitate a significant consumption 
of chemicals and resources, which are expensive in terms of cost, effect on the environment, and time required. Thus, using the 
data-generating strategy is advised for minimizing the number of trials and increasing output. Statistical models that relate to the 
response of the variables tested can be created using the data gathered through artificial intelligence techniques. Therefore, using 
artificial intelligence, quick and easy parameter optimization is exceptionally preferred in desulphurization [17]. Artificial intelli-
gence, also called machine learning, has various applications in different approaches. However, modelling challenges in adsorptive 
desulphurization arise from identifying necessary operating conditions [28]. Therefore, recent studies have used and contrasted 
artificial intelligence algorithms to address these issues. The number of publications with the keywords: “optimization”, “desulphu-
rization”, and “artificial intelligence” for over a decade (data obtained from Science Direct on August 11, 2023) is presented in Fig. 3. 
The publications gradually increased from 7 in 2013 to 72 in 2023, with a progressing research interest related to the keywords. 

Furthermore, the optimization of a flue gas desulphurization system was explored by Liu et al. [24] using mined historical data, and 
the data were analysed using principal component analysis and enhanced fuzzy C-means. Still, the approach employed by the study 
could not provide the optimal operating conditions for the desulphurization process. Another study by Makomere et al. [52] applied 
RSM and ANN to model and optimize sulphur removal at low temperatures and assessed a flue gas desulphurization performance. The 
study used the central composite design of RSM to design the experiment using time, temperature, sulphur dioxide inlet concentration, 
diatomite to Ca(OH)2 ratio, and sulfation efficiency as dependent variables, with desulphurization efficiency as the response variable. 
The ANN model was developed using a 5-8-2 layout structure mapped with the Levenberg-Marquardt algorithm to assess the desul-
phurization performance. They observed that RSM and ANN models gave desirable and accurate predictions; however, underfitting 
and overfitting inefficiencies, as well as reduced hidden layers, influenced the performance of the ANN model. Nevertheless, adopting 
big data and artificial intelligence technologies with outstanding goodness of fit in desulphurizing liquid fuels make it possible to 
collect, process, and analyse extensive data by intelligent algorithms for actual prediction and optimization of the desulphurization 
processes [53]. 

Al-Jamimi et al. [17] also examined the modelling and optimization of the hydrodesulphurization process using an intelligent 

Table 1 
Advantages and limitations/challenges of desulphurization techniques.  

Desulphurization Technique Advantages Limitations/Challenges 

Hydrodesulphurization 
(HDS) 

Effective removal of aliphatic sulphur compounds, e.g., 
disulphide, thiols, and thioether 

Unable to remove aromatic refractory sulphur, e.g., thiophene and 
its derivatives. 
It involves catalytic reactions at high operating conditions. 
It is an expensive technique. 

Oxidative desulphurization 
(ODS) 

Use suitable oxidants to convert the sulphur compounds to 
sulfones or sulfoxides at mild conditions. 
It is not energy-consuming, and no generation of harmful 
by-products 

Further treatment, such as solvent extraction or any suitable 
method, is required. 
Selection of appropriate oxidants. 
Undesirable side reactions. 
Uneconomical technique. 

Extractive desulphurization 
(EDS) 

Selectively remove organic sulphur compounds at ambient 
conditions 

Selection of suitable solvent to remove organic sulphur 
compounds. 

Biodesulphurization (BDS) Removal of sulphur from organic sulphur compounds via 
enzymatic reactions. 
The technique is environmentally friendly, and there is no 
generation of hazardous by-products. 
Immobile enzymes can be reused many times without a 
further separation process. 

Separating microbial cells after the complete reaction is complex. 
Cell immobilization can lead to diffusional restrictions. 
Maintaining the optimal conditions for the development of 
microbes is complex. 
Enzyme deactivation might occur during the process. 

Adsorptive desulphurization 
(ADS) 

It is cost-effective and operated at ambient conditions. 
It is eco-friendly, and hazardous by-products are not 
formed. 
Regeneration and reusability of adsorbents are easy. 

The adsorbent determines the technique’s efficiency, and 
adsorbent properties influence the adsorption performance. 
Selectivity and affinity for aromatic sulphur organic compounds in 
liquid fuels vary with adsorbent.  
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technique. The study applied a machine learning approach by using a support vector machine (SVM) model coupled with a genetic 
algorithm (GA) to enhance the optimization and predictive capability of the SVM model. They developed the hybrid model to predict 
sulphur content in the hydrodesulphurization process with better configuration to optimize the process. However, they reported that 
the SVM’s prediction ability heavily depends on the precise composition of its parameters, including the insensitive loss function, 
regularization parameters, and radial basis function kernel. Due to the incorrect selection of SVM parameters, the effects of model 
cross-training continue to be significant factors [17]. In a similar study by Al-Jamimi et al. [26], a hybrid model (SVM and GA) was 
employed to optimize the hydrodesulphurization process based on initial sulphur content, inlet temperature, catalyst dosage, and 
pressure. The SVM was chosen because of its scalability with high dimensional data and relative simplicity of learning. The main 

Table 2 
Summary of adsorptive desulphurization of liquid fuel.  

Adsorbent Target sulphur compound(s) Operating conditions Adsorption capacity or % sulphur 
removal 

Reference 

Activated carbon manganese 
oxide 

Thiophene, Benzothiophene, 
Dibenzothiophene 

50 ppm, 25 ◦C, 0.5 g, 60 
min 

4.5 mg/g 
5.7 mg/g 
11.4 mg/g 

[37] 

Ceria nanorods Thiophene 200 ppm, 25 ◦C, 0.5 g 2.5 mg/g [38] 
Ni/Cu-carbon nanofiber Thiophene 35 ppm, 30 ◦C, 1 g, 130 min 0.5 mg/g [39] 
Modified clays Dibenzothiophene, 

4,6-dibenzothiophene 
25 ppm, 25 ◦C, 25 mg 11.3 mg/g 

4.7 mg/g 
[40] 

Pomegranate leaf powder Dibenzothiophene 1000 ppm, 30 ◦C, 0.2 g, 3 h 70.55 % [5] 
Ni–Metal-organic framework Thiophene 102 ppm, 30 ◦C, 100 mg, 3 

h 
4.74 mg/g [41] 

CeHY zeolite Thiophene, 
2-methyl thiophene, 
Tetrahydrothiophene 
Benzothiophene 

300 ppm, 30 ◦C, 1.0 g, 5 h, 9.5 mg/g 
28.6 mg/g 
31.2 mg/g 
10.6 mg/g 

[42] 

Neem Leaf 
Powder 

Dibenzothiophene 1000 ppm, 30 ◦C, 0.8 g, 60 
min. 

65.78 % [43] 

Graphene Nanoplatelets Thiophene, 
2-methyl thiophene, 
Dibenzothiophene 

1500 ppm, 25 ◦C, 3 g, 100 
min. 

117.21 mg/g [44] 

Metal-organic framework Dibenzothiophene 800 ppm, 25 ◦C, 10 mg, 4 h 710 mg/g [45] 
Zn and Mn-loaded activated 

carbon 
Dibenzothiophene 200 ppm, 30 ◦C, 0.15 g, 2 h 95.7 % [46] 

NiO/ZnO–TiO2 Thiophene 300 ppm, 340 ◦C, 45 mg, 2 
h 

98.3 % [47] 

Organoclays Dibenzothiophene 1000 ppm, 45 ◦C, 0.5 g, 60 
min. 

70.8 mg/g [48] 

Metal-organic frameworks Dibenzothiophene 1000 ppm, 30 ◦C, 5 h 112 mg/g [49] 
Cu-carbon nanofiber Thiophene 2000 ppm, 30 ◦C, 20 g/L, 4 

h 
103.4 mg/g [50] 

Modified Metal-organic 
frameworks 

Dibenzothiophene 1000 ppm, 25 ◦C, 0.2 g, 24 
h 

94.55 % [1] 

Nitrogen modified graphene Thiophene, Benzothiophene, 
Dibenzothiophene 

300 ppm, 70 ◦C, 0.1 g, 1 h 97.3 % 
92.8 % 
88.4 % 

[51]  

Fig. 3. Scientific publications on optimization of the desulphurization process using artificial intelligence (data obtained from www.sciencedirect. 
com on August 11, 2023 using the keywords “optimization,” “desulphurization,” and “artificial intelligence”). 
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drawbacks of the studies earlier examined are the choice of technique for desulphurization and the artificial intelligence tool utilized 
for desulphurization optimization and prediction; hence, one of the goals of this review is to explore other artificial intelligence tools 
with improved performance for adsorptive desulphurization process. Some examples of artificial intelligence tools that have been 
applied to optimize, predict, and model desulphurization processes are presented in Table 3. 

4.2. Incorporation of Adaptive Neuro-Fuzzy Interference Systems and artificial neural networks in desulphurization process 

Adaptive neuro-fuzzy interference systems (ANFIS) and artificial neural networks (ANN) are artificial intelligence techniques for 
predicting and modelling industrial processes. The artificial neural network (ANN) is an intelligent mathematical data processing tool 
that uses an algorithm inspired by a biological neural system called neurons to learn, predict, and optimize process data without 
introducing assumptions about the nature and interrelations of the data [16,59]. The neurons are divided into three layers, as pre-
sented in Fig. 4(a): the input layer, which receives the input information; the hidden layer, where mathematical operations are per-
formed; and the information obtained will be the input for the last layer, and the output layer [60]. ANN integrates collected input 
data, combines the data by performing nonlinear multivariate operations, and generates the outputs without creating any assumption 
about the nature and interrelations of the input data [61]. Unlike ANN, ANFIS is constituted by five networks or multilayers joining 
directly to one another, as shown in Fig. 4(b), and the order of arrangement of the layers for their functions includes fuzzification, 
multiplication, normalization, defuzzification, and summation [16]. 

Conversely, the adaptive neuro-fuzzy interference system (ANFIS) algorithm combines fuzzy logic’s reasoning and ANN’s learning 
ability. The ANFIS model applies membership functions, a back-propagation technique based on artificial intelligence and IF-THEN 
rules produced according to its knowledge [29,60]. ANFIS depends on dependent and independent variables to learn membership 
functions, understand the system behaviour during training, and achieve the IF-THEN rules [61]. Therefore, it was reported that the 
better performance of ANN predictability over ANFIS could be because of overtraining data and fuzzy rule-based complexity observed 
in the ANFIS model [62]. Although neural networks have excellent fitting performance, they are prone to overfitting, mainly when 
there is a restricted sample size. Cui et al. [20] suggested that the decision tree method can be applied to overcome the drawbacks of 
ANN. Compared with the neural network model, the decision tree model is advantageous for optimizing chemical processes due to the 
model’s ease of implementation, resistance to overfitting, and superior interpretability. Additionally, due to concerns that using ANN 
would result in flattening or not exploiting all process conditions and processes, scientists regularly compare ANN with algorithms like 
random forests, adaptive neuro-fuzzy inference systems, and support vectors [63,64]. 

Artificial Neural Networks (ANNs) are utilized in various situations where nonlinear RSM might not be the best choice because of its 
adaptability. ANNs can get around the drawbacks of the traditional method, eliminate the need to create a model, simplify things, and 
give the best possible output parameters [61,62]. Even though ANN is frequently used in real-world systems, there are still challenges 
with long learning curves, performance fluctuations, and managing ambiguous data. Adaptive Neuro-Fuzzy Inference System (ANFIS) 
has begun to replace ANN for modelling intricate industrial systems to overcome ANN’s shortcomings. ANFIS offers a straightforward 
architecture with the ability to adapt the challenging translation of human brains to fuzzy systems, capable of handling the complexity 
and unpredictability of real-world problems, and suitable logic capacity in addition to resolving the issues with ANN [60,63]. 

On the other hand, the inability to quickly discover a membership function, high computing expenses, extreme susceptibility to 

Table 3 
Examples of how artificial intelligence tools have been used for predicting and modelling industrial processes.  

Artificial Intelligence Tool Industrial Process Significant Observation Reference 

GA–SVM Molecular hydrodesulphurization using a catalyst The hybrid model corresponded with experimental data [17] 
ANN Optimization and modelling of a flue gas 

desulphurization process 
Improved prediction accuracy of the outlet concentration 
and optimized operating conditions 

[54] 

CMAC – Neural Network and 
GA 

Optimization and prediction of a desulphurization 
system 

The outcome demonstrated that under the same limitations, 
GA performed better with reduced output errors 

[55] 

Principal component analysis 
and fuzzy C-means 

Optimization of the desulphurization process Optimized operating parameters, with upgraded 
desulphurization efficiency and economic benefits 

[24] 

SFS and DE Prediction of octane number loss in gasoline The model showed the least mean square error compared to 
SVM and RF 

[20] 

RF and MLR Adsorptive desulphurization using zeolite RF model predicted better than the MLR model [28] 
SVM and GA Hydrodesulphurization (HDS) process in petroleum 

refinery 
The models adequately optimized HDS yield with high 
accuracy 

[26] 

Neural Network Prediction of impurity removal from atmospheric 
residue desulphurization process 

Adequate predictions were produced by the trained models 
and met the chemical stability requirement. 

[56] 

ANN and RSM Modelling of flue gas desulphurization system ANN model gave better accuracy than the RSM model [52] 
Grey–box with GA, 

Metropolis-Hasting and 
NN 

Desulphurization of hot metal in steel production Efficient algorithm with rapid computation time and 
precision. 

[57] 

ANN and semi-empirical 
regression 

Temperature profile prediction of Gasoil HDS 
process in petroleum refinery 

ANN model performs better than regression models when 
predicting reactor bed temperature. 

[58] 

ANFIS – Adaptive Neuro-Fuzzy Interference Systems, ANN – Artificial Neural Network, RF – Random Forest, MLR – Multiple Linear Regression, SVM – 
Support Vector Machine, GA – Genetic Algorithm, SFS – Sequence Forward Search, DE – Differential Evolution, CMAC – Cerebellar model articulation 
controller, NN –Neural Network. 

O.A. Olawuni et al.                                                                                                                                                                                                    



Heliyon 10 (2024) e24732

8

input factors and basic fuzzy rules, and difficulty interpreting precision choices are the critical drawbacks of ANFIS [65]. Thus, 
combining two or more artificial intelligence tools is advocated to solve the challenges with a single artificial intelligence tool. It is 
worthy of note that beyond the potential incorporation of artificial intelligence tools into the desulphurization process, these tools have 
been applied to predict and optimize the valorization of waste biomass. The following section provides an overview of the application 
of artificial intelligence tools to valorise waste biomass for environmental sustainability. 

5. Application of artificial intelligence in waste valorization to attain sustainable development goals (SDGs) 

Traditional modelling techniques like the Taguchi method, one-variable-at-a-time system, and genetic algorithms may be bene-
ficial when dealing with complex experimental data [19]. These methods are ineffective for accurate model approximation to optimize 
experimental conditions, leading to subpar model creation. As a result, artificial intelligence systems can aid in locating the most 
significant resources that are presently accessible and increasing feedback accessibility for long-term use [19]. In the past ten years, 
there has been a noticeable change from physical modelling to data-driven modelling in developing modern lignocellulosic bio-
refineries, which has increased interest in using machine learning or artificial intelligence technologies [66]. Researchers in various 
scientific sectors, including the bioenergy industry, have greatly encouraged the application of artificial intelligence (AI). AI enables 
machines to mimic some elements of human brain function using diverse computer science approaches like heuristic algorithms, 
machine learning, and fuzzy logic [67,68]. Artificial intelligence (AI) technology, known as “machine learning” or “deep learning”, 
uses mathematical techniques on data obtained on its own to increase performance and accuracy [69]. AI provides a choice of 
advanced bioenergy production systems for efficient natural resource utilization and environmental awareness [70]. 

Integrating artificial intelligence (ML) and traditional chemical characterization approaches may considerably improve the 
advancement of highly valuable processing of lignocellulosic biomass (LCB) [65]. To analyse and optimize the initial results of LCB 
indicators, identify the primary influencing elements, and boost the efficacy of resolving real-world research bottlenecks, combining 

Fig. 4(a). Artificial Neural Network (ANN) structure for desulphurization of liquid fuel 
Fig. 4(b) Adaptive Neuro-Fuzzy Interference System (ANFIS) structure for desulphurization of liquid fuel. 
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ML and conventional analytical characterization methods is more realistic and practical than utilizing them alone [71]. In general, 
different mathematical models and ML implementations can effectively optimize the parameters of the data obtained by conventional 
physicochemical characterization techniques (for example, thermogravimetric analysis, Fourier transform infrared spectrometry and 
nuclear magnetic resonance) [72]. To anticipate the impact of chemical treatment on lignin, Castro et al. [72] evaluated ML methods 
such as artificial neural network (ANN) and support vector machine (SVM) in addition to conventional thermogravimetric analyses. 
The effect of chemical treatment and temperature on lignin decomposition causes the prediction accuracy of ANN and SVM algorithms 
to decrease. Moreover, Velidandi et al. [65] explored the application of machine learning procedures to the characterization, pre-
treatment, product yield and quality, bioconversion process, and valorization of waste biomass. However, their review did not capture 
the application of ML algorithms for extracting nanocellulose crystals and green pretreatment methods of lignocellulosic biomass in 
the biorefinery process. As highlighted in this current review, one of the critical aspects of study for waste valorization is emerging 
machine learning algorithms for green isolation techniques and optimizing the process parameters to promote the nanocellulose 
crystals’ quality, economic viability, and environmental sustainability. 

Additionally, Chen et al. [73] recommended that due to the high cost of pretreatment necessary for the valorization of lignocel-
lulosic biomass, it is crucial to develop sustainable green techniques and optimize the process conditions for enhanced efficiency. It is 
worth stating that several lignocellulosic biomass wastes have been successfully transformed into valuable products (e.g., nano-
cellulose crystals). Furthermore, the actualization of the circular economy, as shown in Fig. 5, via waste valorization is enhanced when 
green isolation techniques are employed [74,75], and the methods can be improved by using artificial intelligence tools to model and 
optimize the fractionalization of waste biomass into value-added products. The application of artificial intelligence tools for modelling 
and optimizing green isolation techniques to achieve waste valorization is highlighted in the following section of this review. 

6. Optimization and modelling of green synthesis strategies for fractionalization of waste biomass 

The operating conditions for fractionating waste biomass must be enhanced, which may be done by modelling the operating pa-
rameters and choosing the best process parameters to meet the market’s demands. Various models, including response surface 
methodology (RSM), artificial neural networks (ANN), and genetic algorithms (GA), have been created and applied in biorefinery 
operations, as was covered in the previous section. However, conventional optimization tools were formerly used to develop math-
ematical models for valorizing waste biomass [19]. The development of artificial intelligence algorithms is quickly replacing con-
ventional modelling tools to save time, cost, and energy. Traditional stoichiometric procedures lack the durability, significant learning 
capability, and risk tolerance of artificial intelligence, which makes artificial intelligence a more realistic and convincing scientific 
approach [76]. More specifically, artificial intelligence is used in biorefinery systems for noise filtering, supply chain modelling, 
recognizing patterns, end-use system performance, and optimization [68]. 

Artificial neural networks (ANN), one of the standard artificial intelligence tools, have been extensively employed as predictive 
tools in various study fields due to their learning capacity, even with little experimental data. ANN is also used for linear and nonlinear 
systems [77]. Unlike RSM, ANN does not require a prior fitting method to estimate nonlinear functions like polynomial and quadratic 

Fig. 5. Waste valorization for circular economy and environmental sustainability.  
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functions. The efficiency of the ANN depends on how uniformly the data are statistically distributed, and RSM can only match 
quadratic functions and require fitting procedures [78]. The study by Wijaya et al. [79] applied RSM to optimize the isolation of 
nanocellulose crystals from bamboo shoots, and the fitting of independent parameters toward the response variable influenced the 
statistical significance of the model. However, Selvakumar et al. [80] investigated the optimal parameters for acid hydrolysis of 
lignocellulosic waste. They used RSM and ANN modelling to focus on the temperature, pH, time, and agitation as process variables. 
The study generated 30 trials using the central composite design of RSM with six centre points to design the experiment and determine 
how the four process factors affected the bioconversion of lignocellulosic waste. Also, the ANN model was developed using a 1-8-1 
structure, and the network was trained by applying a variable learning rate back algorithm with the four process variables. They 
claimed that the ANN model was preferable to the RSM since there was a strong connection between experimental and predicted data. 
However, acid hydrolysis used in the study is not eco-friendly due to the generation of hazardous by-products. 

Additionally, the study by Rashid et al. [81] optimized the operating parameters for isolating lignin from waste biomass using ANN 
and RSM. Before employing RSM to optimize, the Box-Behnken design was used to determine the effects of various operational pa-
rameters on the efficiency of lignin extraction, including extraction time, temperature, and biomass loading. Also, the ANN modelling 
involved a feed-forward neural network with multilayer perception in predicting lignin extraction, and Levenberg-Marquardt (LM) 
was adopted for training the data set. The performance of the ANN and RSM models were compared, and the ANN model performed 
better than the RSM model. Although the ANN structure was designed using up to three hidden layers and neurons varying from five to 
twenty to reduce prediction error, the model showed few errors with the predicted data. 

Furthermore, Wang et al. [82] applied three machine learning methods, namely ANN, random forest (RF), and decision regression, 
to predict and analyse the extraction of nanocellulose crystals from forty different cellulose feedstocks based on published data from 
the literature. The focus of the study was the crystallinity prediction of the extracted nanocellulose crystals, and the crystallinity 
prediction accuracy of the three machine learning methods was lower than the yield prediction. This observation was attributed to the 
isolation technique and insufficient data to train the models. Likewise, the method and equipment used influenced the measurement 
accuracy of crystallinity. The study could not optimize the isolation conditions due to uncertainty regarding the cellulose feedstock, 
isolation technique, pretreatment approach, and required chemicals. Furthermore, the green isolation strategies for extracting 
nanocellulose crystals from different waste biomass have been successfully achieved mainly by applying liquid hot water (hydro-
thermal) pretreatment and ionic liquids pretreatment, as depicted in Table 4. In addition, for the optimization of lignocellulosic 
biomass pretreatment, different input variables are considered depending on the goal of the pretreatment process, and the optimi-
zation of the two main green isolation strategies is discussed in the succeeding subsections. 

6.1. Optimization and modelling of liquid hot water pretreatment 

Liquid Hot Water (LHW) is known as autohydrolysis for the pretreatment of waste biomass to enable enzymatic solubilizing of 
hemicellulose. It removes up to 80 % of hemicellulose from different lignocellulosic materials [95]. LHW enhances the saccharification 
process of polysaccharides, especially cellulose, by significantly reducing the recalcitrance of the lignocellulosic biomass’s cell walls 
and the pretreatment technique is regarded as a sustainable approach for bioenergy generation [96]. The technique has been applied 
for the pretreatment of various biomass, including corncob [87,94], corn stover [97], macroalgae [98], green pepper waste [91], 

Table 4 
Extraction of nanocellulose crystal from waste biomass via green synthesis.  

Waste biomass Green synthesis technique and operating conditions % Yield Crystallinity (%) Reference 

Corn stover Ionic liquid 
140 ◦C, 3 h, 50 % w/w 

88  [83] 

Poplar (Populus trichocarpa) Liquid hot water 
180 ◦C, 70 min, 5 % w/w 

62.00 58.80 [84] 

Sugarcane straw Liquid hot water 
120 ◦C, 7 h, 3 % w/v 

86.50  [85] 

Wheat Bran Ionic liquid 
150 ◦C, 40 min, 5 % w/v 

83  [86] 

Corncob Liquid hot water 
190 ◦C, 30 min, 10 % w/w 

78.34 50 [87] 

Cotton linter Ionic liquid 
100 ◦C, 2 h, 10 % w/w 

33.1 69.6 [88] 

Napiergrass (Pennisetum purpureum) Liquid hot water 
200 ◦C, 15 min, 11 % w/v 

73.00  [89] 

Rubber wood 
Maize husk 

Ionic liquid 
125 ◦C, 1 h, 10 % w/w  

66.9 
59.3 

[90] 

Green pepper waste Liquid hot water 
150 ◦C, 40 min, 10 % w/v 

55  [91] 

Rice straw Ionic liquid 
120 ◦C, 5 h, 5 % w/w 

64.90 62.20 [92] 

Coconut waste Ionic liquid 
170 ◦C, 45 min, 10 % w/w 

89  [93] 

Corncob Liquid hot water 
200 ◦C, 60 min, 10 % w/w 

55.5 57.3 [94]  
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Hybrid Pennisetum [99], wheat straw [73,100], walnut shells [101], bamboo [102] and sugarcane straw [85]. Therefore, examining 
the optimal pretreatment operating conditions is significant to achieve the highest cellulose recovery from lignocellulosic biomass 
using liquid hot water pretreatment. In a recent study, Bekker et al. [103] evaluated the optimization of liquid hot water pretreatment 
conditions for the pretreatment of clover-grass press cake, and they used pretreatment time and temperature as the operating variables. 
The optimization was carried out based on the findings of a one-way ANOVA, examined using Tukey tests. 

Furthermore, Kang et al. [99] optimized the process conditions (time, temperature, and ratio of liquid to solid) of liquid hot water 
pretreatment on Hybrid Pennisetum using a central composite design of response surface methodology. At the optimal pretreatment 
conditions, the biodigestibility of Hybrid Pennisetum, the process energy efficiency and the biomethane yields were enhanced. Var-
ongchayakul et al. [104] also applied response surface methodology (RSM) to optimize liquid water pretreatment on cassava pulp. A 
central composite design was used to model the pretreatment process, and reaction time and temperature were the main factors 
considered in the pretreatment optimization. The statistical evaluation showed pretreatment temperature as the most significant factor 
influencing the degradation of hemicellulose, and experiment validation was required to predict the optimum pretreatment conditions 
appropriately. 

In contrast, in another recent study by Forsan et al. [105], acid hydrolysis and autohydrolysis processes were optimized using RSM, 
and the effects of the two hydrolysis methods were compared to treat sugarcane leaves. A central composite design was used to 
optimize the liquid hot water (autohydrolysis) treatment, and the treatment circumstances (treatment duration and temperature) were 
divided into three stages. The model for the autohydrolysis presented reaction temperature and time as the significant factors influ-
encing the process, and the model was used to determine the treatment conditions where undesirable by-products were generated. 
Likewise, they observed that temperature harmed the acid hydrolysis process because elevated temperature, reduced hydrolysis time, 
and low acid concentration promoted the yield. On the other hand, a decrease in temperature required higher time and acid con-
centration to obtain a similar range of output, making the process unsustainable and environmentally unfriendly. 

Similarly, Olawuni et al. [94] investigated the optimization of liquid hot water on corncobs using a central composite design of 
response surface methodology, and the process was modelled based on temperature, solid loading rate, and reaction time as the 
pretreatment variables. They noticed a deviation between the predicted and actual yield due to outliers that could be attributed to 
minor errors; thus, the developed RSM model needed perfection. In another study, Varongchayakul et al. [106] evaluated liquid hot 
water pretreatment of atratum and ruzi grasses before anaerobic digestion. Likewise, a central composite design modelling of response 
surface methodology was employed to assess the pretreatment process optimization. They presented that the LHW pretreatment 
improved methane yield and biodegradability of the substrates during anaerobic digestion. Most parameters considered during 
optimizing lignocellulosic pretreatment are based on the solid residue or liquid after pretreatment, as opposed to high cellulose content 
and low hemicellulose and lignin. The purpose of their study for optimizing LHW pretreatment conditions (temperature and time) was 
to enhance biodegradation and methane yield, and there was a variation between the coefficient of determination values for the actual 
and adjusted data. 

Chen et al. [73] also examined the optimization of subcritical water pretreatment of wheat straw conversion using CCD of RSM. 
During the optimization of subcritical water pretreatment, it was shown that the breakdown of the resistant structure of wheat straw 
and cellulose degradation was in equilibrium. However, the challenge with the method was the crucial need to find the balance be-
tween wheat straw and cellulose degradation during the pretreatment and preserve the point for optimum yield. It was reported that 
the main reason for pretreatment is to improve enzymatic hydrolysis, and a higher R2 value was obtained for pretreatment only than 
combined enzymatic and pretreatment evaluation. The optimization of LHW has widely been done using RSM, hence the importance of 
this subsection and the potential application of artificial intelligence to optimize the LHW pretreatment variables. Therefore, the 
application of artificial intelligence to predict and optimize the LHW pretreatment conditions is crucial for treating different feedstocks 
and enhancing the hydrolysis process during the transformation of lignocellulosic biomass to nanocellulose crystals and other valuable 
products. 

6.2. Optimization and modelling of ionic liquids pretreatment 

Anions and cations combine to form a class of salts known as ionic liquids (ILs), which are liquid at room temperature. Ionic liquids 
are used more frequently in the pretreatment of lignocellulosic biomass because of their unique physicochemical characteristics, which 
include their high solution ability for the dissolution and hydration of lignin and carbohydrates, their adequate chemical and thermal 
reliability and their low vapour pressure [107,108]. The main benefit of utilizing ILs for pretreatment is the low loss in solvent re-
covery, renewability, and reusability. However, the drawbacks of this technique are the need for many expensive ILs, the need to 
recover the hemicellulose and lignin following cellulose isolation, and the sticky and tough-to-handle solutions that develop during the 
procedure [109]. Nonetheless, Mesa et al. [110] suggested the dilution of ionic liquids with water to prevent this problem and promote 
this environmentally friendly pretreatment technique. Likewise, Babicka et al. [111] stated that cations, anions, source of cellulose, 
temperature, and extraction time are the main factors influencing the ionic liquid-based fractionation of lignocellulosic biomass. 
Additionally, Babicka et al. [112] reported that nanocellulose could be extracted and recovered after ionic liquid pretreatment of 
microcrystalline celluloses, making the technique more amenable as a renewable chemical raw material for other applications, thereby 
leading to reduced costs of operation. In addition, to adequately optimize the ionic liquid pretreatment conditions and predict cellulose 
recovery, artificial intelligence (machine learning) can be applied to model the essential input variables, design experiments based on 
the model interpretation, and better understand the process. 

Besides, Phromphithak and colleagues [113] studied the optimization of ionic liquid pretreatment of lignocellulosic biomass using 
three different machine learning algorithms, namely support vector machines (SVM), random forest (RF), and gradient boosting (GB). 

O.A. Olawuni et al.                                                                                                                                                                                                    



Heliyon 10 (2024) e24732

12

The algorithms were applied to predict the production of cellulose-rich materials and solid recovery from the lignocellulosic biomass. 
They used 23 data sets and divided them as 75 % for training and 25 % for testing to optimize the model parameters. The RF algorithm 
gave the highest prediction accuracy compared to other algorithms due to its advantage of handling extensive data and combining 
several decision tree algorithms. It was noticed that high temperature and reaction time harmed the production of cellulose-rich 
materials and solid recovery. Hence, a two-way partial dependence plot was recommended to optimize the process and new ionic 
liquid pretreatment. 

On the other hand, in the study by Smuga-Kogut et al. [64], the five distinct ionic liquid pretreatments of mugwort and hemp 
biomass were improved using random forest (RF) and artificial neural network (ANN) algorithms. The outcome demonstrated 
enhanced efficacy of both RF and ANN models with coefficient of determination (R2) values of 0.95 and 0.9, respectively. In addition, 
the study discovered that the random forest algorithm performed better with a substantial prediction accuracy than the ANN algo-
rithm; hence, the R2 value is influenced by the applied model. Due to the different biomass wastes used in the study and process 
complexity, it was tough to obtain accurate results applying only a single algorithm. Therefore, a hybrid modelling strategy will in-
crease the accuracy of the results and reduce the requirement for time-consuming and expensive research on IL-based treatments. 

Similarly, 1-ethyl-3-methylimidazolium acetate pretreatment was investigated by Saha et al. [114] on sugarcane bagasse. A central 
composite design (CCD) of response surface methodology (RSM) was used to optimize the pretreatment conditions (time, temperature, 
and the ratio of ionic liquid to bagasse), and an empirical model was created to look at the interactive impact of the isolation conditions 
on yield. The modelling revealed that extended pretreatment time, increased temperature, and high loading rate favoured the yield 
response. However, these conditions are not cost-effective and could lead to cellulose degradation and production of inhibitory 
by-products. In a recent study, Mesa et al. [110] investigated the optimization of 1-butyl-3-methylimidazolium chloride (BmimCl) 
pretreatment of sugarcane bagasse using a central composite rotatable design based on the solid loading rate, time and temperature as 
process variables. They observed reduced sugar loss after the pretreatment and improved digestibility after the enzymatic hydrolysis at 
the optimum conditions. Likewise, Nurdin et al. [115] studied the optimization of triethylammonium hydrogen sulphate (IL [TEA] 
[HSO4]) as an ionic liquid for the pretreatment of empty oil palm fruit bunches. The study optimized pretreatment temperature and 
ionic liquid composition as the two factors influencing the transformation of the empty oil palm fruit bunches. However, the study 
could not achieve improved ionic liquid recovery at the optimum condition, and the impact of pretreatment time was not investigated. 

Furthermore, Poy et al. [92] examined the pretreatment of rice straw using 1-ethyl-3-methylimidazolium acetate and observed that 
the ionic liquid pretreatment disrupted the complex lignocellulosic matrix of the rice husk. Also, they applied response surface 
methodology (RSM) to optimize the pretreatment parameters and maximize delignification and enzymatic hydrolysis yield. The RSM 
model had limited performance in predicting the best pretreatment parameters. In a similar study, Araya-Farias and co-workers [86] 
applied 1-ethyl-3-methylimidazolium acetate for the pretreatment of wheat bran, and they optimized the pretreatment conditions 
(time, temperature, loading rate and concentration of ionic liquid in water) using partial least square and second order design. The 
optimization results showed that the partial least square quadratic model could be improved by adequately fitting the independent 
parameters using the second-order model. Therefore, this review strongly recommends intelligent modelling using artificial intelli-
gence tools to overcome this drawback. In addition, the effect of cationic imidazolium ionic liquids on the isolation of cellulose 
nanocrystals was studied by Grząbka-Zasadzińska et al. [116], and the potential application of nanocellulose crystals as green 
adsorbent for efficient desulphurization of liquid fuels was highlighted in the following section. 

7. Application of nanocellulose crystal (green adsorbent) for adsorptive desulphurization of liquid fuels 

The recent applications of nanocellulose crystals for water and wastewater treatment are responsible for their potential application 
in the adsorptive desulphurization of liquid fuels due to their cost-effectiveness, adsorption efficiency, large surface area, mild 
operating conditions, and mechanical and thermal stability. Additionally, it is worth knowing that there are few publications on the 
utilization of green adsorbents extracted from waste biomass to remove sulphur organic compounds (e.g., dibenzothiophene and its 
derivatives) from liquid fuel, such as pomegranate leaf powder [5], palm kernel shell activated carbon [117], and neem leaves [43], as 

Fig. 6. Application of biomass-based nanocellulose crystals for adsorptive desulphurization.  
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well as functionalized activated carbon from corncob [46]. Some waste biomass-derived adsorbents for adsorptive desulphurization 
are represented in Fig. 6. A more significant proportion of sulphur organic compound was successfully removed according to the 
adsorption capability of the adsorbent with minimal adsorbent dosage, and the surface functionality was significantly responsible for 
the adsorption capacity of the green adsorbents. Furthermore, Li and co-workers [118] reviewed the application of nanocellulose 
materials in the oil and gas industry as an environmentally friendly and sustainable approach to enhance the development and pro-
ductivity in the industry. The review focused on the three main sectors of the oil and gas industry (upstream, midstream, and 
downstream sectors). In the downstream sector, the study explored the application of nanocellulose materials in the desulphurization 
of natural gas and crude oil using hydrodesulphurization and oxidative desulphurization techniques. 

Similarly, the study by Zhang et al. [119] examined the performance of mesoporous alumina and NiMo catalysts using synthesized 
nanocellulose fibre as a template for removing dibenzothiophene via the hydrodesulphurization process. The result of the study 
revealed that the incorporation of nanocellulose fibre as a template in the mesoporous alumina and NiMo catalysts made it perform six 
times better than when it was not incorporated. However, the hydrodesulphurization process was carried out at an elevated tem-
perature and pressure, making it expensive. Still, the mesoporous alumina and NiMo catalysts considered in the study were not green 
materials. Therefore, this review explored using biomass-derived materials as green adsorbents in adsorptive desulphurization as an 
alternative to the hydrodesulphurization technique. Based on the successful studies by different researchers on the application of green 
adsorbents for adsorptive desulphurization, there is a need for further research on the adsorption mechanism of nanocellulose crystals 
(green adsorbents) isolated from waste biomass for the adsorptive desulphurization of liquid fuels. The adsorption mechanism and 
surface chemistry influence the adsorbent’s performance for effective desulphurization, and they are briefly discussed in the following 
sub-sections. 

7.1. Adsorption mechanism of nanocellulose crystal for selective desulphurization of gasoline 

The mechanisms that make adsorptive desulphurization viable at ambient conditions with low energy consumption and no loss of 
octane value include π-complexation, reactive adsorption, van der Waals, and electrostatic interactions [40,45,120]. Also, the func-
tional groups (surface chemistry) that have contributed to the application of nanocellulose for selective desulphurization of gasoline 
are the carboxyl group (-COOH), a hydroxyl group (-OH), carbonyl group (-CO), and aldehyde group (-CHO) [121]. The adsorption 
mechanism and surface chemistry (functional groups) are shown in Fig. 7(a) and (b), respectively. 

Moreover, selective adsorption occurs during the acid-base reaction of sulphur and metal, leading to S-adsorbent (S-M) interaction 
[122]. The adsorptive mechanism of π-complexation occurs when cations form σ-bonds with s-orbitals of sulphur while back-donating 
their d-orbitals improves the electron density to the anti-bonding π-orbitals of the sulphur rings [45]. The metal’s vacant s-orbitals and 
the availability of the high-electron density d-orbitals needed for back-bonding created a strong π-complexation bonding [40]. 
Although biomass-based adsorbents have unique properties for desulphurization, to achieve the sustainability of adsorptive desul-
phurization of petroleum distillates using green adsorbents, there is a need to overcome the challenges associated with the utilization 
of nanocellulose crystal extracted from waste biomass through green isolation techniques for adsorptive desulphurization. 

8. Challenges and outlook of green isolation techniques for nanocellulose crystal as adsorbent for desulphurization of 
liquid fuels 

The main challenge with the nanocellulose crystals isolation from lignocellulosic waste biomass is the need to carry out a pre-
treatment process on the waste before the isolation of the process to solubilize the hemicellulose and lignin components of the 
lignocellulosic waste. The pretreatment process is critical in valorizing lignocellulosic waste to improve its digestibility for efficiently 
isolating nanocellulose crystals. However, the conventional pretreatment process involving chemicals is unsustainable due to the 
generation of harmful by-products, environmental pollution due to solvent waste, toxicity, elevated energy demand, and safety 
concerns [123]. Thus, the green isolation techniques that will effectively substitute the conventional pretreatment of lignocellulosic 
waste are required to resolve the associated challenges with the traditional approach. 

Different challenges still affect the green isolation techniques for nanocellulose crystal, notably when used on an industrial scale. 
These challenges include technical concerns for designing specific and efficient green isolation techniques for nanocellulose crystal 
extraction from lignocellulosic biomass waste and surface modification of nanocellulose crystal [124]. Another issue is high running 
costs, especially for the principal green isolation approaches that use aqueous ionic liquids and energy-intensive liquid hot water 
treatments. A significant amount of water and energy are needed for the liquid hot water pretreatment procedure. Also, the ionic 
liquids pretreatment technique involves many expensive ionic liquids, and the solution becomes viscous with hemicellulose and lignin, 
making the solution challenging for further isolation [109]. Therefore, the green isolation techniques require more studies to improve 
the methods, focus on cheaper synthesis approaches for better industrial applications, upscale the process, and optimize the process 
parameters. Moreover, the green isolation techniques for nanocellulose crystal might be regarded as the outlook for sustainable 
treatment of lignocellulosic waste as they do not produce hazardous by-products or inhibitor compounds, and the nanocellulose crystal 
yield is relatively high. 

The nanocellulose crystal as an adsorbent for effectively removing sulphur compounds from fuels was developed as a substitute for 
the expensive technology and energy-intensive activated carbon-based adsorbents. However, the nanocellulose crystal has been 
proposed as an excellent adsorbent due to its large surface area, crystallinity property, adsorption capacity, and affinity towards 
organic contaminants [125]. Nevertheless, it must be specially designed to improve interactions for the desired result and selectively 
adsorb organic sulphur compounds from petroleum distillates. Furthermore, the adsorptive desulphurization process and the isolation 
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of nanocellulose crystals from lignocellulosic waste have been mainly investigated on a laboratory scale. Therefore, the challenge with 
the application of nanocellulose crystal for the adsorptive removal of organic sulphur compounds from liquid fuels includes the in-
dustrial up-scaling of the process, selectivity, and affinity for aromatic sulphur organic compounds, cost implication associated with 
the isolation techniques of nanocellulose crystal and environmental impact of modified nanocellulose crystal. This review discovered 
that technical concerns and operating costs are the main challenges affecting the green isolation technique for extracting nanocellulose 
crystals. However, the challenges can be overcome with rigorous and pilot-scale investigations to industrialize the designs and 
construct economically and environmentally feasible green isolation of nanocellulose crystal process and desulphurization of petro-
leum distillates. Moreover, artificial intelligence technologies will enhance the prediction and optimization of nanocellulose crystals as 
an adsorbent for efficient desulphurization of refinery products. 

9. Conclusions 

The incorporation of 4IR technologies for effective adsorptive desulphurization can assist in achieving the globally acceptable 
sulphur level in refinery products and enhance sustainable development goals. Applying artificial intelligence or machine learning 
tools to predict and optimize desulphurization operating conditions would reduce process time, save operation costs, and minimize 
energy consumption. The initial sections of this review broadly discussed the synergistic relationship between nanotechnology and 
artificial intelligence in adsorptive desulphurization compared to other desulphurization techniques. The study realized that technical 
concerns and operating costs, among others, are the main challenges affecting the optimization of the desulphurization process using 
machine learning tools. The middle sections focused on applying artificial intelligence tools in waste valorization to promote envi-
ronmental sustainability and optimize the green isolation operating conditions. Likewise, the adsorption capacity of nanocellulose 
crystal isolated from waste biomass can be increased by optimizing the process parameters and enhancing the adsorbent suitability to 
improve the desulphurization efficiency. Also, the last sections highlighted the utilization of waste biomass-derived adsorbents as 
suitable alternatives to non-green adsorbents in adsorptive desulphurization. In addition, this review identified that the biomass-based 
nanocellulose crystal through the green isolation technique had not been widely applied as an adsorbent for the adsorptive desul-
phurization of refinery products. In future, the 4IR technologies for adsorptive desulphurization would combine nanotechnology and 
artificial intelligence to boost the production of cleaner fuels, have substantial socio-economic benefits, and promote environmental 
sustainability. Another prospect is the recommended application of two or more artificial intelligence tools in conjunction with each 
other for predicting and optimizing desulphurization operating conditions. 
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