Table 3.
Clustering evaluation scores for different hyperparameter configurations on the MIMIC-IV dataset. (SS: Silhouette Score; CHS: Calinski-Harabasz Score; DBS: Davies-Bouldin Score). The configuration M=1, d=8, h=2, and K=3 achieved the best performance across all metrics, suggesting it as the optimal setup for the MIMIC-IV dataset.
Hyperparameters | K=3 | K=4 | K=5 | ||||||
---|---|---|---|---|---|---|---|---|---|
SS | CHS | DBS | SS | CHS | DBS | SS | CHS | DBS | |
M=1, d=8, h=2 | 0.25 | 884.95 | 1.47 | 0.24 | 680.51 | 1.67 | 0.13 | 458.59 | 1.89 |
M=1, d=8, h=4 | 0.23 | 631.74 | 1.78 | 0.13 | 707.22 | 1.87 | 0.16 | 671.80 | 1.72 |
M=1, d=16, h=2 | 0.17 | 457.76 | 2.02 | 0.13 | 547.68 | 2.43 | 0.14 | 463.17 | 2.26 |
M=1, d=16, h=4 | 0.13 | 455.67 | 2.41 | 0.10 | 460.91 | 2.41 | 0.10 | 478.54 | 2.20 |
M=1, d=32, h=4 | 0.08 | 280.06 | 2.81 | 0.11 | 269.57 | 2.99 | 0.09 | 257.99 | 2.85 |
M=1, d=32, h=8 | 0.05 | 228.10 | 3.36 | 0.06 | 197.85 | 3.12 | 0.05 | 180.37 | 3.15 |
M=2, d=8, h=2 | 0.14 | 810.25 | 2.06 | 0.16 | 609.06 | 1.89 | 0.16 | 669.63 | 1.77 |
M=2, d=8, h=4 | 0.20 | 680.40 | 1.87 | 0.12 | 691.99 | 1.85 | 0.22 | 799.93 | 1.55 |
M=2, d=16, h=2 | 0.09 | 342.08 | 2.65 | 0.09 | 332.93 | 2.40 | 0.13 | 449.23 | 2.20 |
M=2, d=16, h=4 | 0.13 | 463.70 | 2.19 | 0.09 | 296.01 | 2.44 | 0.09 | 274.68 | 2.41 |
M=2, d=32, h=2 | 0.11 | 358.12 | 2.69 | 0.07 | 246.35 | 2.92 | 0.06 | 162.41 | 3.38 |
M=2, d=32, h=4 | 0.10 | 311.41 | 2.82 | 0.07 | 237.12 | 2.94 | 0.06 | 196.55 | 3.34 |
M=2, d=64, h=4 | 0.13 | 438.68 | 2.47 | 0.12 | 338.72 | 2.91 | 0.12 | 329.10 | 2.51 |
M=2, d=128, h=4 | 0.14 | 416.29 | 2.85 | 0.14 | 368.75 | 2.32 | 0.14 | 346.96 | 2.34 |