Skip to main content
[Preprint]. 2024 Aug 20:arXiv:2401.08002v2. Originally published 2024 Jan 15. [Version 2]

Table 3.

Clustering evaluation scores for different hyperparameter configurations on the MIMIC-IV dataset. (SS: Silhouette Score; CHS: Calinski-Harabasz Score; DBS: Davies-Bouldin Score). The configuration M=1, d=8, h=2, and K=3 achieved the best performance across all metrics, suggesting it as the optimal setup for the MIMIC-IV dataset.

Hyperparameters K=3 K=4 K=5
SS CHS DBS SS CHS DBS SS CHS DBS
M=1, d=8, h=2 0.25 884.95 1.47 0.24 680.51 1.67 0.13 458.59 1.89
M=1, d=8, h=4 0.23 631.74 1.78 0.13 707.22 1.87 0.16 671.80 1.72
M=1, d=16, h=2 0.17 457.76 2.02 0.13 547.68 2.43 0.14 463.17 2.26
M=1, d=16, h=4 0.13 455.67 2.41 0.10 460.91 2.41 0.10 478.54 2.20
M=1, d=32, h=4 0.08 280.06 2.81 0.11 269.57 2.99 0.09 257.99 2.85
M=1, d=32, h=8 0.05 228.10 3.36 0.06 197.85 3.12 0.05 180.37 3.15
M=2, d=8, h=2 0.14 810.25 2.06 0.16 609.06 1.89 0.16 669.63 1.77
M=2, d=8, h=4 0.20 680.40 1.87 0.12 691.99 1.85 0.22 799.93 1.55
M=2, d=16, h=2 0.09 342.08 2.65 0.09 332.93 2.40 0.13 449.23 2.20
M=2, d=16, h=4 0.13 463.70 2.19 0.09 296.01 2.44 0.09 274.68 2.41
M=2, d=32, h=2 0.11 358.12 2.69 0.07 246.35 2.92 0.06 162.41 3.38
M=2, d=32, h=4 0.10 311.41 2.82 0.07 237.12 2.94 0.06 196.55 3.34
M=2, d=64, h=4 0.13 438.68 2.47 0.12 338.72 2.91 0.12 329.10 2.51
M=2, d=128, h=4 0.14 416.29 2.85 0.14 368.75 2.32 0.14 346.96 2.34