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ABSTRACT 

Objectives: Myositis is a heterogeneous family of autoimmune muscle diseases. As 

myositis autoantibodies recognize intracellular proteins, their role in disease 

pathogenesis has been unclear. This study aimed to determine whether myositis 

autoantibodies reach their autoantigen targets within muscle cells and disrupt the 

normal function of these proteins. 

Methods: Confocal immunofluorescence microscopy was used to localize antibodies 

and other proteins of interest in myositis muscle biopsies. Bulk RNA sequencing was 

used to study the transcriptomic profiles of 668 samples from patients with myositis, 

disease controls, and healthy controls. Antibodies from myositis patients were 

introduced into cultured myoblasts by electroporation and the transcriptomic profiles of 

the treated myoblasts were studied by bulk RNA sequencing. 

Results: In patients with myositis autoantibodies, antibodies accumulated inside 

myofibers in the same subcellular compartment as the autoantigen. Each autoantibody 

was associated with effects consistent with dysfunction of its autoantigen, such as the 

derepression of genes normally repressed by Mi2/NuRD in patients with anti-Mi2 

autoantibodies, the accumulation of RNAs degraded by the nuclear RNA exosome 

complex in patients with anti-PM/Scl autoantibodies targeting this complex, and the 

accumulation of lipids within myofibers of anti-HMGCR-positive patients. Internalization 

of patient immunoglobulin into cultured myoblasts recapitulated the transcriptomic 

phenotypes observed in human disease, including the derepression of Mi2/NuRD-

regulated genes in anti-Mi2-positive dermatomyositis and the increased expression of 
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genes normally degraded by the nuclear RNA exosome complex in anti-PM/Scl-positive 

myositis. 

Conclusions: In myositis, autoantibodies are internalized into muscle fibers, disrupt the 

biological function of their autoantigen, and mediate the pathophysiology of the disease. 
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INTRODUCTION 

Myositis is a family of autoimmune disorders variably affecting multiple organs, including 

muscle, skin, lungs, and/or joints. Most myositis patients have autoantibodies targeting 

intracellular autoantigens. These autoantibodies define unique subsets of myositis 

patients and it has been hypothesized, but not proven, that they may be causally linked 

to the pathogenesis of the disease.1-4 

Previous transcriptomic studies identified type I interferon as an important mediator of 

dermatomyositis pathogenesis.5-8 Moreover, specific transcriptomic markers were 

identified in autoantibody-defined myositis subgroups.9 

Anti-Mi2-positive dermatomyositis patients have autoantibodies that recognize the 

nuclear MI2/NuRD complex, a transcriptional repressor. Recently, we found that in anti-

Mi2-positive dermatomyositis, antibodies are deposited in the nuclei of the myofibers. 

We also demonstrated that muscle biopsies from anti-Mi2 positive patients express high 

levels of genes normally repressed by the Mi2/NuRD complex, suggesting that anti-Mi2 

autoantibodies directly bind to their autoantigen and inhibit its function.10  

In the current study, we analyzed muscle from myositis patients with a variety of 

myositis autoantibodies to determine whether antibodies accumulate in the same 

subcellular compartment as the relevant autoantigen. Moreover, we sought to identify 

transcriptomic profiles and other evidence of autoantigen dysfunction. Finally, we 

studied the transcriptomic profiles of cultured muscle cells following the internalization of 

antibodies obtained from myositis patients with different myositis autoantibodies 
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METHODS 

Patients 

Muscle tissue from patients who underwent diagnostic muscle biopsies and healthy 

volunteers at several centers specialized in neuromuscular diseases underwent bulk 

RNAseq analysis (Supplementary Table 1). A subset of these muscle biopsies was 

used for immunofluorescence studies. For antibody internalization experiments, 

immunoglobulin was purified from the serum of patients with myositis and healthy 

controls (Supplementary Methods). 

 

RNA sequencing 

Bulk RNAseq was performed on frozen muscle biopsy specimens as previously 

described.6,9-13 Briefly, RNA was extracted with TRIzol. Libraries were either prepared 

with the NeoPrep system according to the TruSeq Stranded mRNA Library Prep 

protocol (Illumina, San Diego, CA) or with the NEBNext Poly(A) mRNA Magnetic 

Isolation Module and Ultra™ II Directional RNA Library Prep Kit for Illumina (New 

England BioLabs, ref. #E7490, and #E7760). 

 

Histopathology and immunofluorescence 
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Muscle biopsy sections processed for clinical purposes were stained for hematoxylin 

and eosin (H&E), oil-red O (ORO), Gömöri trichrome, CD56 (NCAM), membrane attack 

complex, NADH, and COX, and then microscopic images were digitized using a Leica 

Slide Scanner SCN400F. 

For immunofluorescence studies, 10μm thick unfixed sections were incubated with 

primary and secondary antibodies (Supplementary Table 2). Images were obtained 

using a Leica SP8 high-resolution confocal microscope. 

 

Culture of differentiating human skeletal muscle myoblasts and treatment with 
different types of interferon 

Normal human skeletal muscle myoblasts were cultured according to the protocol 

recommended by the supplier (Lonza). When 80% confluent, myoblasts were induced 

to differentiate into myotubes by replacing the growth medium with differentiation 

medium (DMEM-F12 [Lonza, ref. 12-719F] supplemented with 2% horse serum [Gibco, 

ref. 16050-122], insulin-transferrin-selenium [Gibco, ref. 41400-045], and penicillin-

streptomycin-L-glutamine [Gibco, ref. 10378-016]). Cells were harvested before 

differentiation and then daily after differentiation for 6 days. 

To examine the effect of different types of interferon on gene expression we treated the 

cells daily with 100 U/uL and 1000 U/uL of IFNA2a (R&D, ref. 11100-1), and IFNB1 

(PeproTech, ref. 300-02BC), respectively, for 7 days. Then, the cells were harvested for 

RNA extraction and RNA sequencing. 
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Electroporation of antibodies into human muscle cells 

Human immunoglobulins were purified and concentrated from serum using protein G 

Agarose (Millipore, ref. 16-266) and the Amicon Pro Purification System (Millipore, ref. 

ACS500024) with a 30kDa molecular weight cutoff Amicon Ultra Centrifugal Filter 

(Millipore, ref. UFC503024). 

Normal human skeletal muscle myoblasts were cultured and nucleofected with purified 

immunoglobulins according to the protocol recommended by the supplier (Lonza) and 

using the P5 Primary Cell 4D-Nucleofector™ X Kit L (Lonza, ref. V4XP-5024). 

Nucleofected cells were plated in differentiation medium for different numbers of days 

and harvested for RNA extraction and subsequent RNA sequencing 24 hours after 

unless otherwise indicated.  

 

Statistical and bioinformatic analysis 

For RNAseq analysis, sequencing reads were demultiplexed using bcl2fastq/2.20.0 and 

preprocessed using fastp/0.21.0. The abundance of each gene was determined using 

Salmon/1.5.2. Counts were normalized using the Trimmed Means of M values (TMM) 

from edgeR/3.34.1 for graphical analysis. Differential expression was performed using 

limma/3.48.3. The Benjamini-Hochberg correction was used to adjust for multiple 

comparisons if appropriate. Pathway enrichment analysis employed a one-sided 

Fisher’s exact test. 
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To define the specific set of genes associated with each group of interest we calculated 

the intersection of the differentially overexpressed genes (q-value < 0.01) between the 

group of interest and each of the other comparator groups. Venn diagrams were used to 

represent graphically these analyses. 

For immunofluorescence image analysis, individual muscle fibers were segmented 

using Cellpose 2.1.114 using the neural network model “Cytoplasm 2.0” and the intensity 

of human immunoglobulin and MX1 in individual fibers was quantified using ImageJ2 

2.9.0. Fibers smaller than 25μm of Feret’s diameter were excluded from the analysis. 
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RESULTS 

Antibodies are deposited within myofibers in patients with myositis 

autoantibodies 

Immunoglobulin G staining revealed that antibodies were deposited inside the muscle 

fibers of patients with each of the different myositis-specific autoantibodies. Myofibers of 

patients with anti-HMGCR, anti-SRP, anti-MDA5, and anti-Jo1 autoantibodies, all of 

which recognize cytoplasmic autoantigens, displayed a cytoplasmic pattern of 

immunoglobulin deposition. In contrast, biopsies from those with anti-Mi2 

autoantibodies, which target nuclear proteins, and those with anti-PM/Scl 

autoantibodies, targeting proteins in the nucleolus, exhibited predominantly nuclear and 

nucleolar immunoglobulin deposition, respectively. Interestingly, although anti-NXP2 

and anti-TIF1g autoantibodies targeting nuclear antigens, muscle fibers from these 

patients had a predominant cytoplasmic pattern of immunoglobulin deposition (Figure 1, 

Supplementary Figures 1-20). Of note, in patients with anti-NXP2 autoantibodies, its 

autoantigen was aberrantly localized in the cytoplasm, as will be discussed below. 

 

IFN1 overexpression in dermatomyositis muscle is driven by IFNB1 and 

correlates with antibody internalization 

Type I interferon-stimulated genes are highly overexpressed in dermatomyositis muscle 

tissue (Figures 2 and 3).5,6,15 The function of certain myositis autoantigens is to regulate 

the expression of single type-I interferon proteins (e.g. NXP216 and TIF1g16,17 inhibit 
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IFNB1 expression). To further clarify the relationship between myositis autoantibodies 

and the interferon pathway, we first had to define the specific type I interferon 

responsible for upregulating type I interferon-stimulated genes in myositis muscle. 

Using our transcriptomic dataset, we found that IFNB1 is the predominant type I 

interferon detected in dermatomyositis muscle biopsies. Also, IFNB1 expression 

correlated with the expression of IFN1-inducible genes (e.g. MX1) in muscle biopsies 

from dermatomyositis patients (Supplementary Figures 21-22).  Furthermore, in 

myofibers, we observed a positive correlation between the intensity of internalized 

immunoglobulin and MX1 immunostaining (Supplementary Figures 23-28). Finally, 

IFNB1 treatment stimulated its own expression in cultured differentiated human 

myoblasts (Supplementary Figure 29). This suggests the possibility that the 

overexpression of IFNB1 can persist through a self-sustaining loop and confirms the 

results from publicly available datasets suggesting the same phenomenon in other cell 

types (monocytes [GSE34627]18, and PBMCs [GSE16214]19). 

 

Internalization of antibodies from anti-Mi2 patients causes the derepression of 

Mi2/NURD-regulated genes 

Anti-Mi2 autoantibodies bind to CHD components of the Mi2/NuRD complex,20 which is 

a transcriptional repressor.21  

Here, using our expanded muscle biopsy RNAseq dataset, we defined anti-Mi2-specific 

genes by calculating the intersection of the differentially expressed genes (q-value 
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cutoff < 0.01) between anti-Mi2-positive patients and each of the other comparator 

groups. This analysis revealed more than 100 genes (e.g. SCRT1) that are exclusively 

overexpressed in anti-Mi2 muscle biopsies (Figures 2 and 3, Supplementary Figures 

30-32, Supplementary Table 3).10 Of note, we previously established that this anti-Mi2-

specific gene set is highly enriched for genes known to be transcriptionally repressed by 

the Mi2/NuRD complex. 

Internalization of purified antibodies from anti-Mi2-positive patients into cultured muscle 

cells induced the overexpression of the same set of anti-Mi2-specific genes that are 

observed in the muscle biopsies of dermatomyositis patients with anti-Mi2 

autoantibodies (Figure 4, Supplementary Figures 33-35). Of note, incubation of purified 

antibodies without electroporation had no transcriptomic effect in any of the 

autoantibody groups that we studied (Supplementary Figure 36). 

 

Antibodies from anti-PM/Scl-positive patients disrupt the function of the nuclear 

RNA exosome complex 

Anti-PM/Scl autoantibodies recognize EXOSC9 and EXOSC10, which are key 

components of the nuclear RNA exosome complex. The biological function of the 

exosome complex is to degrade various types of RNA, including long noncoding RNAs 

and divergent transcripts.22,23 

We performed bulk RNAseq on 19 muscle biopsies from patients with anti-PM/Scl 

autoantibodies and compared them to the rest of the samples included in the study. We 
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defined the set of anti-PM/Scl-specific genes, by calculating the intersection of the 

differentially expressed genes (q-value cutoff < 0.01) between anti-PM/Scl-positive 

patients and each of the other comparator groups (Supplementary Figures 37-39, 

Supplementary Table 4). This analysis identified 236 overexpressed RNAs and one 

underexpressed gene. Most overexpressed genes were long noncoding RNAs and 

divergent transcripts, suggesting a dysfunction of the nuclear RNA exosome complex 

exclusively in anti-PM/Scl-positive patients. Of note, only a single overexpressed gene 

was identified amongst all the other non-anti-Mi2 autoantibody groups (Supplementary 

Figures 40-41). 

To verify that antibodies from anti-PM/Scl patients induce the expression of the anti-

PM/Scl-specific gene set, we electroporated purified antibodies from anti-PM/Scl 

patients into human myoblasts. Indeed, this treatment induced the overexpression of 

the same set of anti-PM/Scl-specific genes that are observed in the muscle biopsies of 

anti-PM/Scl-positive patients (Figures 2, 4 and Supplementary Figures 42, 43). 

 

Antibodies from anti-MDA5 patients induce overexpression of IFNB1 

Anti-MDA5 autoantibodies bind to the helicase domains of the MDA5 protein.24 MDA5 is 

primarily a cytoplasmic sensor of viral double-stranded RNA. Binding to double-

stranded RNA activates the MDA5 protein, which ultimately induces the transcription of 

type I interferon.25 
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Internalization of purified immunoglobulin from 3 of 5 anti-MDA5 patients into human 

myoblasts induced a robust overexpression of IFNB1 and IFNB1-inducible genes 

(Figure 4, Supplementary Figures 35 and 44). This suggests the possibility that anti-

MDA5 autoantibodies bind and activate MDA5. 

 

Internalization of antibodies from antisynthetase patients induces a 

transcriptional phenotype consistent with dysfunction of aminoacyl-tRNA 

synthetase 

Anti-synthetase autoantibodies recognize members of the aminoacyl-tRNA synthetase 

family of proteins. These enzymes load the appropriate amino acid into its 

corresponding tRNA for eventual integration onto an elongating polypeptide. The most 

common of these autoantibodies recognize the histidyl-tRNA synthetase (anti-Jo1). It 

has been demonstrated that anti-Jo1 autoantibodies inhibit the function of its target 

protein in vitro.26 

Previously, we reported that a set of genes including CAMK1G, EGR4, and CXCL8 are 

overexpressed in the muscle biopsies of patients with anti-Jo1 autoantibodies. In this 

study, we have expanded our cohort by including muscle biopsies from patients with 

non-Jo1 antisynthetase autoantibodies (e.g. anti-PL7 and -PL12). These tissue samples 

also overexpress the set of genes that were elevated in muscle biopsies from anti-Jo1-

positive patients (Figure 2, Supplementary Figures 45-46, Supplementary Table 5). 
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However, this transcriptomic signature is weaker than those observed in muscle 

biopsies from anti-Mi2 or anti-PM/Scl-positive patients. 

Internalization of purified immunoglobulin from anti-Jo1 patients into cultured human 

myoblasts induced overexpression of some of the same genes that we identified in 

patients with antisynthetase autoantibodies (Figure 2). 

To test if this transcriptional program may be the consequence of aminoacyl tRNA-

transferase dysfunction, we compared our gene set with a publicly available gene 

expression dataset from HepG2 human hepatoma cells treated with histidinol, an 

inhibitor of histidyl-tRNA synthetase.27 This dataset showed overexpression of genes 

specifically overexpressed in patients with the antisynthetase syndrome (e.g. EGR4, 

CXCL8). In addition, pathway enrichment analysis demonstrated a significant 

association between the genes in this dataset and those differentially expressed in 

patients with antisynthetase autoantibodies (p<0.001).  

 

Lipids accumulate in the muscle fibers of anti-HMGCR-positive patients 

Anti-HMGCR autoantibodies recognize the rate-limiting enzyme of the cholesterol 

biosynthetic pathway. Recent studies demonstrated that mutations disrupting the 

enzymatic activity of HMGCR cause a genetic myopathy characterized by myofiber 

necrosis. This suggests the possibility that disruption of HMGCR by autoantibodies 

could lead to the same pathogenic abnormalities.28,29 
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Upon review of all available muscle biopsies, we noted accumulations of lipids in 

myofibers of patients with anti-HMGCR autoantibodies (Supplementary Figures 47-49). 

Specifically, 90% (18/20) of muscle biopsies from anti-HMGCR-positive patients had 

lipid accumulation compared to 8.3% (10/110) of patients with other types of myositis 

(p<0.001). As myofibers from patients under pharmacologic inhibition of HMGCR by 

statins may also have prominent lipid accumulations30, we hypothesize that 

autoantibody-mediated HMGCR dysfunction may induce the same effect by causing the 

accumulation of acetyl-CoA and the subsequent production of excess lipids.  

Of note, anti-HMGCR myositis lacks a robust transcriptional signature and the only 

specific differentially expressed gene that we could identify was APOA4.9 However, 

internalization of antibodies from anti-HMGCR-positive patients into cultures myoblasts 

did not lead to an increase in APOA4 expression. 

 

In patients with anti-NXP2 autoantibodies, the target protein is aberrantly 

localized to the cytoplasm 

Both NXP216 and TIF1g17 proteins inhibit IFNB1 expression by binding to regulatory 

regions of this gene in the nuclei of cells.16,17 

We could not find a reliable commercial anti-TIF1g antibody histochemical reagent. 

However, muscle biopsies from anti-NXP2 patients co-stained for NXP2 protein and 

immunoglobulin showed that both proteins were predominantly co-localized in the 
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cytoplasm (Supplementary Figures 18-19), while NXP2 predominantly showed nuclear 

staining in non-NXP2 biopsies (Supplementary Figure 20). 

The fact that the NXP2 protein is mislocalized to the cytoplasm suggests that the anti-

NXP2 autoantibodies may sequester their autoantigen in the cytoplasm of muscle cells. 

This could cause increased expression of IFNB1 in the absence of inhibition by nuclear 

NXP2. 

Electroporation of immunoglobulin from anti-NXP2 and anti-TIF1g patients into 

myoblasts did not activate the IFNB1 pathway. However, it should be noted that 

electroporation generates pores in the nuclear membrane, allowing antibodies to enter 

the cell nuclei. This would prevent the hypothesized cytoplasmic sequestration of NXP2 

and TIF1g by their cognate autoantibodies. 
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DISCUSSION 

This study reveals two novel features of myositis pathogenesis. First, our 

immunofluorescence analyses demonstrate that myositis autoantibodies are 

internalized within living human muscle cells from patients with a variety of myositis 

autoantibodies. Second, using antibody internalization experiments along with 

transcriptomic analyses, we have shown that these internalized autoantibodies disrupt 

the normal function of their protein targets. Considering the essential roles of myositis 

autoantigens in cellular function and/or immunity (e.g. interferon production), our 

findings suggest that the autoantibody-mediated dysfunction of myositis autoantigens is 

likely to contribute to muscle damage and trigger the autoimmune response in patients 

with myositis (Figure 5). 

In patients with autoantibodies targeting autoantigens involved in transcriptional 

regulation, notably those linked to the Mi2/NuRD complex in anti-Mi2 individuals or the 

exosome complex in patients with anti-PM/Scl autoantibodies, we observed 

transcriptomic effects consistent with dysfunction of their targets. Conversely, and as 

expected, muscle biopsies from patients with autoantibodies targeting proteins with no 

broad transcriptional functions, such as suppression of IFNB1 (TIF1g and anti-NXP2), 

interferon activation (MDA5), protein synthesis (aminoacyl-tRNA synthetases), protein 

trafficking (SRP), or lipid metabolism (HMGCR), exhibited less distinct transcriptional 

patterns. Nonetheless, we demonstrated evidence of amino acid deprivation in 

antisynthetase syndrome muscle biopsies, lipid dysregulation in muscle biopsies from 

anti-HMGCR-positive patients, and heightened interferon pathway activation in muscle 

biopsies from patients with anti-TIF1, anti-NXP2, and anti-MDA5 autoantibodies. These 
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findings are also consistent with a disease mechanism in which myositis autoantibodies 

are pathogenic by modifying the normal function of their autoantigens (Figure 5). 

Our investigation has several limitations. First, we only studied antibody internalization 

in muscle cells.  Additional studies will be required to determine whether autoantibodies 

enter other cells within the muscle tissue, such as endothelial cells and fibroblasts, 

where they could also cause functional effects. Second, we did not study other organ 

systems frequently affected in myositis patients, such as the lungs or skin, to determine 

whether autoantibody internalization may play a pathophysiologic role in these 

locations. Furthermore, our study was limited to studying autoantibodies found in 

patients with myositis. As other systemic autoimmune diseases, including systemic 

sclerosis, vasculitis, and lupus are also associated with autoantibodies, the potential 

role of autoantibody internalization in the pathogenesis of these diseases remains a 

possibility. Further research exploring the potential pathologic role of autoantibody 

internalization in different cell types and tissues, as well as in different rheumatic 

diseases, will be required. Finally, although we show that myositis autoantibodies can 

enter living muscle cells and disrupt the normal function of their targets in either the 

cytoplasm or the nucleus, the mechanisms mediating autoantibody internalization 

remain to be elucidated.  

In conclusion, our study shows that autoantibodies are deposited inside live muscle 

cells where they disrupt the normal function of their target proteins, contributing to the 

pathophysiology of this family of diseases. Beyond myositis muscle, this 

pathophysiologic mechanism may be relevant in other tissues and in other autoimmune 

diseases.  
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FIGURE LEGENDS 

Figure 1. Immunoglobulin localization in myositis muscle. Confocal 
immunofluorescence of human immunoglobulin (IgG) in different autoantibody-defined 
types of myositis shows antibody deposition in the nuclei (white arrowheads) of muscle 
fibers from anti-Mi2-positive patients (A-C); the cytoplasm of anti-MDA5-positive (D-F) 
and anti-HMGCR-positive (G-I) patients; and the nucleoli of anti-PM/Scl-positive 
patients (J-L). The square box contains a higher magnification image of one nucleus, 
showcasing the nucleolar pattern of IgG. 

Figure 2. Representative genes expressed in muscle biopsies and cultured myoblasts 
electroporated with antibodies from myositis patients. Muscle biopsies from all 
dermatomyositis subgroups (A) and cultured muscle cells with internalized antibodies 
from 3/5 anti-MDA5-positive patients (B) overexpressed ISG15, a representative IFNB1-
stimulated gene. Anti-Mi2-positive muscle biopsies (A) and cultured cells electroporated 
with antibodies from anti-Mi2-positive patients (B) overexpressed SCRT1, a 
representative gene from the anti-Mi2-specific gene set. Anti-PM/Scl-positive muscle 
biopsies (A) and cultured cells electroporated with antibodies from anti-PM/Scl-positive 
patients (B) overexpressed ENSG00000268403.2, a representative long non-coding 
RNA from the anti-PM/Scl-specific gene set. Muscle biopsies from anti-synthetase 
patients (A) and cultured cells electroporated with antibodies from anti-Jo1 patients (B) 
overexpressed CAMK1G, a member of the anti-Jo1-specific gene set. NT: histologically 
normal muscle biopsies; DM: dermatomyositis; AS: antisynthetase syndrome; IBM: 
inclusion body myositis; IM: inflammatory myopathies. 

Figure 3. Gene expression patterns in muscle biopsies. Standardized expression levels 
(Z-scores of the median) are shown for the top 20 anti-Mi2-specific genes, the top 20 
anti-PM/Scl-specific genes, and the top 20 IFNB1-specific genes in muscle biopsies 
from patients with different types of myopathies and histologically normal muscle 
biopsies (NT). The set of IFNB1-specific genes was derived from RNAseq data of 
cultured human muscle cells treated with different type I interferons. DM: 
dermatomyositis; AS: antisynthetase syndrome; IBM: inclusion body myositis; IM: 
inflammatory myopathies. 

Figure 4. Gene expression patterns in cultured human myoblasts with internalized 
patient antibodies. Standardized expression levels (Z-scores) of the top 20 anti-Mi2-
specific genes, the top 20 anti-PM/Scl-specific genes, and the top 20 IFNB1-specific 
genes are shown for cultured human myoblasts electroporated with purified antibodies 
from individual myositis patients and healthy controls. Anti-Mi2-specific genes are 
overexpressed predominantly in myoblasts electroporated with antibodies from anti-Mi2-
positive patients. Anti-PM/Scl-specific genes are overexpressed exclusively in 
myoblasts electroporated with antibodies from anti-PM/Scl-positive patients. IFNB1-
specific genes are most highly expressed in myoblasts electroporated with antibodies 
from 3 of 5 anti-MDA5-positive patients. 
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Figure 5. In myositis, autoantibodies are internalized into the muscle fibers, disrupting 
the normal biological function of their autoantigen, which mediates the pathogenesis of 
the disease (A). For instance, anti-Mi2 autoantibodies (B) interfere with the Mi2/NuRD 
complex inducing the derepression of more than 100 genes. Similarly, anti-PM/Scl 
autoantibodies (C) cause a dysfunction of the nuclear RNA exosome complex, impairing 
the normal degradation of various types of RNA.  
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FIGURES 

Figure 1. Immunoglobulin localization in myositis muscle. Confocal 
immunofluorescence of human immunoglobulin (IgG) in different autoantibody-defined 
types of myositis shows antibody deposition in the nuclei (white arrowheads) of muscle 
fibers from anti-Mi2-positive patients (A-C); the cytoplasm of anti-MDA5-positive (D-F) 
and anti-HMGCR-positive (G-I) patients; and the nucleoli of anti-PM/Scl-positive 
patients (J-L). The square box contains a higher magnification image of one nucleus, 
showcasing the nucleolar pattern of IgG. 
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Figure 2. Representative genes expressed in muscle biopsies and cultured myoblasts 
electroporated with antibodies from myositis patients. Muscle biopsies from all 
dermatomyositis subgroups (A) and cultured muscle cells with internalized antibodies 
from 3/5 anti-MDA5-positive patients (B) overexpressed ISG15, a representative IFNB1-
stimulated gene. Anti-Mi2-positive muscle biopsies (A) and cultured cells electroporated 
with antibodies from anti-Mi2-positive patients (B) overexpressed SCRT1, a 
representative gene from the anti-Mi2-specific gene set. Anti-PM/Scl-positive muscle 
biopsies (A) and cultured cells electroporated with antibodies from anti-PM/Scl-positive 
patients (B) overexpressed ENSG00000268403.2, a representative long non-coding 
RNA from the anti-PM/Scl-specific gene set. Muscle biopsies from anti-synthetase 
patients (A) and cultured cells electroporated with antibodies from anti-Jo1 patients (B) 
overexpressed CAMK1G, a member of the anti-Jo1-specific gene set. NT: histologically 
normal muscle biopsies; DM: dermatomyositis; AS: antisynthetase syndrome; IBM: 
inclusion body myositis; IM: inflammatory myopathies. 
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Figure 3. Gene expression patterns in muscle biopsies. Standardized expression levels 
(Z-scores of the median) are shown for the top 20 anti-Mi2-specific genes, the top 20 
anti-PM/Scl-specific genes, and the top 20 IFNB1-specific genes in muscle biopsies 
from patients with different types of myopathies and histologically normal muscle 
biopsies (NT). The set of IFNB1-specific genes was derived from RNAseq data of 
cultured human muscle cells treated with different type I interferons. DM: 
dermatomyositis; AS: antisynthetase syndrome; IBM: inclusion body myositis; IM: 
inflammatory myopathies. 
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Figure 4. Gene expression patterns in cultured human myoblasts with internalized 
patient antibodies. Standardized expression levels (Z-scores) of the top 20 anti-Mi2-
specific genes, the top 20 anti-PM/Scl-specific genes, and the top 20 IFNB1-specific 
genes are shown for cultured human myoblasts electroporated with purified antibodies 
from individual myositis patients and healthy controls. Anti-Mi2-specific genes are 
overexpressed predominantly in myoblasts electroporated with antibodies from anti-Mi2-
positive patients. Anti-PM/Scl-specific genes are overexpressed exclusively in 
myoblasts electroporated with antibodies from anti-PM/Scl-positive patients. IFNB1-
specific genes are most highly expressed in myoblasts electroporated with antibodies 
from 3 of 5 anti-MDA5-positive patients. 
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Figure 5. In myositis, autoantibodies are internalized into the muscle fibers, disrupting 
the normal biological function of their autoantigen, which mediates the pathogenesis of 
the disease (A). For instance, anti-Mi2 autoantibodies (B) interfere with the Mi2/NuRD 
complex inducing the derepression of more than 100 genes. Similarly, anti-PM/Scl 
autoantibodies (C) cause a dysfunction of the nuclear RNA exosome complex, impairing 
the normal degradation of various types of RNA. 
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