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Abstract 
Background:  Not only should resistance to neoadjuvant chemotherapy (NAC) be considered in patients with breast cancer but also the possibil-
ity of achieving a pathologic complete response (PCR) after NAC. Our study aims to develop 2 multimodal ultrasound deep learning (DL) models 
to noninvasively predict resistance and PCR to NAC before treatment.
Methods:  From January 2017 to July 2022, a total of 170 patients with breast cancer were prospectively enrolled. All patients underwent multi-
modal ultrasound examination (grayscale 2D ultrasound and ultrasound elastography) before NAC. We combined clinicopathological information 
to develop 2 DL models, DL_Clinical_resistance and DL_Clinical_PCR, for predicting resistance and PCR to NAC, respectively. In addition, these 
2 models were combined to stratify the prediction of response to NAC.
Results:  In the test cohort, DL_Clinical_resistance had an AUC of 0.911 (95%CI, 0.814-0.979) with a sensitivity of 0.905 (95%CI, 0.765-
1.000) and an NPV of 0.882 (95%CI, 0.708-1.000). Meanwhile, DL_Clinical_PCR achieved an AUC of 0.880 (95%CI, 0.751-0.973) and 
sensitivity and NPV of 0.875 (95%CI, 0.688-1.000) and 0.895 (95%CI, 0.739-1.000), respectively. By combining DL_Clinical_resistance and 
DL_Clinical_PCR, 37.1% of patients with resistance and 25.7% of patients with PCR were successfully identified by the combined model, 
suggesting that these patients could benefit by an early change of treatment strategy or by implementing an organ preservation strategy 
after NAC.
Conclusions:  The proposed DL_Clinical_resistance and DL_Clinical_PCR models and combined strategy have the potential to predict resis-
tance and PCR to NAC before treatment and allow stratified prediction of NAC response.
Key words: multimodal ultrasound; early prediction; breast cancer; neoadjuvant chemotherapy; deep learning.

Implications for Practice
Multimodal ultrasound based on deep learning (DL) can predict the response of patients with breast cancer to neoadjuvant chemotherapy 
(NAC) before treatment. In addition, the model combined strategy can effectively predict resistance and pathologic complete response 
(PCR) to NAC before treatment to avoid patients with resistant from undergoing ineffective treatment and patients with PCR from 
undergoing surgery. The DL models can be used as a simple and effective aid for physicians to make personalized treatment plans for 
patients with breast cancer before treatment.

Introduction
Neoadjuvant chemotherapy (NAC) is the cornerstone of 
advanced breast cancer treatment because of its ability to 
down-stage tumors, facilitate breast-conserving surgery, and 

drive adjuvant treatment decisions.1,2 More importantly, 
patients who achieved pathologic complete response (PCR) 
after NAC had the best event-free survival.3,4 Unfortunately, 
approximately 37% of patients with breast cancer still do 

Received: 19 March 2023; Accepted: 12 July 2023.
© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com.

https://orcid.org/0000-0002-7672-8394
mailto:tiananjiang@zju.edu.cn
mailto:baohuawang@zju.edu.cn
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


e188 The Oncologist, 2024, Vol. 29, No. 2

not benefit from NAC.5 Even 5% of patients experienced a 
range of negative effects, such as delayed optimal surgery, 
adverse effects, or increased treatment costs.6 For surgery 
after NAC, patients who achieve PCR can benefit from 
breast-conserving surgery or even skip surgery altogether. 
Therefore, accurate prediction of response to NAC prior to 
treatment holds clinical significance in improving risk strat-
ification and the development of treatment strategies for 
patients with breast cancer. First, it is necessary to identify 
patients who are resistant to NAC (resistance to NAC) so 
that they can be protected from ineffective treatment and 
significant toxicity as early as possible and to try other treat-
ments.7 Second, it is important to identify patients who are 
sensitive to NAC but unlikely to achieve PCR (sensitive and 
non-PCR), so that risk-adapted therapy can be used. Finally, 
identifying patients who can achieve PCR from NAC allows 
them to avoid unnecessary surgery and benefit from the 
traditional model of breast cancer management approach, 
which involves surgery after NAC.

Numerous efforts are underway to find methods that 
can predict response to NAC prior to or early in treatment. 
Imaging markers from medical images have been shown to 
correlate with the response of breast cancer to NAC, including 
magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET) and ultrasound (such as grayscale 2D ultrasound, 
ultrasound elastography, and contrast-enhanced ultrasound 
[CEUS]). Among these imaging modalities, ultrasound has the 
advantages of being more convenient, cost-effective, widely 
accessible, and radiation-free compared to other imaging 
modalities. It is also a routine clinical examination for breast 
cancer before NAC treatment. In addition, strain elastogra-
phy (SE), a type of ultrasound elastography, is a new imaging 
technique to complement grayscale ultrasound by overlaying 
a color-coded map displaying tissue deformation distribution 
and reflecting the stiffness of lesions.8-12 However, the predic-
tive performance of multimodal ultrasound (grayscale 2D 
ultrasound and SE) based on the expertise and knowledge of 
radiologists is not satisfactory(AUCs: 0.56-0.72).13-15 Recently, 
artificial intelligence approaches based on MRI or PET images 
have been used for the prediction of NAC response before 
treatment.16-20 Nevertheless, there is currently no research 
reported on the use of deep learning (DL) with multimodal 
ultrasound (grayscale 2D ultrasound and SE) in addressing the 
challenges of predicting NAC response grading.

In this study, we used multimodal ultrasound examina-
tion for breast cancer, including grayscale 2D ultrasound 
and SE, to build a 2-level predictive DL structure for the 
prediction of NAC response before treatment. In order to 
better meet clinical needs, the prediction task is divided into 
2 tasks, as follows: (1) predict patient resistance to NAC  
(DL_Clinical_resistance model) and (2) predict whether 
patients will achieve PCR (DL_Clinical_PCR model). The ulti-
mate goal of DL_Clinical_resistance and DL_Clinical_PCR  
is to assist clinicians in developing personalized breast cancer 
treatment strategies and even optimize treatment plans on a 
patient-specific basis.

Materials and Methods
Patients
This prospective study was approved by our hospital eth-
ics committee, and informed consent was obtained from all 
patients.

The inclusion criteria were as follows: (a) presence of breast 
cancer confirmed by puncture biopsy results with no distant 
metastasis; (b) available clinical data (including age, volume, 
estrogen receptor [ER] status, progesterone receptor [PR] sta-
tus, human epidermal growth factor receptor 2 [HER2], and 
the Ki-67 proliferation index); (c) scheduled to undergo NAC; 
and (d) surgery was performed after completing the entire 
NAC. The exclusion criteria were as follows: (a) no pathology 
results for NAC, (b) multifocal ipsilateral breast or multiple 
lesion bilateral tumors, (c) no immunohistochemical results in 
our hospital or in other hospitals, (d) unqualified multimodal 
ultrasound images, (e) did not complete NAC, (f) distant 
metastasis during NAC, and (g) nonstandard NAC treatment. 
Figure 1 shows the flowchart of patient recruitment.

In this study, patients from January 2017 to March 2021 
were randomly divided into a training cohort and an internal 
test cohort with a ratio of 3:1. And patients from April 2021 
to July 2022 were used as an independent test cohort.

Multimodal Ultrasound Examinations
A radiologist with more than 20 years of ultrasound experi-
ence used a MyLab 90 ultrasound machine (Esoate, Genoa, 
Italy) equipped with a 4-15 MHz linear array transducer to 
perform a meticulous multimodal ultrasound examination of 
each patient within 3 days before NAC treatment. Patients 
took the supine position and fully exposed the breast and 
armpits. Two grayscale 2D ultrasound images were collected 
for each lesion: one was acquired at the maximum diame-
ter of the lesion, and the other was acquired by rotating the 
probe 90° in the same position. The transverse and longitudi-
nal images of the lesion were captured. The same radiologist 
simultaneously conducts SE examination without changing 
the patient’s position. The probe was lightly positioned onto 
the skin at the largest section of the target lesion and switched 
to the SE mode. Then, the radiologist applied vertically pres-
sure to the target mass with the transducer and maintained the 
appropriate compression. The compression applied onto the 
breast was adjusted with reference to a built-in indicator on 
the ultrasound device that estimates the applied deformation. 
Radiologists captured transverse and longitudinal SE images 
of the lesion. (A total of 4 images were obtained for a patient, 
including transverse and longitudinal grayscale images of the 
lesion and the corresponding SE images.)

NAC and Pathological Examination
All patients received a NAC regimen based on taxanes 
(Docetaxel, or Docetaxel + Cyclophosphamide/Carboplatin, 
or Docetaxel + Cyclophosphamide + Carboplatin), anthra-
cyclines (Epirubicin + Cyclophosphamide), or a combination 
of taxanes and anthracyclines (Docetaxel + Epirubicin or 
Docetaxel + Epirubicin + Cyclophosphamide, or Docetaxel 
+ Epirubicin + Cyclophosphamide + Carboplatin). The dura-
tion of NAC was mainly 6 or 8 courses. In addition, patients 
with HER2-positive were treated with trastuzumab and/or 
Pertuzumab (8 mg/kg loading dose, 6 mg/kg maintenance 
dose). Some of the patients with HR(+)/HER2(−)received 
exclusive neoadjuvant endocrine therapy at the same time 
according to the recommendation. Treatment protocols for 
all patients followed national comprehensive cancer network 
(NCCN) guidelines.21

All patients underwent a core needle biopsy prior to NAC 
and immunohistochemical results, including tumor type, ER 
status, PR status, HER2 status, and the Ki-67 proliferation 
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index were obtained. In addition, all patients underwent 
breast surgery after completing the entire NAC. According 
to the Miller-Payne (MP) grading system, the pathologists 
with 10 years of experience used surgical specimens to deter-
mine the patients’ pathological response to NAC. There are 
5 levels of the MP grading system (Supplementary Table S1), 
where G5 was defined as PCR, and G1-G3 was defined as 
resistance.

The ideal NAC management for breast cancer is based 
on the above scenarios: (1) G5, breast preservation may be 
possible after NAC22; (2) G1-G3, NAC may lead to delayed 
surgery and increased treatment costs and early change of 
treatment plan7; and (3) G4, multimodal treatment or escala-
tion of treatment is implemented.

Model Development
In this study, 2 DL models, DL_Clinical_resistance and 
DL_Clinical_PCR, were established for predicting the resis-
tance and PCR to NAC before treatment. First, the rectan-
gular box of region of interest (ROI) containing the tumor 

and surrounding region was annotated and cropped on 
grayscale ultrasound. The corresponding ROI of the elas-
tography ultrasound image was manually cropped from the 
original ultrasound images. It is shown that not only single 
modality images can be encoded as network features, but 
adding other modality images can provide more and more 
effective information.23 Therefore, the designed DL model 
is a parallel model structure that contains 2 Densenet121-
based networks.24 The 2 Densenet121 models shared net-
work parameters and adopted a feature fusion strategy that 
can be compatible with the input images of both modality, 
including grayscale 2D ultrasound and stained elastography 
ultrasound images. Finally, the DL model outputs the classi-
fication results (Fig. 2). Three key clinicopathological infor-
mation (ER, HER2, and volume) were incorporated into the 
last fully connected (FC) layer, instead of extracting deep fea-
tures and combining them offline. The workflow of the ROI 
extraction, the detailed architecture of the model, and the 
details of the training process are described in Supplementary 
Material.

Figure 1. Diagram of patient recruitment process. Abbreviations: NAC: neoadjuvant chemotherapy; US: ultrasound; PCR: pathological complete 
response; Non-PCR: non-pathological complete response.

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
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Statistics Analysis
All statistical analyses were performed using SPSS version 
23.0 and Python version 3.7. We used the mean and SD to 
analyze the continuous variables and used numbers and 

percentages to show categorical variables. Different com-
parisons between groups were made using the t-test or chi-
square test. The classification threshold was obtained from 
the receiver operating characteristic (ROC) curve based on 

Figure 2. The overall pipeline of the DL_Clinical_resistance model and DL_Clinical_PCR model. The ultrasound and SE images and key clinical 
parameters were inputted into 2 DL models before treatment. DL_Clinical_resistance outputs the probability that a patient is resistance to NAC, and the 
treatment strategy is changed immediately for patients with resistance. DL_Clinical_PCR outputs the probability of patients achieving PCR after NAC, 
then patients with PCR can confidently proceed to NAC treatment and provide decision-making support for organ-preserving strategies. Abbreviations: 
DL: deep learning; NAC: neoadjuvant chemotherapy; SE: strain elastography; PCR: pathological complete response.
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the maximum Youden index.25 Stepwise logistic regression 
was used for feature selection. Comparisons between model 
performances were made with the Delong test. The 95% con-
fidence interval (CI) was calculated by bootstrapping with 
1000 resamples. Statistical significance was defined as P ≤ .05. 
The detailed statistics analysis are provided in Supplementary 
Material.

Results
Clinicopathological Characteristics
A total of 170 women were prospectively enrolled in this 
study for final analysis. The rates of PCR or resistance were 
not significantly different between training and test cohorts. 
ER and HER2 status were significantly correlated with PCR 
and resistance in the training cohort. However, the initial vol-
ume of the tumor was only correlated with resistance. The 
clinicopathological characteristics of all patients are summa-
rized in Table 1.

Performance of DL_Clinical_resistance for 
Predicting the Resistance to NAC
First, we investigated the performance of clinicopathological 
and DL features in predicting resistance to NAC. Initial tumor 
volume and the status of ER and HER2 were significantly 
correlated with resistance and were selected as key factors 
used to construct the Clinical_resistance model. The AUCs for 
Clinical_reisitance model were 0.691 (95%CI, 0.597-0.779) 
and 0.697 (95%CI, 0.535-0.853) in training and test cohorts. 
Then, the DL_resistance model achieved higher AUCs of 
0.964 (95%CI, 0.933-0.988) and 0.872 (95%CI, 0.747-
0.963) in both 2 cohorts compared to the Clinical_resistance 
model (all P < .05).

Given that combining DL and clinical features can poten-
tially further improve the performance of predicting resis-
tance to NAC, we added clinical features to the last FC 
layer of the DL model and trained DL_Clinical_resistance 
model. Compared to all the models mentioned earlier, DL_
Clinical_resistance achieved the best AUCs of 0.986 (95%CI, 
0.971-0.997) and 0.911 (95%CI, 0.814-0.979) in 2 cohorts 
for resistance prediction (Delong test: all P < .05 for DL_
Clinical_resistance vs. Clinical_resistance). The ROC curves 
and decision cures were plotted to demonstrate the compar-
ative results of AUC in Fig. 3A and 3B. In addition, Fig. 4 
shows that DL_Clinical_resistance offered high sensitivities 
of 0.934 (95%CI, 0.870-1.000) and 0.905 (95%CI, 0.765-
1.000) with high NPV of 0.938 (95%CI, 0.878-1.000) and 
0.882 (95%CI, 0.708-1.000) in the training and test cohorts, 
respectively. The detailed statistical results of the models are 
presented in Table 2.

Furthermore, the performance of DL_Clinical_resistance 
model was validated in different molecular subtypes of breast 
cancer and obtained good predictive performance in each 
subgroup. Supplementary Table S2 and Fig. S1A showed the 
detailed results.

Performance of DL_Clinical_PCR for Predicting the 
PCR
In addition to predicting sensitivity to NAC, we also attempted 
to predict whether patients could achieve PCR of the primary 
tumor after NAC, enabling more precision and personalized 
treatment. Stepwise multiple logistic regression was used to 
select the status of ER and HER2 as key factors in the clinical 

model. The initial volume of the tumor was also added to the 
clinical model, as it is of great interest to clinicians. However, 
the AUC achieved by the Clinical_PCR was unsatisfactory. 
In contrast, the DL_PCR model achieved much higher AUCs 
of 0.901 (95%CI, 0.836-0.953) and 0.847 (95%CI, 0.705-
0.959) in the training and test cohorts (Delong test: P = .002 
in the training cohort and P = .28 in the test cohort for DL_
PCR vs. Clinical_PCR).

Similarly, we explored whether incorporating clinical fea-
tures into DL models could further improve the performance 
of PCR prediction. Our proposed DL_Clinical_PCR model 
exhibits the highest AUCs of 0.952 (95%CI, 0.909-0.984) in 
the training cohort and 0.880 (95%CI, 0.751-0.973) in the 
test cohort (P = .0018 and P = .15 for DL_Clinical_PCR vs. 
Clinical_PCR by the Delong test on training cohort and test 
cohort). In addition, Fig. 3C and 3D shows the ROC curves 
and decision curves of the 3 different models. Meanwhile, 
the DL_Clinical_PCR showed a sensitivity of 0.979 (95%CI, 
0.927-1.000) and NPV of 0.983 (95%CI, 0.944-1.000) in the 
training cohort; a sensitivity of 0.875 (95%CI, 0.688-1.000) 
and PPV of 0.895(95%CI, 0.739-1.000) in the test cohort as 
shown in Fig. 4 and Table 2.

We performed subgroup analysis based on different molec-
ular subtypes of breast cancer to further confirm the stabil-
ity of the DL_Clinical_PCR model. Detailed information 
is provided in Supplementary Table S3 and Supplementary 
Fig. S1B). DL_Clinical_PCR achieves good predictive perfor-
mance in different subgroups as well.

Clinical Benefits of Combining DL_Clinical_
resistance and DL_Clinical_PCR
For invasive breast cancer, the current general clinical treat-
ment strategy is that the patients receive NAC first and 
undergo surgery after NAC. These would result in ineffective 
treatment for patients who are resistant to NAC and over- 
surgery for patients who achieve PCR of the primary tumor 
after NAC. However, by combining the predicted results of 
DL_Clinical_resistance and DL_Clinical_PCR, patients can 
be assigned to 1 of 3 groups corresponding to the 3 ideal 
treatment strategies: resistance, sensitive and non-PCR, 
and PCR. In this way, some patients who are resistance to 
NAC and achieve PCR can avoid ineffective treatment and 
overtreatment.

All 43 patients in the test cohort were used to assess the 
clinical benefit of combining DL_Clinical_resistance and 
DL_Clinical_PCR (Fig. 5). The detailed results of combining 
DL_Clinical_resistance and DL_Clinical_PCR were shown 
in Supplementary Table S4. When we implement a treatment 
strategy of NAC combined with surgery based on current clin-
ical practice, this results in 86% of patients being ineffectively 
treated (48.8%) or overtreated (37.2%), with only 14% of 
patients (sensitive and non-PCR) receiving suitable treatment 
(NAC and surgery) (Fig. 5A). In contrast, when we combined 
DL_Clinical_resistance and DL_Clinical_PCR to analyze 
these same patients, it correctly classified 37.1% of patients 
to the resistance group and 25.7% to the PCR group, thus 
avoiding ineffective NAC and excessive surgical treatment 
(benefiting 62.8% of patients) (Fig. 5B). In addition, combin-
ing the 2 models ensured that 33.3% (4.6%/14%) of patients 
with sensitive and non-PCR received suitable NAC and surgi-
cal treatment. Ultimately, only 28% (7.1% + 6.9% + 14%) of 
patients were incorrectly predicted, resulting in inappropriate 
treatment. Therefore, combining DL_Clinical_resistance and 

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyad227#supplementary-data
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DL_Clinical_PCR is expected to further reduce the economic 
cost and psychological burden on patients for the manage-
ment of invasive breast cancer (28% vs. 86%).

Discussion
In this prospective study, we developed and validated 2 multi-
modal ultrasound DL models for the prediction of resistance 
and PCR to NAC using grayscale 2D and SE ultrasound 
images before NAC in patients with breast cancer. Combining 

DL_Clinical_resistance and DL_Clinical_PCR enables a strat-
ified prediction of NAC response. Our results suggest that on 
the one hand, DL_Clinical_resistance is expected to be an 
effective tool to assist clinicians in adjusting the treatment 
plan for patients with NAC-resistance at an early stage, thus 
avoiding unnecessary and ineffective treatment. On the other 
hand, DL_Clinical_PCR can provide decision support for 
patients with PCR to achieve organ preservation strategies.

Patients treated with NAC tend to have the following 3 
conditions: (1) patients who are resistant to NAC should 

Table 1. Clinical characteristics of patients in the training and test sets.

Characteristic Training cohort (127) Test cohort (43)

Resistance (N = 61) Non-resistance (N = 66) P Resistance (N = 21) Nonresistance (N = 22) P

Age (mean, SD) 46.80 ± 10.66 48.58 ± 10.22 .341 48.14 ± 10.70 46.00 ± 10.04 .502

Volume (cm3) 13.05 ± 12.57 9.15 ± 8.82 .044 8.43 ± 9.96 7.09 ± 5.24 .581

ER .019 .001

 � Positive 43 33 17 7

 � Negative 18 33 4 15

PR .476 .087

 � Positive 25 23 10 5

 � Negative 36 43 11 17

Ki67 .282 .066

 � Positive 43 52 13 19

 � Negative 18 14 8 3

Her2 .046 .650

 � Positive 19 32 11 10

 � Negative 42 34 10 12

Molecular subtype .023 .502

HR+ and HER2− 31 18 8 7

HER2+ 19 32 11 10

Triple-negative 11 16 2 5

Non-PCR (N = 80) PCR (N = 47) P Non-PCR (N = 27) PCR (N = 16) P

Age (mean, SD) 47.29 ± 10.26 48.47 ± 10.78 .540 48.78 ± 11.03 44.13 ± 8.47 .155

Volume (cm3) 11.67 ± 11.50 9.93 ± 9.87 .388 7.91 ± 9.01 7.47 ± 5.56 .861

ER .022 <.001

 � Positive 54 22 22 2

 � Negative 26 25 5 14

PR .295 .295

 � Positive 33 15 11 4

 � Negative 47 32 16 12

Ki67 .104 .025

 � Positive 56 39 17 15

 � Negative 24 8 10 1

Her2 .001 .454

 � Positive 23 28 12 9

 � Negative 57 19 15 7

Molecular subtype .001 .185

HR+ and HER2− 40 9 12 3

HER2+ 23 28 12 9

Triple-negative 17 10 3 4

Abbreviations: PCR: pathological complete response; Non-PCR: nonpathological complete response; ER: estrogen receptor; PR: progesterone receptor; HR: 
hormone receptor; HER2: human epidermal growth factor receptor 2.
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stop ineffective treatment and seek alternative treatment as 
early as possible.7 (2) Patients sensitive to NAC but unable 
to achieve PCR are ideal candidates for NAC combined with 
surgical treatment options. And risk-adapted therapy can be 
used to achieve PCR as much as possible. (3) Ideally, patients 
achieve PCR after NAC, which could imply an extremely 
favorable disease-free and overall survival.3 PCR has been 
proposed as a surrogate early clinical endpoint for long-term 

survival.26 In addition, such patients are expected to avoid 
breast surgery. Therefore, clinicians and patients are eager to 
improve PCR rates. However, the vast majority of previous 
studies on the prediction of response to NAC have simply 
classified patients as non-resistance and resistance or PCR 
and non-PCR, which may ignore a subset of patients who 
respond to NAC but ultimately fail to achieve PCR.27-29 Such 
patients may be able to add some other treatments to improve 

Figure 3. ROC curves and decision curves among clinical models, DL models, and DL_Clinical models for predicting the primary tumor PCR or 
resistance in the training and test cohort. (A) ROC curves of different models for predicting primary tumor resistance to NAC in the training and test 
cohorts. (B) Decision curves of different models for predicting primary tumor resistance to NAC in the test cohorts. (C) ROC curves of different models 
for predicting primary tumor PCR in the training and test cohorts. (D) Decision curves of different models for predicting primary tumor PCR in the test 
cohorts. Abbreviations: PCR: pathological complete response; AUC: area under the receiver operator characteristic curve; DL: deep learning.

Figure 4. Performance of DL_Clinical_resistance and DL_Clinical_PCR models in predicting NAC response in the training cohort and test cohort. The 
upper panel shows the actual status of patients, and the lower panel shows the prediction results outputted by the final models in the training and the 
test sets.
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the possibility of achieving PCR. In this study, we performed 
the 2 tasks of resistance and PCR prediction separately. 
Clinicians can refer to the prediction results of both models to 
develop more flexible treatment strategies. The development 
of the DL_Clinical_PCR model did not exclude patients who 
were resistant to NAC due to the limitation of the number of 
patients. Therefore, DL_Clinical_resistance and DL_Clinical_
PCR cannot achieve stepwise prediction, but the predictive 
performance of combining DL_Clinical_resistance and DL_
Clinical_PCR combined has demonstrated the feasibility of 
our graded prediction strategy.

Previous studies have shown that artificial intelligences 
(both DL radiomics and handcraft radiomics) based only 
on pre-NAC grayscale 2D ultrasound images have diffi-
culty achieving satisfactory results in predicting response to 
NAC.27,28 Fernandes et al12 demonstrated that ultrasound 
elastography of the breast can somewhat predict the response 
to NAC. In addition, CEUS has also been proven to have 
unique value in assessing the response to NAC, as it can pro-
vide information about tumor perfusion.30,31 However, due 
to the limited availability of CEUS technology, we chose to 
utilize conventional grayscale 2D ultrasound and ultrasound 
elastography. The combination of these 2 modalities enables 
the detection of morphological information and tissue stiff-
ness. As multimodal ultrasound DL models have been suc-
cessfully applied to the prediction of breast axillary lymph 
node metastasis and diagnosis of lesions,23,32 it is reasonable 
to investigate the performance of DL models based on mul-
timodal ultrasound images in the prediction of response to 
NAC in breast cancer. As expected, both DL_resistance and 
DL_PCR models achieved better performance. To the best of 

our knowledge, our study is the first attempt to use DL based 
on multimodal ultrasound images to predict NAC responses 
before treatment.

Numerous studies have confirmed that clinicopathologi-
cal characteristics of patients with breast cancer including 
tumor size and hormone receptor status are related to NAC 
response.14,33-35 However, the unsatisfactory predictive per-
formance of this method has limited its clinical application. 
The reasons could be, on the one hand, clinical information 
may only consider certain aspects of the tumor, and on the 
other hand, the hormonal status of patients with breast can-
cer before and after NAC is often altered.36 The results of the 
clinical model in this study (Clinical_resistance and Clinical_
PCR) also reconfirmed that only using clinical predictors to 
predict NAC response is not reliable enough. Nevertheless, 
it has been found in several studies that the combination of 
clinicopathological information and imaging features can 
further improve the performance of DL models.28 Therefore, 
we proposed DL_Clinical_resistance and DL_Clinical_PCR 
models. Furthermore, unlike previous studies, the combina-
tion of clinicopathological information and DL features in 
this study is based entirely on the concept of using convo-
lutional neural networks. We fused the clinical parameters 
in the last FC layer of the DL model, which can comple-
ment image features with more information and make the 
model more stable by restraining the features extracted from 
images.37 Thus, DL_Clinical_resistance and DL_Clinical_
PCR achieved the best predictive performance, which con-
firmed that the deep combination of DL features and clinical 
information can more fully reflect tumor characteristics and 
heterogeneity.

Table 2. Prediction performance of 3 different models for primary tumor resistance to NAC and tumor PCR in the training and test cohort.

Models Cohorts AUC ACC SENS SPEC PPV NPV

Clinical_resistance Training 0.691
(0.597-0.779)

0.669
(0.583-0.748)

0.656
(0.535-0.776)

0.682
(0.567-0.790)

0.656
(0.534-0.867)

0.682
(0.571-0.791)

Test 0.697
(0.535-0.853)

0.605
(0.465-0.742)

0.476
(0.269-0.696)

0.727
(0.526-0.905)

0.625
(0.385-0.866)

0.593
(0.400-0.774)

DL_resistance Training 0.964
(0.933-0.988)

0.921
(0.874-0.960)

0.934
(0.867-0.985)

0.909
(0.838-0.967)

0.905
(0.825-0.968)

0.937
(0.873-0.985)

Test 0.872
(0.747-0.963)

0.814
(0.697-0.930)

0.857
(0.699-1.00)

0.773
(0.583-0.950)

0.783
(0.591-0.950)

0.850
(0.667-1.000)

DL_Clinical_resistance Training 0.986
(0.971-0.997)

0.929
(0.882-0.968)

0.934
(0.870-1.000)

0.924
(0.853-0.984)

0.919
(0.841-0.983)

0.938
(0.878-1.000)

Test 0.911
(0.814-0.979)

0.791
(0.651-0.970)

0.905
(0.765-1.000)

0.682
(0.474-0.869)

0.731
(0.552-0.895)

0.882
(0.708-1.000)

Clinical_PCR Training 0.733
(0.638-0.823)

0.708
(0.630-0.787)

0.660
(0.527-0.792)

0.737
(0.642-0.831)

0.596
(0.460-0.729)

0.787
(0.693-0.871)

Test 0.745
(0.563-0.902)

0.581
(0.442-0.720)

0.688
(0.444-0.916)

0.519
(0.333-0.708)

0.458
(0.261-0.655)

0.737
(0.526-0.933)

DL_PCR Training 0.901
(0.836-0.953)

0.835
(0.764-0.897)

0.894
(0.795-0.977)

0.800
(0.707-0.885)

0.724
(0.604-0.836)

0.927
(0.859-0.984)

Test 0.847
(0.705-0.959)

0.767
(0.628-0.883)

0.688
(0.444-0.909)

0.815
(0.654-0.958)

0.688
(0.444-0.909)

0.815
(0.655-0.956)

DL_Clinical_PCR Training 0.952
(0.909-0.984)

0.827
(0.756-0.889)

0.979
(0.927-1.000)

0.738
(0.636-0.829)

0.687
(0.577-0.796)

0.983
(0.944-1.000)

Test 0.880
(0.751-0.973)

0.721
(0.581-0.860)

0.875
(0.688-1.000)

0.630
(0.444-0.815)

0.583
(0.381-0.789)

0.895
(0.739-1.000)

The data in brackets are the 95% confidence intervals. Training cohort, n = 127; test cohort, n = 43.
Abbreviations: PCR: pathological complete response; DL: deep learning; AUC: area under the receiver operating characteristic curve; ACC: accuracy; SENS: 
sensitivity; SPEC: specificity; PPV: positive predictive value; NPV: negative predictive value.
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Next, we analyzed the performance of DL_Clinical_resis-
tance and DL_Clinical_PCR models. Both models achieved 
high sensitivities and NPVs. For DL_Clinical_ resistance, high 
sensitivity and NPV allow identifying as many patients as 
possible who are resistant to NAC without increasing the risk 
to avoid ineffective treatment and delay other more appro-
priate treatments. For DL_Clinical_PCR, high sensitivity 
ensures that the majority of patients with a chance of achiev-
ing PCR receive NAC and provides confidence support for 
implementing a step-down treatment or organ preservation 
strategy after NAC. In addition, high NPV also guarantees 
the necessity of surgical treatment for patients with non-PCR. 
Then, the combination of DL_Clinical_resistance and DL_
Clinical_PCR better achieved a stratified prediction of NAC 
response. Finally, 62.8% of patients who were resistant to 
NAC or achieved PCR after NAC benefited from our model, 
and they could avoid ineffective NAC or excessive surgical 
treatment. It is well known that different molecular subtypes 

have varying PCR rates, and tumor heterogeneity in medical 
imaging can affect the performance of models trained on a 
mixture of all subtypes. Our models achieve favorable pre-
dictive performance across different subgroups, further con-
firming the generalizability of the model. Nevertheless, in the 
future, we still need to develop more accurate models based 
on breast cancer-specific subtypes.

The DL_Clinical_resistance and DL_Clinical_PCR mod-
els that we proposed performed well, but this study still has 
some limitations. First, although this study is a prospective 
multimodal study, the number of patients is limited, and 
they are all from the same hospital. Therefore, we will con-
centrate on multicenter studies with larger sample sizes in 
the future to confirm the clinical applicability and robust-
ness of the models. Second, considering that color Doppler 
ultrasound or CEUS can provide further information about 
tumor vasculature means that the exclusion of these modali-
ties could lead to the model performing suboptimally. Third, 

Figure 5. Overall benefit of combining DL_Clinical_resistance and DL_Clinical_PCR models in the test cohort. The 2 rings show the percentage of 
patients who received different treatment regimens in the study according to the combination of DL_Clinical_resistance and DL_Clinical_PCR or 
the current clinical treatment, respectively. The inner ring represents the actual percentage distribution of the status of all patients in the test cohort 
responding to NAC. The outer ring (A) represents the treatment based on current clinical management, resulting in 48.8% of patients experiencing 
ineffective treatment and 37.2% overtreatment, with only 14% of patients receiving appropriate treatment. The outer ring of (B) represents the 
treatment management decision made by combining DL_Clinical_resistance and DL_Clinical_PCR, where 67.4% of patients would benefit and receive 
suitable treatment. Overtreatment: patients with PCR were judged to be sensitive and non-PCR by the DL_Clinical_resistance and DL_Clinical_PCR 
models; Missed: patients with PCR were judged to be resistant and non-PCR by the DL_Clinical_resistance and DL_Clinical_PCR models or patients 
with sensitive and non-PCR were judged to be resistant and non-PCR by the DL_Clinical_resistance and DL_Clinical_PCR models or patients with 
sensitive and non-PCR were judged to be sensitive and PCR by the DL_Clinical_resistance and DL_Clinical_PCR models; suitable treatment: patients 
with sensitive and non-PCR were judged to be sensitive and non-PCR by the DL_Clinical_resistance and DL_Clinical_PCR models; need evaluation 
again: patients with resistance were judged to be resistant and PCR by the DL_Clinical_resistance and DL_Clinical_PCR models; benefits: patients with 
PCR were judged to be sensitive and PCR by the DL_Clinical_resistance and DL_Clinical_PCR models or patients with resistance were judged to be 
resistant and non-PCR by the DL_Clinical_resistance and DL_Clinical_PCR models; ineffective treatment: patients with resistance were judged to be 
sensitive and PCR or non-PCR by the DL_Clinical_resistance and DL_Clinical_PCR models.
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DL_Clinical_resistance and DL_Clinical_PCR are aimed as 
initial tools for patient stratification and should be used with 
caution. Clinicians must combine the comprehensive opin-
ions of multiple disciplines to develop individualized treat-
ment strategies for patients. Finally, the relationship between 
DL features and gene expression or biological mechanisms 
has not been explored. In subsequent studies, we will further 
explore the interpretability of DL models.

Conclusions
In conclusion, DL_Clinical_resistance and DL_Clinical_PCR 
models, which are based on pre-NAC multimodal ultrasound 
images (including grayscale 2D ultrasound and SE), were pro-
posed to predict resistance and PCR to NAC before treat-
ment, respectively. Furthermore, combining 2 models can 
stratify the response to NAC for patients with breast can-
cer who could benefit from optimal treatment management 
before NAC.
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