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Abstract

Genome-wide association studies (GWAS) are a valuable tool for understanding the biology of 

complex human traits and diseases, but associated variants rarely point directly to causal genes. 

Here, we introduce a new method, Polygenic Priority Score (PoPS), that learns trait-relevant gene 

features, such as cell-type specific expression, to prioritize genes at GWAS loci. Using a large 

evaluation set of genes with fine-mapped coding variants, we show that PoPS and closest gene 

individually outperform other gene prioritization methods but observe the best overall performance 

by combining PoPS with orthogonal methods. Using this combined approach, we prioritize 10,642 

unique gene-trait pairs across 113 complex traits and diseases with high precision, finding not 

only well-established gene-trait relationships but nominating new genes at unresolved loci, such 

as LGR4 for estimated glomerular filtration rate and CCR7 for deep vein thrombosis. Overall, we 

demonstrate that PoPS provides a powerful addition to the gene prioritization toolbox.

INTRODUCTION

Genome-wide association studies (GWAS) have identified thousands of genetic loci 

associated with common complex traits and diseases1. Nonetheless, for the vast majority of 

significant GWAS loci, the identity of the causal gene(s) underlying the association remains 

unknown, limiting the biological insight gained into common disease mechanisms2,3. There 

are several major challenges to pinpointing the causal gene. First, linkage disequilibrium 

(LD) between variants masks the identity of the causal variant4. Second, most associated 

loci do not contain protein-coding variants. Instead, the causal variant acts through gene 

regulatory mechanisms3, but incomplete maps from regulatory element to gene hinder causal 

gene identification5. Many computational approaches try to resolve these challenges6–10, yet 

methods in the field of gene prioritization often fail to nominate causal genes with high 

confidence.

Gene prioritization strategies can be placed into two broad categories: first, locus-based 

methods that leverage local GWAS data by connecting the causal variants to the causal 

gene(s) using protein coding variants, genomic distance, enhancer-gene maps11–16, or 

eQTLs7,8; second, similarity-based methods that search for global patterns in associated 

genes and nominate those with similar functions, pathways, or network connections6,10,17. 

Across both categories, existing methods lack consensus and have high false positive 

rates18. At the same time, related work suggests that combining results from different 

methods can yield better predictions19. Among similarity-based approaches, most methods 

focus on single-nucleotide polymorphisms (SNPs) that meet genome-wide significance, 

ignoring information from sub-significant variants that explain the majority of narrow sense 

heritability17,20. Moreover, recently-generated single-cell RNA-seq datasets hold promise 

for more accurately characterizing shared functions among genes and, thus, improving the 

accuracy of similarity-based gene prioritization.
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Here, we propose a new similarity-based gene prioritization method, a gene-level Polygenic 

Priority Score (PoPS), that leverages the full polygenic signal and incorporates data about 

genes from a variety of sources, including 73 publicly available single-cell RNA-seq data 

sets. PoPS is computationally efficient and requires only summary statistics and an LD 

reference panel. Across 113 complex traits and diseases, we show that PoPS outperforms 

other similarity-based and locus-based gene prioritization methods using a unique evaluation 

gene set. We further show that by combining PoPS with locus-based gene prioritization 

methods we can prioritize genes with higher confidence than PoPS or any locus-based 

method alone, ultimately prioritizing genes at 10,642 GWAS loci with high confidence.

RESULTS

Overview of PoPS

Our method, PoPS, is predicated on the assumption that causal genes share functional 

characteristics. Specifically, we assume genes whose physical locations on the genome are 

near associated SNPs and who share similar biological annotations are most likely to be 

causal. PoPS uses gene-level associations computed from GWAS summary statistics to learn 

joint polygenic enrichments of gene features derived from cell-type specific gene expression, 

biological pathways, and protein-protein interactions (PPI). To nominate causal genes, PoPS 

then assigns a priority score to every protein coding gene according to these enrichments 

(Fig. 1).

First, PoPS applies MAGMA9 to compute gene-level association statistics and their 

correlations using GWAS summary statistics and LD information from an ancestry-matched 

reference panel (see Methods). Gene-level covariates are then projected out of the computed 

gene-level associations from MAGMA to control for variables such as gene length and 

density of SNPs (see Methods). Next, PoPS performs marginal feature selection by using 

MAGMA to perform enrichment analysis for each gene feature separately. MAGMA tests a 

gene feature, f, for enrichment by modeling the gene-level associations, y, by

y = Xfβf + ε, ε MV N(0, R)

[1]

where Xf is a column vector corresponding to gene feature f (e.g. a binary indicator of 

membership in a pathway), and R is a covariance matrix designed to account for the LD 

between nearby genes computed from a reference panel. The model is fit by generalized 

least squares (GLS), and MAGMA reports both βf and a p-value for the hypothesis that 

βf ≠ 0 . We retain features that pass a nominal significance threshold (P < 0.05) to reduce the 

noise and computational complexity of fitting the joint model.

Second, PoPS fits a joint model with by replacing the vector Xf in Equation 1 with a matrix 

X that includes all of the selected features. (See Extended Data Fig. 1 for comparison of 

model-fitting choices.)
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y = Xβ + ε, ε MV N 0, R

[2]

We extend the GLS method used by MAGMA to incorporate L2 regularization to account 

for a large number of features and improve test set prediction, obtaining an estimate β.

Finally, PoPS computes polygenic priority scores for each gene, g, by multiplying its row 

vector of gene features, Xg, by β.

yg = Xgβ

[3]

We refer to yg as the polygenic priority score (PoP score) for gene g. We say PoPS prioritizes 

a gene if it is in a 1 Mb locus centered on a genome-wide significant variant and has 

the highest PoP score among genes in the locus (see Methods). We additionally include 

an option for a user to compute scores in a leave-one-chromosome-out fashion, obtaining 

estimates β−cℎr i for i = 1, …, 22 and scoring, for example, a gene on chromosome 1 by using 

β−cℎr 1.

Application of PoPS to 113 complex traits

We applied PoPS to 18 diseases with publicly available GWAS summary statistics and 95 

complex traits from the UK Biobank21 (Supplementary Table 1) using EUR individuals 

from the 1000 Genomes Project22 as a reference panel (see Methods). The full set of gene 

features used in these analyses included 57,543 total features – 40,546 derived from gene 

expression data, 8,718 extracted from a protein-protein interaction network23, and 8,479 

based on pathway membership24–27 (Supplementary Table 2; see Methods). After marginal 

feature selection, 2,512 to 26,155 features per trait were included in the predictive model 

(Extended Data Fig. 1d). For each trait, we score 18,383 protein coding genes and prioritize 

one gene in each genome-wide significant locus. In total, PoPS prioritized 17,906 unique 

gene-trait pairs in 25,342 loci across 113 complex traits.

Enrichment-based evaluation of PoPS

To evaluate the performance of PoPS for prioritizing likely causal genes, we avoided using 

curated sets of gold standard genes that may be biased towards well-studied genes or genes 

in well-characterized pathways. We instead evaluated PoPS with two metrics unaffected by 

prior knowledge of trait etiology by taking advantage of the fact that PoPS can be run using 

a leave-one-chromosome-out approach, allowing us to use held-out locus association data 

for validation. Both metrics quantify the extent to which genes with high PoP scores overlap 

with sets of variants or genes we expect to be highly enriched for causal signals. First, 

we applied the Benchmarker method17, which evaluates methods by estimating the average 

contribution of SNPs near top scoring genes to per SNP heritability (τ). Here, a value of 

normalized τ significantly greater than zero indicates that genes with high PoP scores are 

Weeks et al. Page 5

Nat Genet. Author manuscript; available in PMC 2024 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enriched for heritability, even after accounting for the contributions of 53 other genomic 

annotations. After correction for multiple testing, we found our estimates for normalized 

τ were significantly greater than zero for 54 of 113 traits tested (Fig. 2a, Supplementary 

Table 3). As a second evaluation metric, we focused on the performance of PoPS in GWAS 

significant loci. Following prior work demonstrating that the causal gene is often the closest 

gene to the lead variant in the locus19, we tested whether PoPS prioritized genes were the 

closest gene to the lead variant more often than expected by chance (see Methods). Although 

this test is underpowered for traits with a small number of significant loci, we found that 

PoPS prioritized genes were significantly enriched for being the closest gene for 64 of 

113 traits tested after Bonferroni correction (Fig. 2b, Supplementary Table 3). Thus, both 

Benchmarker and our closest gene metric indicate that PoPS prioritized genes are enriched 

for being causal.

Comparison to similarity-based methods

After evaluating PoPS on its own, we investigated how PoPS compares to existing 

similarity-based methods: DEPICT6, NetWAS10, and a method that we call MAGMA-sim17 

(see Methods). Using the same set of 113 traits, we applied: (1) PoPS using the full 

set of 57,543 features, (2) PoPS using only the 14,461 reconstituted gene sets used by 

DEPICT, (3) MAGMA-sim using the 14,461 reconstituted gene sets, (4) DEPICT using the 

14,461 reconstituted gene sets, (5) NetWAS using a significance cutoff of p < 0.01, and (6) 

NetWAS using a Bonferroni significance cutoff. We found that PoPS using the full feature 

set showed the strongest performance compared to other similarity-based methods for 31 

of 46 independent traits using Benchmarker and 33 of 46 traits using the closest gene test 

(Supplementary Table 3). After meta-analyzing estimates within 11 trait domains across 

46 traits chosen to have low genetic correlation (see Methods), we again found that PoPS 

significantly outperformed all other similarity-based methods tested (Fig. 2c, Extended Data 

Fig. 2a). Importantly, when PoPS, DEPICT, and MAGMA-sim were run using the same 

features, PoPS significantly outperformed the other two methods by both metrics; giving 

PoPS access to the full set of features further increased its performance. Thus, we attribute 

the superior performance of PoPS compared to other similarity-based methods to both the 

large set of gene features and the joint modeling used to integrate signal across those gene 

features.

Interpreting gene features in the PoPS model

We next evaluated the relevance of each category of features included in the PoPS model: 

gene expression, pathways, and PPI networks (Fig. 3, Extended Data Fig. 2, Extended Data 

Fig. 3). We created three alternate versions of PoPS, training on features from each category 

separately, to produce three new sets of results for each phenotype. In a meta-analysis over 

46 independent traits, we found that including all features yielded the strongest performance 

in both Benchmarker and closest gene evaluations, followed in order by pathways, gene 

expression, and lastly by PPI networks (Fig. 3a, Extended Data Fig. 3b, Supplementary 

Table 3).

To better understand the relevant tissues, cell-types, and pathways learned by PoPS, we 

investigated which features were most informative for prioritized genes. Because many 
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highly correlated features were included in the joint model for PoPS, the individual 

coefficients, β, lacked direct interpretability. We instead grouped related features for a trait 

by performing hierarchical clustering on the selected features (see Methods) and computed 

the total contribution of the features in the cluster to the PoP scores of prioritized genes. 

Gene features in the top clusters recapitulated known trait biology and included examples 

from each type of feature (Fig. 3b, Supplementary Table 4). For LDL cholesterol, we 

observed clusters composed of lipid synthesis and transport pathways in addition to liver 

gene expression features28. For HbA1c, a test that measures average blood sugar levels but 

is also affected by red blood cell levels29, we observed both glucose and hemoglobin related 

clusters of features. For rheumatoid arthritis, an autoimmune disease30, we observed a range 

of immune features describing expression, signaling, and production of immune cells and 

their function. Finally, for schizophrenia, we observed clusters corresponding to regional 

brain expression features and mechanisms previously implicated in schizophrenia including 

calcium channel dysfunction31,32. Taken together, these results suggest that PoPS is able to 

prioritize the causal genes underlying complex traits and diseases by learning biologically 

relevant properties from multiple types of gene features.

Development of a new evaluation gene set

We next sought to compare PoPS to existing locus-based methods. However, the approaches 

we used to compare similarity-based prioritization methods, Benchmarker and the closest 

gene metric, are not applicable to locus-based methods. Curated gold standard gene sets, 

in addition to being small and often unavailable for complex traits and common diseases, 

are often biased towards well-studied genes, potentially introducing bias when evaluating 

PoPS, which uses existing pathway databases. Thus, we constructed a new evaluation set of 

approximate gold standard gene-trait pairs that do not suffer from the same biases.

To create a new evaluation set, we first used the results of our recent statistical fine-

mapping of 95 traits from the UK Biobank21 to identify likely causal genes as those 

harboring a fine-mapped (PIP > 0.5) protein-coding variant. Matching by trait, we then 

identified independent, non-coding credible sets within 500kb of these protein-coding 

genes. This approach identified 1,348 non-coding credible sets with physically proximal, 

but independent, coding variant signals. We created an evaluation set from these 1,348 

loci, consisting of all genes within 500kb of the locus-defining non-coding credible set 

(median of 13 genes per locus). Genes at loci with an independent, fine-mapped coding 

variant for the same trait were labeled positive and genes without were labeled negative. 

This assignment directly encodes our assumptions that (1) genes harboring a fine-mapped 

coding variant are trait-relevant and (2) multiple independent associations in a locus are 

most likely to act through the same gene (see Discussion). This evaluation set allows us to 

directly estimate the precision, the proportion of prioritized genes that are labeled positive, 

and recall, the proportion of positively labeled genes that are correctly prioritized, of any 

similarity-based or locus-based gene prioritization method.

Before considering locus-based methods, we used this new evaluation set to again compare 

PoPS to the other similarity-based methods (Extended Data Fig. 4, Supplementary Table 5). 

We found that PoPS had both higher recall and higher precision than DEPICT, NetWAS, and 
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MAGMA-sim using non-coding genetic signal (see Methods). We additionally show that 

PoPS using the full non-coding genetic data had both higher recall and higher precision than 

PoPS run in a leave-one-chromosome-out (LOCO) framework.

Combing PoPS with locus-based methods

With these metrics, we evaluated existing locus-based methods applied to the set of 95 

traits from the UK Biobank (see Methods), where we had not only summary statistics, but 

fine-mapping results. We evaluated a non-exhaustive but wide range of methods:

1. We overlapped fine-mapped (PIP > 0.1) non-coding variants with predicted 

enhancer-gene connections from (a) correlating enhancer and promoter activity 

(E-P correlation)15,16, (b) 3-D loops from promoter capture Hi-C (PCHi-C)12–14, 

and (c) activity-by-contact (ABC)11 maps to identify genes regulated by fine-

mapped variants.

2. We incorporated eQTL data and (a) applied TWAS8 with GTEx v733 weights 

to identify significantly associated genes, (b) applied SMR34 with GTEx 

v733 weights to identify significantly associated genes, and (c) computed co-

localization posterior probabilities (CLPP)7 with fine-mapping results from 

GTEx v821,35,36 to identify genes where the causal variant is shared between 

the complex trait and the gene expression trait.

3. We used the raw gene scores from MAGMA, derived from local association 

statistics without any gene features.

4. We identified the closest gene to the lead variant.

Before directly comparing methods, we evaluated multiple prioritization criteria, using both 

absolute thresholds and relative rank within a locus (Extended Data Fig. 5, Supplementary 

Table 6; see Methods). Across all methods, we found that prioritizing the single best 

ranked gene in a locus had higher precision than including all genes passing a global 

score threshold, consistent with the idea that a regulatory variant can affect the expression 

of multiple genes33,35, yet only a select few, perhaps often the most strongly regulated, 

have a direct effect on the complex trait of interest. Thus, our primary evaluation of gene 

prioritization methods compares only the top ranked gene per locus (see Methods).

All locus-based methods for prioritizing genes from non-coding signal showed precision 

less than 50% except CLPP, which had both the highest precision, 52%, and the lowest 

recall, 4% (Fig. 4a, Extended Data Fig. 6, Supplementary Table 5, Supplementary Table 7). 

Distance had the next highest precision, 46%, and the highest recall, 48%. The other locus-

based methods yielded variable precision (14–46%) and recall (5–32%). The low recall of 

the majority of these methods can be attributed in part to limited power to isolate the causal 

variant because of LD, limited eQTL overlap with complex traits at current sample sizes, 

and to missing trait-relevant cell types in the variant-to-gene regulatory maps. Our method, 

PoPS, showed precision and recall of 50%, which was consistent when restricting to only 46 

independent traits (51%) and when further restricting to only allow unique validation genes 

rather than unique validation gene-trait-credible set triplets (50%).
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Noting previous work on the utility of combining locus-based and similarity-based gene 

prioritization methods19,37, we investigated agreement among methods, including genes 

with fine-mapped (PIP > 0.1) coding variants. For each pair of methods, we computed the 

number of loci in which both methods prioritized a gene and the proportion of those loci 

where they prioritized the same gene (Fig. 4b, Supplementary Table 8). Overall, we found 

low concordance among methods. For example, PCHi-C prioritized a gene in 8,777 loci, 

while ABC-Max prioritized a gene in 7,913 loci; when both methods prioritized any gene, 

they agreed only 42% of the time. PoPS had mild agreement with most other methods, 

prioritizing the same gene in up to 52% of loci, suggesting that PoPS and locus-based 

methods contain independent information and may improve prioritization when combined.

Returning to our evaluation gene set to evaluate this hypothesis, we found that combining 

PoPS with locus-based methods improved precision, while maintaining appreciable recall 

(Fig. 4a, Extended Data Fig. 7, Supplementary Table 5). Specifically, for each locus-based 

method, intersecting the set of genes prioritized by the locus-based method with the set of 

genes prioritized by PoPS led to precision of at least 67 and up to 79%, depending on the 

locus-based method. In contrast, when intersecting pairs of locus-based methods, no method 

with recall above 1% achieved precision greater than 72%. Intersecting PoPS with distance 

increased precision from 46% for the closest gene to 79%, while achieving 31% recall.

High-confidence prioritized genes

We used PoPS, together with locus-based methods (PoPS+local), to prioritize genes across 

all genome-wide significant loci for 95 UK Biobank traits and 18 additional complex 

diseases for which we only had summary statistics. (Fig. 4c, Extended Data Fig. 8, 

Supplementary Table 9, Supplementary Table 10). Using the same evaluation gene set 

described above, we find that PoPS+local has an expected precision of 74% and should 

be considered the primary results from and use case for PoPS. In total, we prioritized 

10,642 unique gene-trait pairs at 57% of loci in this analysis (Supplementary Table 11). 

Top genes by PoP score include many well-known causal genes (Fig. 5). For example, the 

lipid metabolism genes38, APOE, APOA1, APOB, and PPARG, were four of the top five 

genes for LDL cholesterol. For mosaic loss of Y (LOY) chromosome in circulating blood39, 

a phenotype with genetic relevance to multiple malignancies, the top genes are involved 

in the DNA damage response (TP53) and apoptosis (BCL2, BAX). For schizophrenia, 

the top genes by PoP score are the well-known dopamine receptor (DRD2)40, calcium 

channel genes (CACNA1C, CACNB2)32, an important transcriptional regulator underlying 

developmental delay (BCL11A)40,41, and a transcription factor (TCF4) that is well-studied 

in the context of schizophrenia42.

We additionally find that when distinct locus-based methods nominate multiple different 

genes in a single locus, PoPS can be particularly useful to prioritize a single candidate causal 

gene. For example, when we identified genes supported by PoPS+local when locus-based 

methods disagreed, we estimate that PoPS+local nominates the correct gene 70% of the 

time. In comparison, nominating all genes supported by at least one of the locus-based 

methods results in a precision of 22%. We highlight three specific cases where previous 

experiments and local methods have shown that the causal variant regulates multiple 
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genes but only a single causal gene has been determined. For example, rs1175550 was 

fine-mapped with PIP > 0.9 for multiple red blood cell traits and has been demonstrated 

experimentally to affect the expression of SMIM1, LRRC47, and CEP10443. Locus-based 

methods prioritized SMIM1, WRAP73, and C1orf74. PoPS correctly prioritized SMIM1, 

which encodes for the rare Vel blood group protein involved in red blood cell production44, 

for mean corpuscular hemoglobin concentration (Fig. 6a). In another example, the variant 

rs737092 was fine-mapped with PIP = 0.72 for mean corpuscular hemoglobin (MCH), and 

experimental evidence shows that the expression of both RBM38 and RAE1 are affected by 

this variant43 (Extended Data Fig. 9). Locus-based methods prioritized RBM38 and CTCFL, 

but PoPS correctly prioritized RBM38, which has been shown to play a role in splicing 

key erythroid transcripts during erythropoiesis43. As a final example, locus-based methods 

prioritized TMEM192, MSMO1, KLHL2, and CPE in a locus associated with bone mineral 

density (BMD). PoPS correctly prioritized CPE at this locus (Fig. 6b), the knockout of 

which resulted in increased bone turnover and low BMD in mice45.

Finally, we probed 2,004 loci where PoPS and distance to gene disagreed (Supplementary 

Table 12). When PoPS+local identified a gene that was not the closest to the sentinel 

variant, we found that PoPS+local had 60% precision. On the other hand, closest gene, 

when similarly combined with a local method, had only 27% precision. Genes prioritized by 

PoPS+local that are not the closest gene likely represent a set enriched for novel candidate 

genes. For example, our analysis nominated LGR4 for estimated glomerular filtration rate 

from cystatin C (eGFRcys), a marker of kidney function (Fig. 6c). LGR4 is near two 

credible sets that together define a locus containing eight genes. Three of these eight genes, 

including LGR4, have support from at least one locus-based method. LGR4 is a G-coupled 

protein receptor that activates the Wnt signaling pathway and has been shown to be essential 

for kidney development in mice46. For deep vein thrombosis, our analysis nominated CCR7 
at a locus with two credible sets and 41 genes, including 28 genes in the Keratin family and 

three genes supported by locus-based methods (Fig. 6d). The top PoPS features supporting 

the relevance of CCR7 were abnormal thymus medulla morphology, increased IgE level, 
and response to prostaglandin. CCR7, chemokine receptor 7, is a regulator of inflammation 

which is involved in the development of DVT47 and may be involved in thrombogenesis 

through platelet activation48.

DISCUSSION

We developed a new computational method, PoPS, for prioritizing causal genes from GWAS 

that predicts polygenic genetic association from gene expression profiles, protein-protein 

interaction networks, and pathway databases. We applied PoPS to summary statistics 

from 113 traits and showed that PoPS outperforms other similarity-based and locus-based 

methods. Combining PoPS with locus-based methods greatly increased precision while 

maintaining an adequate recall and is the approach we recommend. Using this combined 

approach, we nominated several genes at unresolved GWAS loci, highlighting the utility 

of our approach for gene prioritization. In addition to developing PoPS, we created a large 

evaluation set of non-coding associations near fine-mapped variants in protein-coding genes. 

This set serves as a powerful tool that, unlike gene sets comprised of Mendelian disease 
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genes or drug targets, allows us to evaluate both similarity-based and locus-based methods in 

a framework that is unbiased by previous trait-specific knowledge.

Although our similarity-based approach to gene prioritization allows for confident prediction 

of causal genes, it has several limitations. First, our approach assumes that causal genes 

share biological characteristics captured by the gene features included in the model. 

Causal genes that act through unrelated mechanisms or genes whose shared functions 

are not described by our features would not be identified by PoPS. We note a similar 

limitation when interpreting locus-based methods, where we cannot distinguish whether 

the performance of a method is limited by the methodology or the availability of the 

necessary data (i.e. cell-type). Second, to leverage the polygenic signal, we assume the 

causal mechanisms are shared between top loci and sub-significant loci. Third, while 

informative for ranking genes, the polygenic priority score lacks interpretable units, is not 

comparable across traits, and does not quantify uncertainty in the predictions. Fourth, PoPS 

does not directly link causal genes with their relevant cell types. Fifth, the joint linear model 

includes many highly correlated features, requiring ad-hoc methods to interpret model fits 

and predictions. Finally, the large evaluation set has several limitations. As the number of 

non-coding associations increases our simplistic assignment of non-coding associations to 

positive evaluation genes within a pre-defined genomic distance will likely become less 

accurate (Extended Data Fig. 10), suggesting new methods are needed as sample sizes 

increase.

In conclusion, PoPS is a powerful tool for identifying causal genes from GWAS summary 

statistics and marks an important step towards building functional understanding from 

genetic associations. The ability to prioritize causal genes more confidently will aid in 

understanding the underlying trait biology and nominate genes that are strong candidates for 

experimental follow-up.

METHODS

MAGMA gene z-scores

We applied MAGMA9 to the summary statistics for each trait using EUR individuals 

from 1000 Genomes Project reference panel22 to compute gene-level association statistics 

and gene-gene correlations using the SNP-wise mean gene analysis and a 0 Kb window 

around the gene body for mapping SNPs to genes. For each gene, MAGMA computes 

a gene p-value from the mean chi-square statistic of SNPs in the gene body and its 

approximate sampling distribution. The gene p-value is converted to a z-score using the 

probit function. The resulting z-score reflects the gene-trait association after correcting for 

linkage disequilibrium (LD) among SNPs within the gene body. MAGMA approximates 

the gene-gene correlation matrix, R, using the correlations between the model sum of 

squares of each gene pair under the joint null hypothesis of no association. These 

correlations are a function of the LD between SNPs in each pair of genes and represent 

the LD on a gene level. To ensure a well-conditioned positive definite correlation matrix, 

we add a small value to the entries of R along the diagonal. Specifically, we add 
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min λmin, 0 + 0.05 + 0.9 × max 0, var Y − 1  to each element along the diagonal, where λmin

is the minimum eigenvalue of R, and Y  are the MAGMA z-scores.

PoPS covariates

We included covariates corresponding to gene density, effective gene size, and inverse of the 

mean minor allele count (MAC) of SNPs in the gene as well as the log of these variables 

as computed by the MAGMA9 software. MAGMA defines gene density as the ratio of the 

effective number of independent SNPs in the gene to the total number of SNPs in the gene 

and defines effective gene size as the effective number of independent SNPs in the gene. 

We additionally include a covariate corresponding to gene size and the log of this variable, 

defined as the length of the gene in base pairs.

Locus definition

From the set of associated variants with P < 5×10−8, we designated independent lead 

variants from which to define loci. For the 18 traits where we used publicly available 

summary statistics, we performed PLINK49 clumping using EUR individuals in the 1000 

Genomes Project reference panel with a p-value threshold of 5×10−8 and r2 threshold of 

0.1. Within each clump, we defined the variant with the most significant p-value as the 

lead variant. For the 95 traits from the UK Biobank where we had fine-mapping results 

for regions containing genome-wide significant variants, we defined one locus for every 

independent credible set (CS). For each fine-mapped CS, we defined the variant with the 

highest posterior inclusion probability (PIP) as the lead variant. We then defined the locus 

boundaries as 500 Kb on either side of the lead variant and included all genes that fell 

within or overlapped with the locus boundaries. (See Extended Data Fig. 10 for sensitivity to 

boundary size.)

Complex traits and disease associations

GWAS for 95 heritable traits in the UK Biobank were performed as part of a fine-mapping 

study21. Up to 361,194 individuals of white British ancestry with available phenotypes and 

variants with INFO > 0.8, minor allele frequency (MAF) > 0.01%, and Hardy-Weinberg 

equilibrium (HWE) p-value > 1e-10 were included in the GWAS. Covariates for the top 

20 PCs, sex, age, age2, sex*age, sex*age2, and dilution factor where applicable were 

controlled for in the association studies. Quantitative traits were inverse rank transformed 

and associations were estimated using BOLT-LMM50. For binary traits, associations were 

estimated using SAIGE51. Publicly available summary statistics were downloaded for an 

additional 18 diseases (Supplementary Table 1).

Gene features

We created gene features from three main data types: (1) bulk and single-cell gene 

expression datasets, (2) curated biological pathways, and (3) predicted protein-protein 

interaction networks.

(2) For each of the 77 gene expression datasets (Supplementary Table 2), we uniformly 

re-processed the raw count (or normalized count when raw counts were not provided) 
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matrices using Seurat v352. First, cells with total counts outside of the 5–95th quantiles were 

removed and only the 18,383 protein coding genes used in the PoPS analysis were included. 

Counts were then scaled to counts per million (CPM), log normalized, and scaled such 

that each gene had a mean of 0 and variance of 1 across cells. Principal components and 

gene loadings were computed on scaled expression values for the top 1,000–3,000 variable 

genes using truncated SVD53. Independent components and gene loadings were computed 

using fastICA54. A k-nearest neighbor graph was created using the top principal components 

(PCs, based upon inspection of elbow plot) and clusters were identified using the Louvain 

algorithm. The uniform manifold approximation and projection (UMAP) algorithm55 was 

used to visualize clusters and investigate batch effects. When batch effects were visually 

apparent and pre-defined batch annotations were provided, we attempted to remove batch 

effects using the anchor approach in Seurat. Finally, we performed differential expression 

between clusters using a one-vs-all approach with a two-sided Welch’s t-test. We provide 

code to reproduce these analyses, a repository of processed features, and visualizations of 

top derived features at https://github.com/FinucaneLab/gene_features.

We then derived features for PoPS (a) on the whole dataset, (b) within clusters representing 

different cell populations, and (c) between clusters. (a) On the whole dataset, we derived 

features of gene loadings from principal component analysis (PCA) and gene loadings 

from independent component analysis (ICA). (b) Within each cluster, either predefined 

(when available) or identified in our analysis, we derived features of average scaled gene 

expression and gene loadings from the top 10 PCs. Comparing across clusters (1-vs-all), 

we derived features of a t-statistic for differential expression and a binary indicator 

for differentially up- and down-regulated genes (Benjamini–Hochberg FDR < 0.05 and 

|log2(fold-change)| > 2).

(2) We created features from biological pathways curated for DEPICT from KEGG25, Gene 

Ontology24, Reactome26, and the Mouse Genome databases27. Each feature was encoded as 

a binary indicator for membership to a pathway. (3) We created features using the predicted 

InWeb_IM protein-protein interaction (PPI) network23. For each gene, we included as a 

feature a binary indicator for the set of genes that were its first-degree neighbors.

Finally, for each distinct dataset, we included a control feature as a binary indicator for the 

set of genes that were reported in that dataset. All features were centered and scaled to have 

mean of 0 and variance of 1 across genes.

DEPICT

We ran DEPICT6 with default parameters on the summary statistics for each trait and 

DEPICT’s 14,461 reconstituted gene sets to prioritize genes in genome-wide significant loci. 

First, we performed PLINK clumping with a p-value threshold of 5×10−8, r2 threshold of 

0.05, and distance threshold of 500 Kb, as recommended by the DEPICT software. Loci are 

defined by taking all genes that reside within boundaries defined by the most distal variants 

in either direction with LD > 0.5 to the lead variant identified by PLINK clumping. To make 

running DEPICT computationally tractable for traits with large numbers of genome-wide 

significant loci, we restricted the input to the top 1,000 loci by p-value of the index variant. 
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DEPICT then scores genes by correlating their membership to reconstituted gene sets to 

those of other genes in genome-wide significant loci and performs a bias adjustment for 

the scores. Finally, to prioritize genes in each locus, we prioritized the single gene in 

each genome-wide significant locus with the most significant p-value. For Benchmarker 

and closest gene enrichment analyses, DEPICT was run in a leave-one-chromosome-out 

framework. Here, all variants on the chromosome for which gene p-values were computed 

were removed from the summary statistics before running DEPICT.

NetWAS

NetWAS10 trains a support vector machine classifier constructed using a gene network. 

We applied NetWAS using the global network and MAGMA gene p-values generated from 

the summary statistics for each trait and the 1000 Genomes Project reference panel22. We 

applied NetWAS using both the default threshold of P<0.01 and the Bonferroni significance 

threshold, which was shown in previous work to have better performance for well-powered 

GWAS17. In cases where fewer than 15 genes passed the significance threshold, we relax 

the p-value threshold until there are 15 passing genes. For Benchmarker and closest gene 

enrichment analyses, NetWAS was run in a leave-one-chromosome-out framework. Here, all 

genes on the chromosome for which gene scores were being computed were removed from 

the MAGMA gene-level associations before running NetWAS.

MAGMA-sim

MAGMA-sim17, described by Fine et al. and referred to in that manuscript as MAGMA, 

is an approach for leveraging individual gene set enrichments to prioritize genes, by 

prioritizing all genes that are members of the most highly enriched gene sets. To run 

MAGMA-sim, we computed gene set enrichment p-values for the 14,461 reconstituted 

gene sets from DEPICT using MAGMA. Using the best performing approach from Fine 

et al., we binarized the reconstituted gene sets using a z-score threshold of z > 2.58 on 

the reconstituted gene sets. We then constructed a set of prioritized genes by (1) ranking 

the gene sets by enrichment p-value and (2) adding member genes of the most significant 

gene sets until we reached 500 prioritized genes. If the last added gene set contained more 

genes than were necessary to reach 500 prioritized genes, we selected the required number 

of genes from that last gene set at random. For precision-recall analyses, MAGMA-sim was 

run leaving out the coding signal.

To validate MAGMA-sim in a leave-one-chromosome-out framework, we ranked gene 

sets according to enrichment p-values that were computed after removing genes from 

the test chromosome. We then added member genes of the most significant gene sets 

until we reached K prioritized genes, where K = 500 × % of genes on test chromosome , thus 

prioritizing 500 total genes across all chromosomes. MAGMA-sim is similar to PoPS in 

that in leverages genome-wide gene set enrichments from MAGMA for gene prioritization. 

However, MAGMA-sim does not perform any joint modeling of these gene sets, instead 

ranking them and prioritizing all genes in any of the top ranked gene sets. Moreover, 

MAGMA-sim provides only a binary result for each gene – prioritized or not prioritized – 

without any ranking or quantitative score, and so can prioritize zero or multiple genes in a 

locus. We thus could not apply our closest gene evaluation metric to MAGMA-sim.
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Benchmarker

Benchmarker17 is an unbiased, data-driven approach to evaluate gene prioritization methods. 

Based on the assumption that SNPs near causal genes should be enriched for trait 

heritability, Benchmarker uses stratified LD score regression (S-LDSC)56 to estimate the 

average contribution of SNPs near prioritized genes to per SNP heritability. Using S-LDSC, 

Benchmarker jointly models a SNP annotation corresponding to prioritized genes along 

with 53 annotations in the “baseline model” which include genic, regulatory, and conserved 

regions. To evaluate performance, we use the regression coefficient, τ, and its p-value for 

the hypothesis τ > 0 . τ measures the contribution of SNPs near prioritized genes to per SNP 

heritability after controlling for the baseline annotations. To make τ comparable across traits, 

we normalized τ by the average per-SNP heritability for each trait and refer to this quantity 

as normalized τ.

For our analyses, we selected the 500 genes with the highest PoP scores for each trait as the 

set of prioritized genes and used a 100 Kb window on either side of the transcription start 

site of each gene for mapping SNPs to genes.

Closest gene enrichment

We used a normal approximation to the null distribution for our test statistic, c, the number 

of genes that are PoPS prioritized and the closest gene to the lead variant in a locus. Under 

the null, PoPS prioritizes the closest gene in a locus at random with probability 1
nl

, where nl

is the number of genes in a locus, l. Across all L loci, the distribution of c under this null is 

a sum of independent Bernoullis with different biases. For computational tractability when L
is large, we approximate this by a normal with matched moments.

c N ∑1:L
1
nl

, ∑1:L
1
nl

1 − 1
nl

We performed a one-sided test for c > ∑1:L
1
nl

 under the null. We additionally computed the 

enrichment of the number of PoPS prioritized genes that are the closest as the ratio of the 

observed to the expected, c
∑1:L

1
nl

, and estimated the standard error of the enrichment. We 

used the bootstrap to estimate the standard error of the enrichments, not assuming a null 

distribution, and performed 1024 bootstrap repetitions resampling the L loci for each trait.

Independent traits

To identify independent traits, we first computed genetic correlations between all pairs of 

traits using cross-trait LD score regression57 with LD scores from UK10K58. Next, we 

created an adjacency matrix of traits with edge weights corresponding to whitened ( rg < 0.2
were set to 0), absolute genetic correlations. We then identified the maximum independent 

set of vertices (traits) such that no two were adjacent using the igraph package59 in R 3.5. 

The resulting set contained 46 independent traits (Supplementary Table 1).
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Feature clustering

For each trait, 50 PCs were derived from the scaled gene by feature matrix using truncated 

SVD. A feature by feature distance matrix was then created as the dissimilarity between 

features using one minus the squared Pearson correlation (r2) between PCs. Complete 

linkage hierarchical clustering was then performed on this distance matrix. Clusters were 

determined such that Pearson r2 > 0.12 for all features within a cluster. This inclusive 

threshold was chosen in order to reduce the impact of multicollinearity when interpreting 

the contribution of top clusters to PoP scores and was validated by manual investigation of 

within-dataset composition of large clusters as well as biological interpretability of the top 

clusters.

Fine-mapping

Fine-mapping was performed21 for 95 complex traits in the UK Biobank and for 49 tissues 

in GTEx v8 using the Sum of Single Effects (SuSiE) method60, allowing for up to 10 

causal variants in each region. Prior variance and residual variance were estimated using the 

default options, and single effects (potential 95% CSs) were pruned using the standard purity 

filter such that no pair of variants in a CS could have r2 > 0.25. Regions were defined for 

each trait as +/− 1.5 Mb around the most significantly associated variant, and overlapping 

regions were merged. As inputs to SuSiE, summary statistics for each region were obtained 

using BOLT-LMM50 for quantitative traits and SAIGE51 for binary traits, in sample dosage 

LD was computed using LDStore61, and phenotypic variance was computed empirically. 

Variants in the MHC region (chr6: 25–36 Mb) were excluded as were 95% CSs containing 

variants with fewer than 100 minor allele counts. Coding (missense and predicted loss of 

function) variants were annotated using the Variant Effect Predictor (VEP) version 8562. 

Fine-mapping data used in this study is available at https://www.finucanelab.org/data.

Precision and recall

We used our evaluation gene set to estimate the precision and recall for each method, 

evaluating the following two questions. First, if a gene is prioritized, how confident should 

we be that it is truly relevant? And second, what proportion of all truly relevant genes 

does the method prioritize? To answer these questions for a given method, we applied the 

method to the 1,348 loci with fine-mapped coding variants, excluding the nearby coding 

signal where relevant (see below). A true positive (TP) is a prioritized gene that is condition 

positive, a false positive (FP) is a prioritized gene that is condition negative, a true negative 

(TN) is a gene that is not prioritized that is condition negative, and a false negative (FN) is 

a gene that is not prioritized that is condition positive. The answers to our two questions are 

given, respectively, by precision, #TP/(#TP+#FP), and recall, #TP/(#TP+#FN).

ABC-Max

We used the Activity-by-Contact (ABC) model11 to predict enhancer-gene connections in 

131 biosamples from 74 distinct cell-types and tissues based on measurements of chromatin 

accessibility (ATAC-seq or DNase-seq) and histone modifications (H3K27ac ChIP-seq). 

For each trait, we included only predicted enhancer-gene connections where the enhancer 

contained a fine-mapped variant (PIP > 0.1) in a credible set that did not contain any coding 
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or splice site variants. We assigned each gene in a locus a single score for the corresponding 

fine-mapped CS by taking the highest ABC score of predicted enhancers for that gene-CS 

pair across all biosamples that are enriched for overlapping fine-mapped variants for that 

trait. Finally, to predict a single gene for each credible set, ABC-Max prioritizes the gene 

with the highest ABC score in the locus.

Enhancer-promoter correlation

We downloaded predicted enhancer-promoter maps based upon the correlation of 

biochemical marks at regulatory regions and expression of nearby genes across cell types 

for 808 tissues and cell-lines from the FANTOM5 project15, 127 tissues and cell-lines from 

the ROADMAP Epigenomics project16, and also for 16 primary blood cell types13. For the 

FANTOM5 dataset, we filtered to interactions with Benjamini–Hochberg FDR < 10−5 for a 

non-zero Pearson correlation. For the ROADMAP dataset, we filtered to interactions with 

a confidence score > 2.5. For the Ulirsch et al. dataset, we filtered to interactions with a 

Pearson correlation > 0.7 and a Storey FDR < 10−4. Finally, for each trait, we included only 

predicted interactions where the enhancer contained a fine-mapped variant (PIP > 0.1). We 

assigned each gene in a locus a single score for each corresponding fine-mapped CS by 

taking the highest confidence score or correlation of predicted enhancers for that gene-CS 

pair across all tissues and cell-lines.

Promoter capture Hi-C

We downloaded promoter capture Hi-C datasets (PCHi-C) containing observed physical 

interactions between fragmented DNA and targeted genic promoters for 28 diverse human 

tissues and cell-lines12 and 15 primary blood cell types14. For the Jung et al. dataset, we 

filtered to interactions with p-values for interaction < 0.01 and raw frequency counts > 5. For 

the Javierre et al. dataset, we filtered to interactions with CHiCAGO63 scores > 5. In both 

cases, we defined a variant-gene interaction as a variant with PIP > 0.10 overlapping with 

a relevant region of accessible chromatin, based upon 39 ROADMAP tissues64 for Jung et 

al. and 44 primary blood cell types13,65 for Javierre et al. Finally, for each trait, we included 

only predicted interactions where the enhancer contained a fine-mapped variant (PIP > 0.1). 

We assigned each gene in a locus a single score for each corresponding fine-mapped CS by 

taking the highest connection strength of predicted enhancers for that gene-CS pair across all 

tissues and cell-lines.

TWAS

We applied TWAS8 using the FUSION software package and precomputed expression 

reference weights for 48 tissues from GTEx v733. To avoid leveraging the coding signal 

for the precision-recall analysis, we excluded all variants in LD (r2 greater than 0.2 to a 

coding variant with PIP > 0.1). For all other analyses we included all variants in the GWAS 

summary statistics. In both cases, we took the most significant association across tissues 

for each gene. For precision-recall analyses, TWAS was run leaving out the coding signal. 

TWAS weights were obtained from http://gusevlab.org/projects/fusion/weights/GTEX7.txt.
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SMR

We applied SMR34 using the SMR software tool and pre-computed cis-eQTL summary data 

across 48 human tissues from GTEx v733. Cis-eQTL summary data was pre-filtered to SNPs 

within 1Mb of the transcription start site for each gene. For precision-recall analyses, SMR 

was run leaving out the coding signal.

Co-localization posterior probability

Using fine-mapping results for 95 complex traits from the UK Biobank and for eQTLs in 

49 tissues from GTEx v835 we computed co-localization posterior probabilities (CLPP), 

analogous to those reported by the eCAVIAR software7. For each variant, i, fine-mapped for 

a complex trait, g, and an eQTL trait, e, the CLPP was computed as P(Cig, Cie) = P(Cig)P(Cie), 
where P(Cig) is the PIP of variant i in complex trait g and P Cie  is the PIP of variant i in 

eQTL trait e. This quantity is an estimate of the probability that the variant is causal for both 

the complex trait and the gene expression trait. Within each fine-mapped CS and for each 

gene, we took the maximum CLPP across all variants and GTEx tissues.

Gene prioritization criteria

To prevent information leakage from coding variant associations, which are used as part of 

the evaluation set, into non-coding variant gene prioritizations, all variants in LD (r2 > 0.2) 

with a trait-associated coding variant (PIP > 0.1) were removed before running PoPS, 

DEPICT, NETWAS, MAGMA-sim, TWAS, and SMR for evaluations on the set of 1,348 

loci containing a fine-mapped protein-coding variant used as a positive label. We evaluated 

multiple prioritization criteria for each locus-based method and PoPS including various 

absolute thresholds and the relative rank of genes within a locus (Extended Data Fig. 

5, Supplementary Table 6). We chose the following prioritization criteria to maximize 

precision:

(1a-c) E-P correlation, PCHi-C, ABC-Max: for each locus such that at least one gene 

has a predicted connection with an enhancer containing a variant with PIP > 0.1, the 

gene that has the highest correlation or connection score. To combine across datasets 

for E-P correlation and PCHi-C, we included any gene prioritized in at least one 

dataset.

(2a) TWAS: for each locus such that at least one gene is significantly associated after 

Bonferroni correction, the gene with the most significant p-value.

(2b) SMR: for each locus such that at least one gene is significantly associated after 

Bonferroni correction, the gene with the most significant p-value.

(2c) CLPP: for each locus such that at least one gene has a variant with CLPP > 0.1, 

the gene with the highest CLPP.

(3) Distance: for each locus, the gene that is closest to the lead variant by distance to 

the gene body.

(4) PoPS: for each locus, the gene that has the highest PoP score.
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Extended Data

Extended Data Fig. 1. PoPS model parameter choices and feature selection.
a-c, Results using Benchmarker to compare different parameter choices for fitting the 

PoPS model, meta-analyzed across independent traits (n = 46). Error bars represent 95% 

confidence intervals around the meta-analyzed point estimate. a, Feature selection: GLS with 

an L1 penalty on the full set of features performs less well than GLS after marginal selection 

using a P value < 0.05 threshold from the two-sided Wald test. b, Error model: ordinary 

least squares (OLS) performs less well than generalized least squares (GLS) using marginal 

selection from a. c, Joint model regularization: GLS after marginal feature selection with an 

L2 penalty performs better than similar models with an L1 penalty or no penalty. d, Number 

of features selected (marginal P value < 0.05 from the two-sided Wald test) and included 

in the joint predictive model for PoPS for each trait. A legend for trait domain colors is 

provided in Fig. 2.
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Extended Data Fig. 2. Additional comparisons using closest gene metric.
a, Results using closest gene enrichment to compare similarity-based gene prioritization 

methods, meta-analyzed within each trait domain across independent traits (n = 46). Error 

bars represent 95% confidence intervals around the meta-analyzed point estimate. b, Results 

using closest gene enrichment to compare PoPS results using different feature sets, meta-

analyzed within each trait domain across independent traits (n = 46). Error bars represent 

95% confidence intervals around the meta-analyzed point estimate.
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Extended Data Fig. 3. Comparison of gene expression features derived from bulk and single-cell 
RNA seq datasets.
a, Results using Benchmarker to compare PoPS results using different feature sets, meta-

analyzed within each trait domain across independent traits (n = 46). Error bars represent 

95% confidence intervals around the meta-analyzed point estimate. b, Results using closest 

gene enrichment to compare PoPS results using different feature sets, meta-analyzed within 

each trait domain across independent traits (n = 46). Error bars represent 95% confidence 

intervals around the meta-analyzed point estimate.
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Extended Data Fig. 4. Comparison of similarity-based methods using precision and recall.
Precision-recall plot showing performance of similarity-based methods.
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Extended Data Fig. 5. Comparing prioritization criteria.
Precision-recall plots for each method with varying prioritization criteria. Each point shows 

the precision and recall for a set of prioritized genes selected using prioritization criteria 

based on absolute thresholds and/or relative rank in a locus. For all methods, the star 

represents the final chosen criteria. a, Circles: PoP scores ranked ≤ 2–5 in the locus. 

Star: highest PoPS score in the locus. b, Plus: significant TWAS P value after Bonferroni 

correction (P < 0.05/235,584). Circles: TWAS P values ranked ≤ 2–5 in the locus. Star: 

significant TWAS P value after Bonferroni correction (P < 0.05/235,584) and the most 

significant in the locus. c, Pluses: CLPP > 0.01, 0.1, 0.5, 0.9, and 0.99. Circles: CLPP > 

0.01, 0.1, 0.5, 0.9, and 0.99 and also the highest CLPP in the locus. Star: CLPP > 0.1 and 

also the highest CLPP in the locus. d, Plus: any predicted connection from ABC. Circles: 
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ABC connection strength ranked ≤ 2–5 in the locus. Star: highest ABC connection strength 

in the locus. e, Pluses: any predicted connection from PCHi-C for individual datasets. 

Triangle: any predicted connection from PCHi-C in any dataset. Circles: highest connection 

strength in the locus for individual datasets. Star: highest connection strength in the locus in 

any dataset. f, Pluses: any predicted connection from E-P correlation for individual datasets. 

Triangle: any predicted connection from E-P correlation in any dataset. Circles: highest 

connection strength in the locus for individual datasets. Star: highest connection strength in 

the locus in any dataset. g, Circle: closest gene by distance to the transcription start site. 

Star: closest gene by distance to the gene body. h, Circles: MAGMA z-scores ranked ≤ 2–5 

in the locus. Star: highest MAGMA score in the locus. i, Plus: significant SMR P value after 

Bonferroni correction (P < 0.05/18,383). Circles: SMR P values ranked ≤ 2–5 in the locus. 

Star: significant SMR P value after Bonferroni correction (P < 0.05/18,383) and the most 

significant in the locus.
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Extended Data Fig. 6. Performance of PoPS and locus-based gene prioritization methods by 
trait.
Precision-recall plots for each method. Each point represents a single trait colored by trait 

domain. Only traits for which the method prioritized at least five genes in the validation loci 

were included. A legend for trait domain colors is provided in Fig. 2.
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Extended Data Fig. 7. Additional performance metrics using evaluation gene set in 1,348 non-
coding loci containing genes that harbor fine-mapped protein coding variants.
a, Sensitivity-specificity plot showing performance of locus-based methods, PoPS, 

intersections of pairs of locus-based methods, and intersections of PoPs with locus-based 

methods on the evaluation gene set of 589 genes with fine-mapped protein coding 

variants. b, Heatmap showing performance using the F-score of locus-based methods, PoPS, 

intersections of pairs of locus-based methods, and intersections of PoPs with locus-based 

methods.
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Extended Data Fig. 8. Number of prioritized genes for non-UK Biobank traits.
Number of unique gene-trait pairs prioritized by PoPS, locus-based gene prioritization 

methods, and their intersections, sorted by estimated precision. The full height of each bar 

represents the total number of genes prioritized. The opaque portion of each bar represents 

the expected number of true causal genes prioritized. Methods to the left of the dashed line 

achieve precision greater than 75%.
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Extended Data Fig. 9. Known example RBM38.
Top: summary statistics colored by LD to the lead variant and fine-mapping results for 

variants in the locus colored by credible set. Bottom: results from PoPS and locus-based 

methods for all genes in the locus. Genes are colored by strength of prediction for each 

method with a star denoting the prioritized gene. Variant rs737092, RBM38 for mean 

corpuscular hemoglobin (MCH).

Extended Data Fig. 10. Sensitivity of precision and recall estimates to locus definition.
a, Loci defined as +/− 100 kb on either side of the lead variant. b, Loci defined as +/− 1 Mb 

on either side of the lead variant. c, Results restricted to loci in fine-mapped regions with 

three or fewer independent credible sets. d, Results restricted to loci in fine-mapped regions 

with five or fewer independent credible sets.
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Fig. 1 |. Overview of PoPS.
We compute gene-level z-scores from GWAS summary statistics with an LD reference panel 

using MAGMA. We create gene features from gene expression data, biological pathways, 

and predicted PPI networks and use marginal feature selection to limit features included to 

those most likely to be relevant. We then fit a linear model for the dependence of gene-level 

associations on gene features using generalized least squares (GLS) to account for LD and 

add an L2 penalty to account for the large number of features. This results in a vector of joint 

polygenic enrichments of gene features, β, which we use to assign gene priority scores.
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Fig. 2 |. Evaluation of PoPS and comparison to other similarity-based methods.
a, Results using Benchmarker to evaluate PoPS, grouped by trait domain and sorted by 

the lower bound of the 95% confidence interval of normalized τ. Normalized τ provides 

an estimate for the average contribution of SNPs near genes with high priority scores to 

per SNP heritability, normalized by average per SNP heritability. Error bars represent 95% 

confidence intervals around the point estimate. One-sided p-values were computed using 

the z-score test for heritability enrichment in S-LDSC. Opaque bars passed the Bonferroni 

significance threshold. For IBD and Alzheimer’s we retained summary statistics from both 

Weeks et al. Page 34

Nat Genet. Author manuscript; available in PMC 2024 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



UK Biobank and other publicly available sources with a greater sample size. b, Results 

using closest gene enrichment to evaluate PoPS ordered as in panel a. Error bars represent 

95% confidence intervals around the point estimate. One-sided p-values were computed 

using a normal approximation to the null distribution, and opaque bars passed the Bonferroni 

significance threshold. c, Results using Benchmarker to compare similarity-based gene 

prioritization methods, meta-analyzed within each trait domain across independent traits 

(n = 46 independent traits). Error bars represent 95% confidence intervals around the meta-

analyzed point estimate.
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Fig. 3 |. Most informative gene features used by PoPS.
a, Results using Benchmarker to compare PoPS using different feature sets, meta-analyzed 

within each trait domain across independent traits (n = 46 independent traits). Error bars 

represent 95% confidence intervals around the meta-analyzed point estimate. b, Rank-order 

plots for selected traits highlighting the feature clusters with the greatest contribution to the 

PoP scores of prioritized genes.
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Fig. 4 |. Comparing and combining PoPS with locus-based methods.
a, Precision-recall plot showing performance of locus-based methods, PoPS, intersections 

of pairs of locus-based methods, and intersections of PoPs with locus-based methods 

using the evaluation gene set of 589 genes with fine-mapped protein coding variants in 

1,348 non-coding loci containing genes that harbor fine-mapped protein coding variants. 

b, Overlap and agreement among methods across all genome-wide significant loci. Each 

square represents a pair of methods; the size corresponds to the number of loci where both 

methods prioritize a gene, and the color corresponds to the proportion of these loci where 

both methods prioritize the same gene. c, Number of unique gene-trait pairs prioritized 

across all genome-wide significant loci by PoPS, locus-based gene prioritization methods, 

and intersections of PoPs with locus-based methods, sorted by estimated precision. The full 

height of each bar represents the total number of genes prioritized. The opaque portion of 

each bar represents the expected number of true causal genes prioritized. Methods to the left 

of the dashed line achieve precision greater than 75%.

Weeks et al. Page 37

Nat Genet. Author manuscript; available in PMC 2024 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5 |. High confidence genes for selected traits.
Top five genes prioritized by PoPS+local, ranked by PoP score, for selected traits. Shaded 

boxes indicate if a method prioritized the gene.
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Fig. 6 |. Known and novel biological examples.
Top: summary statistics colored by LD to the lead variant and fine-mapping results for 

variants in the locus colored by credible set. Bottom: results from PoPS and locus-based 

methods for all genes in the locus. Genes are colored by strength of prediction for 

each method with a star denoting the prioritized gene. a, rs1175550, SMIM1 for mean 

corpuscular hemoglobin concentration (MCHC). b, rs1550270, CPE for bone mineral 
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density (eBMD). c, rs11029928, LGR4 for estimated glomerular filtration rate (eGFR). d, 

rs112401631, CCR7 for deep vein thrombosis (DVT).
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