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SUMMARY

Changes in an animal’s behavior and internal state are accompanied by widespread changes in 

activity across its brain. However, how neurons across the brain encode behavior and how this is 

impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor 

programs of freely-moving C. elegans and built probabilistic models that explain how each neuron 

encodes quantitative behavioral features. By determining the identities of the recorded neurons, we 

created an atlas of how the defined neuron classes in the C. elegans connectome encode behavior. 

Many neuron classes have conjunctive representations of multiple behaviors. Moreover, while 

many neurons encode current motor actions, others integrate recent actions. Changes in behavioral 
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state are accompanied by widespread changes in how neurons encode behavior, and we identify 

these flexible nodes in the connectome. Our results provide a global map of how the cell types 

across an animal’s brain encode its behavior.

INTRODUCTION

Animals generate diverse behavioral outputs that vary depending on their environment, 

context, and internal state. The neural circuits that control these behaviors are distributed 

across the brain. However, it is challenging to record activity across the brain of a freely-

moving animal and relate brain-wide activity to comprehensive behavioral information. For 

this reason, it has remained unclear how neurons and circuits across entire nervous systems 

represent an animal’s varied behavioral repertoire and how this flexibly changes depending 

on context or state.

Recent studies suggest that internal states and moment-by-moment behaviors are associated 

with widespread changes in neural activity1–7. Behavioral states, like quiet versus active 

wakefulness, and homeostatic states, like thirst, are associated with activity changes in 

many brain regions1,7,8. In addition, instantaneous motor actions are associated with altered 

neural activity across many brain regions5,7. However, our understanding of how global 

dynamics spanning many brain regions encodes behavior remains limited. In mammals, 

representations of motor actions are found in cortex, cerebellum, spinal cord, and more. 

Given the vast number of cell types involved and their broad spatial distributions, 

characterizing this entire system is not yet tractable.

The C. elegans nervous system consists of 302 neurons with known connectivity9–13. 

C. elegans generates a well-defined repertoire of motor programs: locomotion, feeding, 

head oscillations, defecation, egg-laying, and postural changes. C. elegans express different 

behaviors as they switch behavioral states14,15. For example, animals enter sleep-like states 

during development and after intense stress16,17, awake animals exhibit different foraging 

states like roaming versus dwelling18–21, and aversive stimuli induce sustained states of 

increased arousal22,23. In C. elegans, it may be feasible to decipher how behavior is encoded 

across an entire nervous system and how this can flexibly change across behavioral states.

Previous studies identified some C. elegans neurons that reliably encode specific behaviors. 

The neurons AVA, AIB, and RIM encode backwards motion; AVB, RIB, AIY and RID 

encode forwards motion; SMD encodes head curvature; and HSN encodes egg-laying24–31. 

In addition, corollary discharge signals from RIM and RIA propagate information about 

motor state to other neurons32–34. Proprioceptive responses to postural changes have also 

been observed in a handful of neurons35–37. Large-scale recordings suggest that there are 

widespread activity changes related to behavior. Brain-wide recordings in immobilized 

animals identified population activity patterns associated with fictive locomotion25,26. In 

moving animals, velocity and curvature can be decoded from population activity3. While this 

suggests that many neurons carry behavioral information, we still lack an understanding of 

how quantitative behavioral features are encoded by most C. elegans neurons.
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Here, we elucidate how neurons across the C. elegans brain encode the animal’s behavior. 

We developed technologies to record high-fidelity brain-wide activity and the diverse motor 

programs of >60 freely-moving animals. We then devised a probabilistic encoding model 

that fits most recorded neurons, providing an interpretable description of how each neuron 

encodes behavior. By also determining neural identity in 40 of these datasets, we created an 

atlas of how most C. elegans neuron classes encode behavior. This revealed the encoding 

properties of all recorded neurons and showed that ~30% of the neurons flexibly change how 

they encode behavior in a state-dependent manner. Our results reveal how activity across the 

defined cell types of an animal’s brain encodes its behavior.

RESULTS

Technologies to record brain-wide activity and behavior

We built a microscopy platform for brain-wide calcium imaging in freely-moving animals 

and wrote software to automate processing of these recordings. We constructed a transgenic 

C. elegans strain that expresses NLS-GCaMP7f and NLS-mNeptune2.5 in all neurons. 

Recording nuclear-localized GCaMP makes it feasible to record brain-wide activity, though 

this approach misses local calcium signals in neurites34. Transgenic animals’ behavior was 

normal, based on assays for chemotaxis and learning (Fig. S1A). Animals were recorded 

on a microscope with two light paths 38,39. The lower light path is coupled to a spinning 

disk confocal for volumetric imaging of fluorescence in the head. The upper light path has 

a near-infrared (NIR) brightfield configuration to capture images for behavior quantification 

(Movie S1). To allow for closed-loop animal tracking, the location of the worm’s head is 

identified in real time with a deep neural network40 and input into a PID controller that 

moves the microscope stage to keep the animal centered.

We wrote software to automatically extract calcium traces from these videos (Fig. 1D). First, 

a 3D U-Net41 uses the time-invariant mNeptune2.5 to locate and segment all neurons in 

all timepoints. We then register images from different timepoints to one another and use 

clustering to link neurons’ identities over time (see Methods). To test whether this accurately 

tracks neurons, we recorded a control strain expressing NLS-GFP at different levels in 

different neurons (Peat-4::NLS-GFP), along with pan-neuronal NLS-mNeptune2.5 (Fig. 

S1B). Mistakes in linking neurons’ identities would be obvious here, since GFP levels would 

fluctuate in a neural trace if timepoints were sampled from different neurons. This analysis 

showed that neural traces were correctly sampled from individual neurons in 99.7% of the 

frames. We estimated motion artifacts by recording a strain with pan-neuronal NLS-GFP 

and NLS-mNeptune2.5 (Fig. 1E–G; Fig. S1C). Fluorescent signals were far more narrowly 

distributed for GFP compared to GCaMP7f, suggesting that motion artifacts are negligible 

(Fig. 1F). Nevertheless, we used the GFP datasets to control for any such artifacts in all 

analyses below (see Methods). Compared to previous imaging systems38, there was an order 

of magnitude increase in SNR of the GCaMP traces from this platform (likely due to 3D 

U-Net segmentation; see Methods).

We also wrote software that extracts behavioral variables from the brightfield images: 

velocity, body posture, feeding (or pharyngeal pumping), angular velocity, and head 

curvature (bending of the head, associated with steering). Animals did not exhibit egg-laying 
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or defecation in these recording conditions. Together, these advances permit us to quantify 

brain-wide calcium signals and a diverse list of behavioral variables from freely-moving C. 
elegans.

A probabilistic neural encoding model reveals how C. elegans neurons encode behavior

We recorded brain-wide activity and behavior from 14 animals as they explored sparse 

food over 16 minutes (data available at www.wormwideweb.org). We obtained data from 

143 ± 12 head neurons per animal (example in Fig. 1G). 94.7% of the recorded neurons 

exhibited clear dynamics and could be classified as active (see Methods). Our goal was to 

build models of how each neuron “encodes” or “represents” the animal’s behavior, in other 

words how its activity is quantitatively associated with behavioral features. Our initial efforts 

revealed three features of neural encoding that we describe here. We systematically identify 

neurons with these features below (Fig. 2).

First, neurons encoded behavior over a wide range of timescales. For example, the activity 

of individual neurons that encode velocity was precisely correlated with an exponentially 

weighted average of the animal’s recent velocity. The decays of the exponentials, which 

determine how much a given neuron’s activity weighs past versus present velocity, varied 

widely across neurons (range of half-decay: 0.9 – 31.7 sec; GCaMP7f half-decay is <1 

sec42,43). Fig. 1H illustrates this by showing correlations between individual neurons’ 

activities and velocity that has been convolved with exponential filters with varying decay 

times (see also Fig. S1D–E). We also observed a broad range of timescales for neurons that 

encode other behaviors (see below). This suggests that C. elegans neurons differ in how 

much they reflect the animal’s past versus present behavior.

Second, neurons reflected individual behaviors in a heterogeneous fashion. For example, 

for neurons that encode velocity, this encoding can be captured by a tuning curve that 

relates the neuron’s activity to velocity. Some neurons displayed analog tuning, but others 

displayed “rectification”, where the slopes of their tuning curves during reverse and forward 

velocity differed (Fig. 1I). While many neurons were more active during forward or reverse 

movement, others encoded slow locomotion regardless of movement direction (Fig. 1I, 

middle). This suggests that neurons that encode velocity can represent overall speed, 

movement direction, or finely tuned aspects of forward or reverse movement.

Third, many neurons conjunctively represented multiple motor programs. For example, most 

neurons whose activities were correlated with oscillatory head bending showed different 

tunings to head curvature during forwards versus reverse movement (Fig. 1J). Similarly, 

many neurons conjunctively represented the animal’s velocity and feeding rate. This 

suggests that many C. elegans neurons encode multiple motor programs in combination.

Based on these observations, we constructed an encoding model that uses behavioral 

features to predict each neuron’s activity (Equation 1; Fig. 1K). This model provides 

a quantitative explanation of how each neuron’s activity is related to behavior. The 

relationship between activity and behavior for a given neuron could be due to that neuron 

causally influencing behavior or, alternatively, due to the neuron receiving proprioceptive 

or corollary discharge signals. In contrast to decoding analyses3, which reveal the presence 
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of behavioral information in groups of neurons, an encoding model can provide precise 

information about how each neuron’s dynamics relate to behavior. Each neuron’s activity 

was modeled as a weighted average of the animal’s recent behavior with a single decay 

parameter s, allowing for different timescale encoding. Neurons can additively weigh 

multiple behavioral predictor terms (based on coefficients cv, cθℎ, and cp), which can interact 

with the animal’s movement direction parameterized by cvT. This allows for rectified and 

non-rectified tunings to behavior, as well as conjunctive encoding of multiple behaviors. We 

compared the goodness of fit of this full model to partial models with parameters deleted 

(and to a linear model) and found that deletion of any parameter significantly increased 

model error (Fig. S1F–G).

The model parameters are interpretable, describing how each neuron encodes each 

behavioral feature. However, because the model is fit on a finite amount of data, these 

parameters have a level of uncertainty that is important to estimate. Therefore, we 

determined the posterior distribution of all model parameters that were consistent with our 

recorded data, where consistency was defined as likelihood in the context of a Gaussian 

process residual model parameterized by σnoise, σSE, and ℓ (see Methods). This allowed us 

to quantify our uncertainty in each model parameter and perform meaningful statistical 

analyses. The posterior distribution was determined using a custom inference algorithm 

implemented with the probabilistic programming system Gen44 (Fig. 1L). We confirmed the 

validity of this approach using simulation-based calibration, a technique that ensures that 

approximations from such inference algorithms are sufficiently accurate (Fig. S2A)45.

Equation 1: The C. elegans Probabilistic Neural Encoding Model (CePNEM) 
expression

n t = 1
s + 1Rect cvT, v t cvv t + cθℎθℎ t + cpp t + s

s + 1 n t − 1 − b + b

Rect cvT, v t = cvT + 1
cvT

2 + 1
− 2 cvT

cvT
2 + 1

v t < 0

Observed neural activity ∼ GP n t , KGN σnoise + KSE σSE, ℓ

Parameter Meaning

v t , θℎ t , p t Observed velocity, head curvature, and pumping rate

n t Modeled neural activity.

Rect cvT, v t Locomotion direction rectification term with different values based on forwards versus reverse 
movement.

cvT Locomotion direction rectification parameter.

cv, cθℎ, cp Velocity, head curvature, and feeding parameters.

s Exponentially weighted moving average (EWMA) timescale parameter.

b Baseline activity parameter.
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Parameter Meaning

n 0 Initial condition parameter.

σnoise White noise parameter.

σSE Autocorrelative residual parameter.

ℓ Autocorrelative residual timescale parameter.

GP Gaussian process.

KGN, KSE Gaussian process kernels.

We fit this model (The C. elegans Probabilistic Neural Encoding Model, or CePNEM) on 

all neurons and found significant encoding of at least one behavioral feature in 83 ± 10 

out of 143 neurons per animal (examples in Fig. 1M and Fig. S2B; see also Fig. S2C and 

Methods for statistics). To ensure that these results were not due to motion artifacts, we 

applied the model to animals expressing pan-neuronal GFP and found that only 2.1% of 

GFP neurons significantly encoded behavior (versus 58.6% in GCaMP datasets; Fig. S2D). 

We were also concerned whether the model could potentially explain neural activity via 

overfitting and tested this using two approaches. First, we tested whether neural activity 

from one animal could be explained using behavioral features from other animals. However, 

only 2.7% of neurons encoded this incorrect behavior (Fig. S2D). Second, we performed 

5-fold cross-validation across recorded neurons and found a high level of performance on 

withheld testing data (Fig. S2E).

There were active neurons with calcium dynamics not well fit by CePNEM (see Fig. 

S2F). However, it was ambiguous whether these neurons encoded behavior in a manner 

not captured by CePNEM or whether their activity was related to other ongoing sensory 

or internal variables. To distinguish between these possibilities, we examined the model 

residuals, i.e. the neural activity unexplained by CePNEM. We attempted to decode 

behavioral features using all neurons’ model residuals and, as a control, the original neural 

activity traces. Decoding from the full neural traces was successful, but decoding from the 

residuals was close to chance (Fig. S2G). This suggests that neural variance unexplained by 

CePNEM is unrelated to the overt behaviors quantified here. These residuals may be related 

to sensory inputs, internal states, or behaviors that we were unable to detect. Decoding of 

specific behavior features was also most successful from neurons that CePNEM suggested 

encode those features (Fig. S2H). Thus, CePNEM determines the encoding features of 

neurons in a manner that is concordant with decoding analyses.

Diverse representations of behavior across the C. elegans brain

We used the CePNEM results to analyze how the neurons across each animal’s brain 

encode its behavior. Among the recorded neurons, encoding of velocity was most prevalent, 

followed by head curvature and feeding (Fig. 2A). 58.6% of recorded neurons encoded at 

least one behavior (Fig. 2B), with approximately one third of these conjunctively encoding 

multiple behaviors (Fig. 2B). Most neurons primarily encoded current behavior, but a 

sizeable subset weighed past behavior (Fig. 2C). Long timescale encoding was especially 

prominent among forward-active velocity neurons (Fig. S2I–J). This suggested that current 
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neural activity may contain information about past velocity. Indeed, we were able to train 

a linear decoder to predict past velocity up to at least 20 sec prior based on current neural 

activity (Fig. 2D; black line shows this was not due to current velocity predicting past 

velocity). A similar decoder could predict past head bending behavior, albeit less robustly 

(Fig. S2K). However, we were not able to predict future velocity or head bending from 

current neural activity (Fig. 2D, S2K).

We analyzed how each behavior was represented across the full set of neurons, first 

focusing on velocity. Using the CePNEM fits, we determined the shapes of each neuron’s 

tuning curve to velocity (see Methods). There were eight ways that a neuron could be 

tuned to velocity (Fig. 2E; examples in Fig. 2F). Most neurons (83%) exhibited rectified 

tunings, in which the encoding of forward and reverse speed differed. A smaller set of 

neurons represented analog velocity and others encoded slow locomotion. To highlight how 

CePNEM accurately captures the dynamics of neurons with different tunings, Fig. 2F shows 

five neurons with higher activity during forward movement, but with different dynamics. 

The CePNEM fits to each neuron reveal how they encode velocity with different tunings and 

timescales.

Among the neurons that encoded head curvature, many did so in a manner that depended on 

locomotion direction (Fig. 2E). Thus, we categorized these neurons based on both their head 

curvature tuning and velocity tuning. Most neurons only displayed head curvature-associated 

activity changes during forward or reverse movement, with more neurons in the forward-

rectified group (Fig. 2E; examples in Fig. 2G). These results indicate that the network that 

controls head steering is broadly impacted by the animal’s movement direction, which could 

relate to the fact that steering behavior must be controlled differently during forward versus 

reverse movement (see also Fig. S2L). In addition to these neurons that encode the animal’s 

acute head curvature, a smaller group of neurons encoded angular velocity (Fig. S2M).

Neural representations of the animal’s feeding rates were also diverse (Fig. 2E; examples in 

Fig. 2H). Many neurons displayed analog tuning to feeding rates; others encoded feeding in 

conjunction with movement direction. Neurons could be positively or negatively correlated 

with feeding.

The above analyses suggest a surprising amount of heterogeneity in how C. elegans neurons 

encode behavior. To obtain a more global view of these representations, we embedded 

the neurons into a two-dimensional UMAP subspace where proximity between neurons 

indicates how similarly they encode behavior (Fig. 3A; see Fig. S3A–D for related 

analyses). This analysis could reveal clusters of cells that encode behavior the same way 

or, alternatively, the neurons could be evenly distributed if the representations were more 

heterogeneous. We found that the neurons were diffusely distributed, with no evident 

clustering (Fig. 3A). However, neurons’ localization still depended on their encoding (Fig. 

3B–E). For example, encoding of velocity was graded along one axis, and encoding of 

feeding was graded along the other. The continuous distribution of neurons was especially 

evident when examining neurons with related tuning curves (Fig. 3F). Other standard 

clustering approaches also suggested that the neurons were not clusterable into discrete 
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groups based on their encoding (Fig. S3E). These results suggest that in general the C. 
elegans neurons represent behavior along a continuum.

How do these diverse representations of behavior arise? C. elegans neural activity can be 

decomposed into different modes of dynamics shared by the neurons26, identifiable through 

Principal Component Analysis (PCA). In our data, the first three PCs explained 42% of the 

variance in neural activity, and 18 PCs were required to explain 75% of the variance (Fig. 

S3F). Single neurons were almost exclusively described as complex mixtures of PCs rather 

than single PCs (Fig. 3G–H). The weights of the PCs on different neurons were diverse, 

and hierarchical clustering of these data revealed little structure. However, as expected, the 

loadings were still predictive of the neuron’s encoding type (Fig. 3G). Overall, these results 

suggest that there are many ongoing modes of dynamics shared among neurons, which relate 

to their distinct representations of behavior.

An atlas of how the defined neuron classes in the C. elegans connectome encode behavior

We next sought to map these diverse representations of behavior onto the defined cell 

types of the C. elegans connectome. Thus, we collected additional datasets in which 

we determined neural identity using NeuroPAL46, a transgene in which three fluorescent 

proteins are expressed under well-defined genetic drivers. This makes it possible to 

determine neural identity based on neuron position and multi-spectral fluorescence. We 

crossed the pan-neuronal NLS-GCaMP7f transgene to NeuroPAL (using otIs670, a low 

brightness NeuroPAL integrant). Data were collected as above, except animals were 

immobilized by cooling47 after each freely-moving recording. We then collected multi-

spectral NeuroPAL fluorescence (Fig. S4A) and registered those images to the freely-

moving images.

We collected data from 40 NeuroPAL/GCaMP7f animals. Compared to the above datasets, 

a similar number of neurons encoded behavior (52.0%, compared to 58.6%); behavioral 

parameters and other metrics of neural activity were also mostly similar (Fig. S4B–E; 

Fig. S3B; though NeuroPAL animals reversed more frequently and had a slight ventral 

bias). Across recordings, we obtained data from 78 of the 80 neuron classes in the head. 

While most neuron classes are single left/right pairs, 13 classes consist of 2–3 pairs of 

neurons in 4- or 6-fold symmetric arrangements. In these cases, we separately analyzed each 

neuron pair. Left/right pairs were pooled for all neuron classes except four that displayed 

asymmetric activities (ASE, SAAD, IL1, IL2; see Methods). We generated CePNEM fits 

for all of these neurons to reveal how they encode behavior (Fig. 4A; Table S1; Fig. 

S4F–H). The encoding properties of the neuron classes determined via CePNEM predicted 

their activity changes in event-triggered averages aligned to key behaviors (Fig. S4G). For 

well-studied neurons, our results provided a clear match to previous work: AVB, RIB, AIY, 

and RID encoded forward movement; AVA, RIM, and AIB encoded reverse movement; and 

SMDD and SMDV encoded dorsal and ventral head curvature, respectively24–30.

This analysis revealed many features of how the C. elegans nervous system is organized 

to control behavior. Among the velocity-encoding neurons, those that encode forward 

movement displayed a wide range of tunings to velocity and included many neurons not 

previously implicated (AIM, AUA, and others). The reverse neurons were more uniform 
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in their tunings to velocity, but several also represented head curvature, suggesting that 

they may control turning during reversals. Neural representations of velocity also spanned 

multiple timescales. For example, RIC, ADA, AVK, AIM, and AIY integrated the animal’s 

recent velocity over tens of seconds. We silenced some neurons that encoded velocity (AIM, 

RIC, AUA, AVL, RIF) and found that this specifically altered animals’ velocity (Fig. S4I). 

In addition, we optogenetically stimulated ASG sensory neurons, which encoded reverse 

movement, and found that this triggered reversals (Fig. S4I). Thus, results from the neuron 

atlas can predict causal effects on behavior.

These data also revealed neural dynamics in the circuit that controls head steering. The 

neuron classes in this network are often 4-fold symmetric, consisting of separate neuron 

pairs that innervate the ventral and dorsal head muscles. These opposing dorsal and ventral 

neurons were functionally antagonistic in our analysis (Fig. 4A–C). We found that the 

neural control of head steering is different during forward versus reverse motion (Fig. 4B–

C). Some neurons that encode head curvature are more active during forward (RMED/V) 

or reverse (SAAV) movement. Others have more robust tuning to head curvature during 

forward movement (SMDD/V, SMBD/V). In addition, RMDD was more active during 

dorsal head bending during forwards motion, but preferred ventral head bending during 

reverse movement. The forward-rectified tuning of SMD was previously described and 

matches our results25. Our data now show that this entire network shifts its functional 

properties depending on movement direction. This suggests that the network functions 

differently while animals steer forwards towards a target compared to when they back away 

from one. We ablated some neurons that jointly encoded movement direction and head 

curvature (SAA, SMB) and found that this altered animal’s head bending and velocity (Fig. 

S4I).

Most neurons that encoded feeding were in the pharyngeal nervous system, but several 

extrapharyngeal neurons also encoded feeding, including AIN, ASI, and AVK. Neurons 

within the pharyngeal system encoded feeding with both positive (I6, M3, M4, etc) and 

negative (M1, MI) relationships. Optogenetically silencing neurons that encoded feeding 

(M4, MC) specifically inhibited feeding behavior (Fig. S4I).

Finally, we observed that many neurons (OLL, OLQ, IL1, RIH, URB, others) had tunings 

to different motor programs that were variable across animals (Fig. 4D). To directly 

examine this, we computed a variability index that describes how dissimilar each neuron 

class’s encoding of behavior was across all datasets (Fig. 4A; see Methods). While many 

neuron classes had invariant representations of behavior across animals (AVA, AIM, many 

others), others had high variability (Fig. 4A; Fig. S5A). NeuroPAL labeling and registration 

procedures for the neurons with high variability were determined with equal confidence to 

the other neuron classes, suggesting that identification errors are unlikely to explain these 

observations (Fig. S5B–D). Further supporting this, these neurons also changed encoding 

over the course of continuous recordings (see below). The ability of models trained on 

one set of animals to generalize to other animals inversely scaled with the neuron class’s 

variability index (Fig. S5E). For neurons with high variability, it is informative to look at 

the range of possible encodings reported in Fig. 4A rather than just the encoding strength 
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metric. Overall, these datasets provide a functional map of how most neuron classes in the 

C. elegans nervous system encode the animal’s behavior.

Different encoding features are localized to distinct regions of the connectome

We next examined how these representations of behavior relate to connectivity in the 

C. elegans connectome. We first examined whether synaptically connected neurons had 

similar dynamics. Indeed, connected neurons – especially those connected through electrical 

synapses – were more highly correlated than neurons that were not synaptically connected 

(Fig. 5A). In addition, neurons were more strongly correlated (either positively or 

negatively) to their synaptic input and output neurons, compared to random controls (Fig. 

5B).

This raised the possibility that local communities of neurons in the connectome may 

encode related behavioral information. To examine this, we determined the localization 

of behavioral information in the connectome. We examined localization with respect to 

whether neurons are connected to one another, and whether neurons are closer to sensory 

versus motor layers (x- and y-axes of the Fig. 5C–G). Velocity information was widespread, 

whereas head curvature and feeding were located in more restricted connectomic regions 

(Fig. 5C–D). In general, behavioral information was most prominent at lower sensorimotor 

layers, closer to motor output (Fig. 5E). Neurons with long timescale information were 

located at middle sensorimotor layers, primarily in interneurons that innervated premotor 

and motor neurons (Fig. 5F). The neurons with variable encoding across animals were 

largely localized in one synaptic community (Fig. 5G–H), suggesting that they comprise an 

interconnected circuit that exhibits variable coupling. Together, these observations suggest 

that different features of behavior encoding are located in different regions of the C. elegans 
connectome.

The encoding of behavior is dynamic in many neurons

We noted that the encoding properties of some neurons appeared to change over time 

in a single recording. Therefore, we analyzed our data to determine whether neural 

representations of behavior dynamically change. We fit two CePNEM models trained on 

the first and second halves of the same neural trace and used the Gen statistical framework 

to test whether the model parameters significantly changed between time segments (see 

Methods; and Fig. S6A–B). Based on this test, ~31% of neurons that encoded behavior 

changed that encoding over the course of our continuous recordings. A similar fraction 

(24%) of neurons changed encoding in the NeuroPAL strain. These identified neurons 

substantially overlapped with those that variably encode behavior between animals (Fig. 6A; 

Fig. S6C) and were densely interconnected (Fig. 6B; see also Fig. S6D). Neurons changed 

encoding in different ways: some changed which behaviors they encoded; others showed 

gains or losses of encoding; and others showed subtle changes in tuning (Fig. 6C; examples 

in Fig. 6D–E). This suggests that some neurons in the C. elegans connectome are variably 

coupled to behavioral circuits and remap how they couple to these circuits over time.

We next sought to understand the temporal structure of these encoding changes. For 

instance, individual neurons could remap independently or in a synchronized manner. We 
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developed a metric to identify when an encoding change took place based on the difference 

between the errors of models trained on different time regions of the same trace (Fig. 6F–G; 

controls in Fig. S6E–F). We observed sharp changes (yellow lines) where many neurons 

simultaneously changed encoding in many datasets (Fig. 6F–G), although in some datasets 

there were gradual shifts (Fig. S6G–H). Certain neuron classes were more likely to change 

encoding at the same time as one another such that they could be grouped into clusters 

(Fig. 6H). The neurons that remapped their encoding at the same time were more likely 

to be synaptically connected, especially via gap junctions (Fig. 6I). Moreover, the number 

of neurons that changed encoding was positively correlated with the degree of behavioral 

change across the hypothesized moment of the change (Fig. S6I). Therefore, at times there is 

a coordinated remapping where many neurons change how they represent behavior.

The encoding of behavior is influenced by the behavioral state of the animal

We next tested whether changes in the animal’s behavioral state could elicit these 

synchronous encoding changes. Behavioral states are persistent changes in behavior that 

outlast the sensory stimuli that initiate them48,49. Previous work has shown that aversive 

stimuli can induce this type of response in C. elegans22,23,50. Therefore, we recorded 30 

datasets where we delivered a sudden, noxious heat stimulus to animals part way through the 

recording (19 of these datasets had NeuroPAL labels). For stimulation, we heated the agar 

around the worm’s head by 10°C for 1 second (Fig. 7A; temperature decayed to baseline 

within 3 seconds). This elicited an immediate avoidance (reversal) behavior and reduction in 

feeding (Fig. 7B). Animals continued to exhibit reduced feeding and increased reversals for 

minutes after the stimulus, revealing a persistent behavioral state change (Fig. 7B). However, 

behavior reverted to normal within an hour and animal viability was not adversely impacted 

by the stimulus (Fig. S7A–B).

We measured brain-wide responses during this behavioral state change (Fig. 7C–G). Several 

neurons displayed transient responses to the sensory stimulus, including thermosensory 

neurons AFD, AWC, FLP, and others (Fig. 7D–E; see also Fig. S7C–D)51,52. Other neurons 

displayed minutes-long responses to the stimulus. We also identified some neurons with 

persistent changes in activity that lasted for the rest of the recordings after the stimulus (Fig. 

7F). Finally, we found that 35% of the neurons that encoded behavior changed encoding 

time-locked to the heat stimulus (compared to 24% in animals without any stimulus; p<0.05, 

Mann-Whitney U-Test; Fig. S7E; examples in Fig. 7H). The neurons that changed encoding 

were stereotyped across animals, especially the neurons related to feeding, which is the 

behavior most robustly altered by the heat stimulus (Fig. S7F; see also Fig. S7G–H). Thus, 

inducing a behavioral state change elicits a reliable shift in the network that remaps the 

relationship between neural activity and behavior.

We examined how these activity changes related to the behavioral changes that comprise 

the aversive behavioral state, focusing on the robust suppression of feeding. Three neurons 

that encoded feeding showed persistent activity changes that paralleled the state: I2 activity 

persistently decreased and MI and M1 activity increased. In addition, four feeding neurons 

showed a change in encoding after the heat stimulus. These neurons, MC, M3, M4, and 

AIN, had correlated activity bouts aligned with bouts of feeding prior to the heat stimulus 
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(Fig. 7I–J). After the stimulus, activity bouts still occurred in these neurons, but this was 

not accompanied by feeding. Notably, at baseline, MI and M1 activity were highest during 

pauses in feeding (Fig. 7I–J). This suggests that MI and M1 might inhibit feeding and 

that the state-dependent increase in MI and M1 activity might suppress feeding normally 

elicited by MC/M3/M4/AIN. Overall, these results show how changes in behavioral state 

are accompanied by persistent activity changes and alterations in how neural activity is 

functionally coupled to behavior.

DISCUSSION

Animals must adapt their behavior to a constantly changing environment. How neurons 

represent these behaviors and how these representations flexibly change in the context of the 

whole nervous system was unknown. To address this question, we developed technologies to 

acquire high quality brain-wide activity and behavioral data. Using the probabilistic encoder 

model CePNEM, we constructed a brain-wide map of how each neuron encodes behavior. 

By also determining the ground-truth identity of these neurons, we overlaid this map upon 

the physical wiring diagram. Behavioral information is richly expressed across the brain in 

many different forms – with distinct tunings, timescales, and levels of flexibility – that map 

onto the defined neuron classes of the C. elegans connectome.

Previous work showed that animal behaviors are accompanied by widespread changes in 

activity across the brain, resulting in a low-dimensional neural space53. Here we found 

that an extra layer of complexity emerged when we determined each neuron’s encoding 

of behavior. Representations were complex and diverse, and this heterogeneity could 

be largely explained by four motifs: varying timescales, non-linear tunings to behavior, 

conjunctive representations of multiple motor programs, and different levels of flexibility. 

Having many different forms of behavior representation present may confer the nervous 

system with computational flexibility. Depending on the context, the brain may be able 

to combine different representations to construct new coordinated behaviors. We did not 

distinguish whether a given neuron’s encoding of behavior reflected the neuron causally 

driving behavior versus receiving a corollary discharge or proprioceptive signal related to 

behavior32–37. Future work separating these classes of signals across the C. elegans network 

should reveal the full set of causal interactions between neurons and behavior.

While many neurons encoded current behavior, others integrated recent motor actions with 

varying timescales. This allows the brain to encode the animal’s locomotion state of the 

recent past. Combining representations with different timescales could allow the animal’s 

nervous system to perform computations that relate past and present behavior. We also 

observed that the dynamics of the nervous system can change over longer time courses. 

In particular, many neurons flexibly remapped their relationships to behavior over minutes. 

These changes may be triggered by changes in neuromodulation or other state-dependent 

shifts in circuit function. This remapping may then change sensorimotor responses and the 

generation of behavior.

Our results here reveal how neurons across the C. elegans nervous system encode the 

animal’s behavior. Under the environmental conditions explored here, we observed that 
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~30% of the worm’s nervous system can flexibly remap. Future studies conducted in a 

wider range of contexts will reveal whether this comprises the core flexible neurons in the 

connectome or, alternatively, whether the neurons that remap differ depending on context or 

state.

LIMITATIONS OF THE STUDY

We wish to highlight three limitations of our study. First, our neural recordings were 

performed using nuclear-localized GCaMP. While this makes brain-wide recordings 

feasible, the spatial and temporal resolution of this imaging is more limited than other 

approaches. Second, some recorded neurons were not well fit by CePNEM. Our results 

suggest that these neurons may carry sensory, internal, or behavioral information not studied 

here, but additional work will be necessary to resolve this. Finally, we examined animals 

under a limited set of environmental conditions. Future recordings in different contexts may 

identify other types of behavior encoding not yet revealed in our recordings.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Steven Flavell (flavell@mit.edu).

Materials Availability—All plasmids, strains, and other reagents generated in this study 

are freely available upon request. The key strains SWF415 and SWF702 are openly available 

through the Caenorhabditis Genetics Center (CGC).

Data and Code Availability

• Data: All brain-wide recordings and accompanying behavioral data are freely 

available in a browsable and downloadable format at www.wormwideweb.org. 

The data files have also been deposited at Zenodo and Github and are publicly 

available as of the date of publication. DOIs are listed in the key resources table.

• Code: All original code has been deposited at Github and Zenodo and is publicly 

available as of the date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

C. elegans—C. elegans Bristol strain N2 was used as wild-type. All transgenic and 

mutant strains used in this study are listed in the Key Resources Table. One day-old 

adult hermaphrodite animals were used for experiments, after growth on nematode growth 

medium (NGM) supplemented with OP50. For crosses, animals were genotyped by 

PCR. For making transgenic animals, DNA was injected into the gonads of young adult 

hermaphrodites.
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METHOD DETAILS

Transgenic animals—Four transgenic strains were used for large-scale recordings in this 

study, as described in the text. The first (SWF415) contained two integrated transgenes: 

(1) flvIs17: tag-168::NLS-GCaMP7f, along with NLS-TagRFP-T expressed under the 

followed promoters: gcy-28.d, ceh-36, inx-1, mod-1, tph-1(short), gcy-5, gcy-7; and (2) 

flvIs18: tag-168::NLS-mNeptune2.5. The second strain we recorded (SWF702) contained 

two integrated transgenes: (1) flvIs17: described above; and (2) otIs670: low-brightness 

NeuroPAL (Yemini et al., 2021). Strains were backcrossed 5 generations after integration 

events. The third and fourth strains are non-integrated transgenic strains expressing NLS-

GFP and NLS-mNeptune2.5 in defined neurons, listed in the Key Resources Table (SWF360 

and SWF467).

We also generated strains for neural activation and silencing. The promoters used 

for cell-specific expression were as follows: RIC (Ptbh-1), AIM (Pnlp-70), AUA 

(Pflp-8+Pceh-6; intersectional Cre/Lox), AVL (Punc-25+Pflp-22; intersectional Cre/

Lox), RIF (Podr-2b+Pmod-1; intersectional Cre/Lox), SAA (Plad-2+Punc-42; split 

Caspase), SMB (Pflp-12, 350bp), ASG (Pgcy-21), M4 (Pceh-28), MC (Pceh-19+Pins-10; 

intersectional Cre/Lox). The split caspase plasmids have been previously described54. For 

Cre/Lox intersection expression, we used the inverted/floxed plasmid design that has been 

previously described18. All promoters, including Cre/Lox intersectional combinations, were 

validated via co-expression of fluorophores (which were co-expressed via sl2 or t2a in each 

strain). Cell ablation lines were confirmed by loss of co-expressed GFP signal in the ablated 

cells.

Recordings of neural activity and behavior

Microscope: Animals were recorded under a dual light-path microscope that is similar 

though not identical to one that we have previously described20. The light path used to 

image GCaMP, mNeptune, and the fluorophores in NeuroPAL at single cell resolution is an 

Andor spinning disk confocal system with Nikon ECLIPSE Ti microscope. Light supplied 

from a 150 mW 488 nm laser, 50 mW 560 nm laser, 100 mW 405 nm laser, or 140 mW 

637 nm laser passes through a 5000 rpm Yokogawa CSU-X1 spinning disk unit with a 

Borealis upgrade (with a dual-camera configuration). A 40x water immersion objective (CFI 

APO LWD 40X WI 1.15 NA LAMBDA S, Nikon) with an objective piezo (P-726 PIFOC, 

Physik Instrumente (PI)) was used to image the volume of the worm’s head (a Newport 

NP0140SG objective piezo was used in a subset of the recordings). A custom quad dichroic 

mirror directed light emitted from the specimen to two separate sCMOS cameras (Zyla 4.2 

PLUS sCMOS, Andor), which had in-line emission filters (525/50 for GcaMP/GFP, and 610 

longpass for mNeptune2.5; NeuroPAL filters described below). Data was collected at 3 × 3 

binning in a 322 × 210 region of interest in the center of the field of view, with 80 z planes 

collected at a spacing of 0.54 um. This resulted in a volume rate of 1.7 Hz (1.4 Hz for the 

datasets acquired with the Newport piezo).

The light path used to image behavior was in a reflected brightfield (NIR) configuration. 

Light supplied by an 850-nm LED (M850L3, Thorlabs) was collimated and passed through 

an 850/10 bandpass filter (FBH850–10, Thorlabs). Illumination light was reflected towards 
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the sample by a half mirror and was focused on the sample through a 10x objective (CFI 

Plan Fluor 10x, Nikon). The image from the sample passed through the half mirror and was 

filtered by another 850-nm bandpass filter of the same model. The image was captured by a 

CMOS camera (BFS-U3–28S5M-C, FLIR).

A closed-loop tracking system was implemented in the following fashion. The NIR 

brightfield images were analyzed at a rate of 40 Hz to determine the location of the worm’s 

head. To determine this location, the image at each time point is cropped and then analyzed 

via a custom-trained network with transfer learning using DeepLabCut40 that identified the 

location of three key points in the worm’s head (nose, metacorpus of pharynx, and grinder 

of pharynx). The tracking target was determined to be halfway between the metacorpus and 

grinder (central location of neuronal cell bodies). Given the target location and the error, the 

PID controller configured in disturbance rejection sends velocity commands to the stage to 

cancel out the motion at an update rate of 40 Hz. This permitted stable tracking of the C. 
elegans head.

Mounting and recording: L4 worms were picked 18–22 hours before the imaging 

experiment to a new NGM agar plate seeded with OP50 to ensure that we recorded one 

day-old adult animals. A concentrated OP50 culture to be used in the mounting buffer 

for the worm was inoculated 18h before the experiment and cultured in a 37C shaking 

incubator. After 18h of incubation, 1mL of the OP50 culture was pelleted, then resuspended 

in 40uL of M9. This was used as the mounting buffer. Before each recording, we made 

a thin, flat agar pad (2.5cm × 1.8cm × 0.8mm) with NGM containing 2% agar. On the 4 

corners of the agar pad, we placed a single layer of microbeads with a diameter of 80um to 

alleviate the pressure of the coverslip on the worm. Then a worm was picked to the middle 

of the agar pad, and 9.5uL of the mounting buffer was added on top of the animal. Finally, 

a glass coverslip (#1.5) was added on top of the worm. This caused the mounting buffer to 

spread evenly across the slide. We waited for 5 minutes after mounting the animal before 

imaging.

Procedure for NeuroPAL imaging: For NeuroPAL recordings, animals were imaged as 

described above, but they were subsequently immobilized by cooling, after which multi-

spectral information was captured. The slide was mounted back on the confocal with a 

thermoelectric cooling element attached to it, set to cool the agar temperature to 4°C 
55. A closed-loop temperature controller (TEC200C, Thorlabs) with a micro-thermistor 

(SC30F103A, Amphenol) embedded in the agar kept the agar temperature at the 1 °C set 

point. Once the temperature reached the set point, we waited 5 minutes for the worm to 

be fully immobilized before imaging. Details on exactly which multi-spectral images were 

collected are in the NeuroPAL annotation section below.

Heat stimulation: For experiments involving heat stimulation, animals were recorded 

using the procedure described above, but were stimulated with a 1436-nm 500-mW laser 

(BL1436-PAG500, Thorlabs) a single time during the recording. The laser was controlled 

by a driver (LDC220C, Thorlabs) and cooled by the built-in TEC and a temperature 

controller (TED200C, Thorlabs). The light emitted by the laser fiber was collimated by 

a collimator (CFC8-C, Thorlabs) and expanded to be about 600 um at the sample plane. 
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The laser light was fed into the NIR brightfield path via a dichroic with 1180-nm cutoff 

(DMSP1180R, Thorlabs). We determined the amplitude and kinetics of the heat stimulus in 

calibration experiments where temperature was determined based on the relative intensities 

of rhodamine 110 (temperature-insensitive) and rhodamine B (temperature-sensitive). This 

procedure was necessary because the thermistor size was considerably larger than the 1436-

nm illumination spot, so it could not provide a precise measurement of temperature within 

the spot. Slides exactly matching our worm imaging slides were prepared with dyes added 

(and without worms). Dyes were suspended in water at 500mg/L and diluted into both agar 

and mounting buffer at a 1:100 dilution (final concentration of 5mg/L). Rhodamine 110 

was imaged using a 510/20 bandpass filter and rhodamine B was imaged with a 610LP 

filter. We recorded data using the confocal light path during a calibration procedure where 

a heating element ramped the temperature of the entire agar pad from room temp to >50°C. 

Temperature was simultaneously recorded via a thermistor embedded on the surface of the 

agar, approximating the position of the worm. Fluorescence was also recorded at the same 

time, at the precise position where the worm’s head is imaged. This yielded a calibration 

curve that mapped the ratio of Rhodamine B/Rhodamine 110 intensity at the site of the 

worm’s head onto precise temperatures. Slides were then stimulated with the 1436-nm laser 

using identical setting to the experiments with animals. The response profile of the ratio of 

the fluorescent dyes was then converted to temperature. We quantitatively characterized the 

change in temperature, noting the mean temperature over the first second of stimulation (set 

to be exactly 10.0°C) and its decay (0.39 sec exponential decay rate, such that it returns to 

baseline within 3 sec).

Extraction of behavioral parameters from NIR videos—We quantified behavioral 

parameters of recorded animals by analyzing the NIR brightfield recordings. All of these 

behaviors are initially computed at the NIR frame rate of 20Hz, and then transformed into 

the confocal time frame using camera timestamps, averaging together all of the NIR data 

corresponding to each confocal frame.

Velocity: First, we read out the (x,y) position of the stage (in mm) as it tracks the worm. To 

account for any delay between the worm’s motion and stage tracking, at each time point we 

added the distance from the center of the image (corresponding to the stage position) to the 

position of the metacorpus of pharynx (detected from our neural network used in tracking). 

This then gave us the position of the metacorpus over time. To decrease the noise level 

(eg: from neural network and stage jitter), we then applied a Group-Sparse Total-Variation 

Denoising algorithm to the metacorpus position. Differentiating the metacorpus position 

then gives us a movement vector of the animal.

Because this movement vector was computed from the location of the metacorpus, it 

contains two components of movement: the animal’s velocity in its direction of motion, 

and oscillations of the animal’s head perpendicular to that direction. To filter out these 

oscillations, we projected the movement vector onto the animal’s facing direction, i.e. the 

vector from the grinder of the pharynx to its metacorpus (computed from the stage-tracking 

neural network output). The result of this projection is a signed scalar, which is reported as 

the animal’s velocity.
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Worm spline and body angle: To generate curvature variables, we trained a 2D U-Net 

to detect the worm from the NIR images. Specifically, this network performs semantic 

segmentation to mark the pixels that correspond to the worm. To ensure consistent results 

if the worm intersects itself (for instance, during an omega-turn), we use information from 

worm postures at recent timepoints to compute where a self-intersection occurred, and mask 

it out. Next, we compute the medial axis of the segmented and masked image and fit a spline 

to it. Since the tracking neural network was more accurate at detecting the exact position 

of the worm’s nose, we set the first point of the spline to the point closest to the tracking 

neural network’s nose position. We next compute a set of points along the worm’s spline 

with consistent spacing (8.85 μm along the spline) across time points, with the first point at 

the first position on the spline. Body angles are computed as the angles that vectors θ i, i + 1

between adjacent points make with the x-axis; for example, the first body angle would be 

the angle that the vector θ 1,2 between the first and second point makes with the x-axis, the 

second body angle would be θ 2,3, and so on.

Head curvature: Head curvature is computed as the angle between the points 1, 5, and 8 

(ie: the angle between θ 1,5 and θ 5,8). These points are 0 μm, 35.4 μm, and 61.9 μm along the 

worm’s spline, respectively.

Angular velocity: Angular velocity is computed as smoothed d θ 12
dt , which is computed with 

a linear Savitzky-Golay filter with a width of 300 time points (15 seconds) centered on the 

current time point.

Body curvature: Body curvature is computed as the standard deviation of θ i, i + 1 for i
between 1 and 31 (ie: going up to 265 μm along the worm’s spline). This value was selected 

such that this length of the animal would almost never be cropped out of the NIR camera’s 

field of view. To ensure that these angles are continuous in i, they may each have 2π added 

or subtracted as appropriate.

Feeding (pumping rate): Pumping rate was manually annotated using Datavyu, by 

counting each pumping stroke while watching videos slowed down the 25% of their real-

time speeds. The rate is then filtered via a moving average with a width of 80 time points (4 

seconds) to smoothen the trace into a pumping rate rather than individual pumping strokes.

Extraction of normalized GCaMP traces from confocal images—We developed 

the Automatic Neuron Tracking System for Unconstrained Nematodes (ANTSUN) software 

pipeline to extract neural activity (normalized GCaMP) from the confocal data consisting of 

a time series of z-stacks of two channels (TagRFP-T or mNeptune2.5 for the marker channel 

and gCaMP7f for the neural activity channel). Each processing step is outlined below.

Pre-processing: The raw images first go through several pre-processing steps before 

registration and trace extraction. For datasets with a gap in the middle, all of the following 

processing is done separately and independently on each half of the dataset.

Atanas et al. Page 17

Cell. Author manuscript; available in PMC 2024 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shear correction: Shear correction is performed on the marker channel, and the same 

parameters are also used to transform the activity channel. Since the images in a z-stack are 

acquired over time, there exists some translation across the images within the same z-stack, 

causing some shearing. To resolve this, we wrote a custom GPU accelerated version of the 

FFT based subpixel alignment algorithm 56. Using the alignment algorithm, each successive 

image pair is aligned with x/y-axis translations.

Image cropping: We crop the z-stacks to remove the irrelevant non-neuron pixels. For 

each z-stack in the time series, the shear-corrected stack is first binarized by thresholding 

intensity. Using principal component analysis on the binarized worm pixels, the rotation 

angle about the z-axis is determined. Then the stack is rotated about the z-axis with the 

determined angle to align the worm’s head. Then the 3D bounding box is determined using 

the list of worm pixels after the rotation. Finally, the rotated z-stack is cropped using the 

determined 3D bounding box. Similar to shear correction, this procedure is first done on the 

marker channel, and the same parameters are then applied to the activity channel.

Image filtering using total variation minimization: To filter out noise on the marker 

channel images, we wrote a custom GPU accelerated version of the total variation 

minimization filtering method, commonly known as the ROF model 57. This method excels 

at filtering out noise while preserving the sharp edges in the images. Note that the activity 

channel is kept unfiltered for GCaMP extraction.

Registering volumes across time points: To match the neurons across the time series, 

we register the processed z-stacks across time points. However, simply registering all time 

points to a single fixed time point is intractable because of the high amount of both global 

and small-scale deformations. To resolve this, we compute a similarity metric across all 

possible time point pairs that reports the similarity of worm postures. We then use this 

metric to construct a registration graph where nodes are timepoints and edges are added 

between timepoints with high posture similarity. The graph is constrained to be fully 

connected with an average connectedness of 10. Therefore, it is possible to fully link each 

time point to every other time point. Using this graph, we register strategically chosen pairs 

of z-stacks from different time points (i.e. the ones with edges). The details of the procedure 

are outlined below.

Posture similarity determination: For each z-stack, we first find the anterior tip of the 

animal using a custom trained 2D U-Net, which outputs the probability map of the anterior 

tip given a maximum intensity projection of the z-stack. We then fit a spline across the 

centerline of the neuron pixels beginning at the determined anterior tip, which is the centroid 

of the U-Net prediction. Using the spline, we compare across time points pairs to determine 

the similarity.

Image registration graph construction: Next, we construct a graph of registration problems, 

with time points as vertices. For each time point, an edge is added to the graph between that 

time point and each of the ten time points with highest similarity to it. The graph is then 

checked for being connected.
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Image registration: For each registration problem from the graph, we perform a series of 

registrations that align the volumes, iteratively in multiple steps in increasing complexity: 

Euler (rotation and translation), affine (linear deformation), and B-spline (non-linear 

deformation). In particular, the B-spline registration is performed in four scales, decreasing 

from global (the control points are farther apart) to local (the control points are placed 

closer together) registration. The image registrations and transformations are performed 

using elastix on OpenMind, a high-performance computing cluster. They are performed on 

the mNeptune2.5 marker channel.

Channel alignment registration: To align the two cameras used to acquire the marker and 

the activity channels, we perform Euler (translation and rotation) registration across the two 

channels over all time points. Then we average the determined transformation parameters 

from the different time points and apply across all time points.

Neuron ROI determination: To segment out the pixels and find the neuron ROIs, we 

first use a custom trained 3D U-Net. The instance segmentation results from the U-Net are 

further refined with the watershed algorithm.

Simultaneous semantic and instance segmentation with 3D U-Net: We trained a 3D U-Net 

to simultaneously perform semantic and instance segmentation of the neuronal ROIs in the 

z-stacks of the unfiltered marker images. To achieve instance segmentation, we labeled and 

assigned high weights to the boundary pixels of the neurons, which guides the network to 

learn to segment out the boundaries and separate out neighboring neurons. Given a z-stack, 

the network outputs the probability of each pixel being a neuron. We threshold and binarize 

this probability volume to mark pixels that are neurons.

Instance segmentation refinement: To refine the instance segmentation results from the 3D 

U-Net, we perform instance segmentation using the watershed algorithm. This generates, for 

each time point, a set of ROIs in the marker image corresponding to distinct neurons.

Neural trace extraction

ROI Similarity Matrix: To link neurons over time, we first create a symmetric N × N
similarity matrix, where N is the number of total ROIs detected by our instance 

segmentation algorithm across all time points. Thus, for each index i ∈ 1: N in this matrix, 

we can define the corresponding time point ti and the corresponding ROI ri from that time 

point. This matrix is sparse, as its i, j th entry is nonzero only if there was a registration 

between ti and tj that maps the ROI ri to rj. In the case of such a registration existing, the i, j
th entry of the matrix is set to a heuristic intended to estimate confidence that the ROIs ri and 

rj are actually the same neuron at different timepoints. This heuristic includes information 

about the quality of the registration mapping ri to rj (computed using Normalized Correlation 

Coefficient), the fractional volume of overlap between the registration-mapped ri and rj (i.e. 

position similarity), the difference in marker expression between ri and rj (i.e. similarity of 

mNeptune expression), and the fractional difference in volume between ri and rj (i.e. size 

similarity of ROIs). The diagonal of the matrix is additionally set to a nonzero value.
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Clustering the Similarity Matrix: Next, we cluster the rows of this similarity matrix using 

a custom clustering method; each resulting cluster then corresponds to a neuron. First, 

we construct a distance matrix between rows of the similarity matrix using L2 Euclidean 

distance. Next, we apply minimum linkage hierarchical clustering to this distance matrix, 

except that after a merge is proposed, the resulting cluster is checked for ROIs belonging to 

the same time point. If too many ROIs in the resulting cluster belong to the same time point, 

that would signify an incorrect merge, since neurons should not have multiple different ROIs 

at the same time point. Thus, if that happens, the algorithm does not apply that merge, and 

continues with the next-best merge. This continues until the algorithm’s next best merge 

reaches a merge quality threshold, at which point it is terminated, and the clusters are 

returned. These clusters define the grouping of ROIs into neurons.

Linking multiple datasets: For datasets that were recorded with a gap in the middle, the 

above process was performed separately on each half of the data. Then, the above process 

was repeated to link the two halves of the data together, except that only two edges that must 

connect to the other half of the data are added to the registration graph per time point, and 

the clustering algorithm does not merge clusters beyond size 2.

Trace extraction: Next, neural traces are extracted from each ROI in each time point 

belonging to that neuron’s cluster. Specifically, we obtain the mean of the pixels in the ROI 

at that time point. This is done in both the marker and activity channels. They are then put 

through the following series of processing steps:

• Background-subtraction, using the median background per channel per time 

point.

• Deletion of neurons with too low of signal in the activity channel (mean activity 

lower than the background – this was not done in the SWF360 control dataset 

due to the presence of GFP-negative neurons in that strain), or too few ROIs 

corresponding to them (less than half of the total number of time points).

• Correction to account for laser intensity changing halfway through our recording 

sessions (done separately on each channel based on intensity calibration 

measurements taken at various values of laser power).

• Linear interpolation to any time point that lacked an ROI in the cluster.

• Division of the activity channel traces by the marker channel traces, to filter out 

various types of motion artifacts. These divided traces are the neural activity 

traces.

Bleach correction: We then compute the mean neural activity (averaged across all neurons) 

over the entire time range, and fit a one-parameter exponential bleaching model to it. The 

bleaching model was initialized such that it had value equal to the median neural activity 

value at the median time point, and it was fit using log-MSE error to the averaged neural 

activity value. A small number of datasets with very high bleaching (determined using the 

exponential decay parameter of the bleaching model) were excluded from all analysis. Each 

neural activity trace is then divided by the best-fit bleaching curve; the resulting traces are 
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referred to as F . In our SWF360 analysis, we refer directly to F ; the trace heatmaps shown 

in this paper are F
Fmean

; we also display z-scored neural activity in many figure panels, as 

indicated; and the CePNEM models are fit by z-scoring each neuron separately.

Controls to test whether neurons are correctly linked over time: We ran a control 

to test whether neurons were being mismatched by our registration process. We did this 

by processing data from our SWF360 strain that expresses GFP at different levels in 

different neurons (eat-4::NLS-GFP). The recording was made with a gap and was processed 

identically to GCaMP datasets with gaps in the middle, thus also serving as a test of inter-

gap registration. This SWF360 recording allows us to detect errors in neuron registration, 

since GFP-negative neuron could briefly become GFP-positive or vice versa. We quantified 

this by setting a threshold of median F > 1.5 to call a neuron a GFP neuron. This threshold 

resulted in FracGFP = 27% of neurons being quantified as containing GFP, which is about 

what was expected for the promotors expressed. Then, for each neuron, we quantified the 

number of time points such that the neuron’s activity F  at that time point differed from its 

median by more than 1.5, and exactly one of [the neuron’s activity at that time point] and 

[its median activity] was larger than 1.5. These time points represent mismatches, since they 

correspond to GFP-negative neurons that were mismatched to GFP-positive neurons (if the 

neuron’s activity increased at the time point) or vice versa (if its activity decreased). We 

then computed an error rate of number of mismatched time points
number of total time points ⋅ 2 ⋅ FracGFP ⋅ 1 − FracGFP

 as an estimate 

of the mis-registration rate of our pipeline. The 2 ⋅ FracGFP ⋅ 1 − FracGFP  term corrects for 

the fact that mis-registration errors that send GFP-negative to other GFP-negative neurons, 

or GFP-positive to other GFP-positive neurons, would otherwise not be detected by this 

analysis. This error rate came out to 0.3%, so we conclude that artifacts resulting from 

mismatched neurons are a negligible component of our data.

Annotation of neural identities using NeuroPAL

NeuroPAL images and annotation procedure: The identities of neurons were determined 

via NeuroPAL using the following procedure. We obtained a series of images from each 

recorded animal, while the animal was immobilized after the freely-moving GCaMP 

recording (recording and immobilization procedures described above):

(1–3) Spectrally isolated images of mTagBFP2, CyOFP1, and mNeptune2.5. We excited 

CyOFP1 using the 488nm laser at 32% intensity under a 585/40 bandpass filter. 

mNeptune2.5 was recorded next using a 637nm laser at 48% intensity under a 655LP-

TRF filter, in order to not contaminate this recording with TagRFP-T emission. Finally, 

mTagBFP2 was isolated using a 405nm laser at 27% intensity under a 447/60 bandpass 

filter.

(4) An image with TagRFP-T, CyOFP1, and mNeptune2.5 (all of the “red” markers) in 

one channel, and gCaMP7f in the other channel. As described below, this image was 

used for neuron segmentation and registration with both the freely moving recording and 

individually isolated marker images. We excited TagRFP-T and mNeptune2.5 via 561nm 
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laser at 15% intensity and CyOFP1 and gCaMP7f via 488nm laser at 17% intensity. 

TagRFP-T, mNeptune2.5, and CyOFP1 were imaged with a 570LP.

All isolated images were recorded for 60 timepoints. We increased the signal to noise 

ratio for each of the images by first registering all timepoints within a recording to one 

another and then averaging the transformed images. Finally, we created the composite, 3-

dimensional RGB image by setting the mTagBFP2 image to blue, CyOFP1 image to green, 

and mNeptune2.5 image to red as done by Yemini et al. (2021) and manually adjusting the 

intensity of each channel to optimally match their manual.

The neuron segmentation U-Net was run on the “all red” image and we then determined 

the identities of U-Net identified neurons using the NeuroPAL instructions. The landmarks 

in the NeuroPAL atlas were identified first and the identities of the remaining neurons 

were subsequently determined by comparing the individual channel intensities, overall 

coloring, and relative positioning of the cells. In some cases, neuronal identities could not be 

determined with certainty due a number of factors including: unexpectedly dim expression 

of one or more fluorophores, unexpected expression of a fluorophore in cells not stated 

to express a given marker, and extra cells in a region expressing similar intensities when 

no other cells are expected. Rarely, multiple cells were labeled as potential candidates for 

a given neuron and the most likely candidate (based on position, coloring, and marker 

intensity) was used for analysis. If a cell was not bright enough to be distinguished from its 

neighbors or was undetected by the neuron segmentation U-Net, we left it unlabeled.

Finally, the neural identity labels from the RGB image were mapped back to the GCaMP 

traces from the freely-moving animal by first registering each fluorophore-isolated image to 

the image containing all of the red markers. The “all red” image was then registered back to 

the freely moving recording, permitting mapping of neuronal labels back to GCaMP traces.

Determination of left/right asymmetry: To determine which neuron classes had left/right 

asymmetry, we computed the mean correlation between the left and right neurons in each 

neuron class over all datasets where both the left and right neurons in that neuron class 

were detected. We included our heat-stimulus datasets in this analysis, but for those datasets 

the correlation was only computed using the pre-stim data; for our baseline datasets, the 

entire time series was used. For a neuron to be marked as having left/right asymmetry, we 

required that (i) we recorded at least five animals where both the left and right neurons of 

the pair were detected, (ii) the left and right neurons had a mean correlation averaged across 

animals of <0.2, and (iii) the neuron had a mean signal value (averaged across animals) of 

at least 0.25. The signal value threshold was intended to exclude inactive neurons with low 

correlation values due to noise. This analysis resulted in the neurons ASE, IL1, IL2, and 

SAAD showing left/right asymmetry.

C. elegans Probabilistic Neural Encoding Model (CePNEM)

CePNEM Residual Model: The CePNEM model uses a Gaussian process residual model 

adding together a white-noise kernel and a squared exponential kernel. The white-noise 

kernel is intended to capture measurement noise in our neural data, which is expected to 

be independent between time points, while the squared exponential kernel is intended to 
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capture variance in neural activity unrelated to behavior, which may have a slower timescale. 

The squared-exponential residual term is critically important, as otherwise the model will 

be forced to try to explain all autocorrelation in neural activity with behavioral information, 

resulting in severe overfitting.

The white-noise kernel KGN has standard deviation σnoise and thus its covariance matrix is 

σnoise
2 I. The squared-exponential kernel KSE has standard deviation σSE and length scale ℓ, 

giving a covariance matrix defined by Mij = σSE
2 e− i − j 2

2ℓ2 . The full residual model is then 

the Gaussian process model with kernel KGN + KSE, which is then added to the timeseries 

of the rest of the model fit to generate the likelihood of a given neural activity trace under 

CePNEM.

CePNEM Prior Distributions

cvT, cv, cθℎ, cp, b, n 0 ∼ N 0,1

ln s ∼ N ln 10 , 1

ln ℓ ∼ N ln 20 , 1

ln σSE ∼ N ln 0.5 , 1

ln σnoise ∼ N ln 0.125 , 0.5

Here N μ, σ  is the normal distribution with mean μ and standard deviation σ. Since the 

neural traces being fit are all z-scored, the priors on the behavioral parameters are also 

standardized. The prior on the moving average term s was based on preliminary data 

from fitting previous, conventional versions of our model. The priors on the residual terms 

were intended to be wide enough to accommodate both neurons that are well-explained by 

behaviors (in which case, the model would assign them a low residual value), and neurons 

that contain little to no information about behaviors (in which case, the model would assign 

them a high residual value).

Fitting procedure

Overview of fitting approach: Let N be a neural trace from an animal, B be the behaviors 

of that animal, and X be the model parameters that we are trying to fit. Then the goal 

our model fitting procedure is to estimate the probability distribution of model parameters 

given our observations, namely P X N, B . Our model defines the likelihood P N X, B  – 

that is, the likelihood of observing a set of neural data given a set of model parameters and 

behavioral data. Our prior distributions define P X B ; in this case, our prior distributions on 

Atanas et al. Page 23

Cell. Author manuscript; available in PMC 2024 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model parameters are independent of the animal’s behaviors, so P X B = P X . Therefore, 

by Bayes’ rule,

P (X ∣ N, B) = P N ∣ X, B P X
P N ∣ B

Unfortunately, P N B  is difficult to compute. Crucially, however, it does not depend on 

the model parameters X. This means that by comparing the value of P N X, B P X  for 

different values of X, we can make meaningful insights into the distribution of P X N, B . 

In particular, we can define a Markov chain that defines a sequence of Xt, where Xt + 1 is a 

stochastic “proposal function” of Xt. The idea is that the proposal function can be biased to 

walk toward regions in parameter space with higher likelihood. Indeed, there are a family of 

algorithms, such as Metropolis-Hastings58 and Hamiltonian Monte Carlo59 that define such 

proposal functions. In particular, the proposal functions defined by these algorithms have the 

property that, in the limit of generating an infinitely long Markov chain, sampling from the 

chain is equivalent to sampling from the true posterior distribution P X N, B .

Model fitting procedure: Of course, in practice, we do not have computational resources for 

an infinitely long chain, so it is necessary to ensure that the chain can replicate the posterior 

distribution in a manageable amount of time. This in turn requires custom inference 

algorithms, moving beyond the generic MCMC and variational inference algorithms 

provided with probabilistic programming platforms such as Stan and Pyro. Accordingly, 

we used the Gen probabilistic programming platform44, and its inference meta-programming 

functionality60, to express a suitable custom inference algorithm.

We fit our models using a mixture of Metropolis-Hastings (MH) and Hamiltonian Monte 

Carlo (HMC) steps with adaptive proposals, embedded within a resample-move sequential 

Monte Carlo (SMC) scheme55 with one particle. The HMC step uses gradient information 

and tries to move the chain towards regions of higher likelihood. The other MH steps are 

intended to help the chain get out of local optima by using information about the structure 

of the model, so the Markov chain can better explore the full parameter space. Specifically, 

one iteration of our fitting algorithm involves the following steps (here N is once again the 

normal distribution, and S is drawn uniformly at random from the set {−1,1}), and i is the 

current iteration of the algorithm:

• MH proposal ln ℓ N ln ℓ , δℓ i

• MH proposal: ln σSE N ln σSE , δσSE i

• MH proposal: ln σnoise N ln σnoise , 1
2δσnoise i

• HMC proposal on parameters cvT, cv, cθℎ, cp, b, n 0 , ln s  with ϵ = δHMC i

• MH proposal: cvT N cvTS, 1

• MH proposal (note that the instances of S are drawn independently):

– cvT N cvTS, 1
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– cv N cvS, 1

– b N b, 10−4

After each iteration of the algorithm, the proposal distribution parameters δ for each 

proposal are updated as follows: If the respective proposal was accepted, its δ parameter 

is multiplied by 1.1; otherwise, it is divided by 1.1. (They are all initialized to 1.) This 

adaptive, heuristic choice of proposal distribution aims to encourage proposals that are 

accepted roughly half the time. Although repeated iteration of these adaptive proposals 

does not guarantee convergence via the usual MCMC convergence theory, these adaptive 

proposals remain valid target-preserving MCMC rejuvenation kernels for use within 

resample-move SMC. To construct the posterior samples used in our analysis, we run this 

fitting procedure for 11,000 iterations, and discard the first 1,000 (including the initialization 

point). The remaining 10,001 points are treated as approximate samples from the posterior 

distribution and are referred to as particles elsewhere in the paper. Our control experiments, 

including simulation-based calibration (detailed below), suggest that this approach results in 

good quality approximations.

Model initialization: Despite our efforts to use MH proposal steps to prevent the 

model fitting procedure from falling into local optima, we found that the algorithm still 

occasionally got stuck, preventing it from finding a good approximation to the true posterior. 

To remedy this, we added a likelihood weighting initialization step consisting of sampling 

100,000 points from the prior distribution of model parameters and selecting the point with 

the highest likelihood under our model, given the neural and behavioral data to be fit. This 

point is then used to initialize the resample-move SMC scheme described above.

Simulation-based calibration: To ensure that our fitting process gave a calibrated 

description of the true model posterior, we performed simulation-based calibration41. In 

this procedure, we generated 4,000 sample traces from the model distribution P X, N B
using the prior distribution for X. 500 traces were generated using each of eight total values 

of B: two 800-time-point subsegments from each of four animals (two SWF415, and two 

SWF702 animals). We then ran our model fitting procedure on each sample (three of the 

4,000 traces timed out and were discarded). After fitting, we then compared the sampled 

posterior distribution from our inference algorithm to the ground-truth parameter values 

using a rank test with 128 bins. If our inference process was giving unbiased estimates of 

the posterior distribution, then across all of our traces, the distribution of these ranks should 

be the uniform distribution. Gen automated the implementation of this simulation-based 

calibration procedure.

We used a χ2 test to differentiate the observed ranks from the uniform distribution, and 

found that 9 of the 10 model parameters passed the test at p=0.05. The final parameter, 

the EWMA decay constant s, seemed to have a minor bias towards larger values, meaning 

that our fitting algorithm is prone to occasionally overestimate this parameter. However, we 

quantified an upper bound on the degree of this overestimation by computing the maximum 

deviation of the CDF of the observed rank distribution for s, compared with the predicted 

CDF from the uniform distribution, and found a value of 3.5%. This means that the fits of 
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at most 3.5% of encoding neurons will be affected by this minor bias, which is less than an 

average of 4 per animal. Thus, we do not believe this minor bias will substantially affect the 

results described in this paper.

Controls

GFP Control: We wanted to ensure that we would not spuriously detect motion artifacts 

as encodings of behavior. To do this, we used our pan-neuronal GFP control line SWF467, 

which by definition should not have any neurons that encode behavior. We fit our GFP 

datasets with CePNEM and applied the same encoding analysis to this strain and found that 

only 2.1% of neurons showed behavioral encoding, compared with 58.6% in the SWF415 

strain, suggesting that the majority (>95%) of our detected encodings are not motion 

artifacts. We also used the GFP recordings to determine which neurons displayed low or 

no neural dynamics in a given recording. We defined a neuron with low or no dynamics 

to be one whose signal variation, defined as std F
mean F  where F  is un-normalized ratiometric 

fluorescence, was less than the 99th percentile of the signal variations of GFP neurons. For 

this analysis only (and not any other analyses in this paper), we fit a per-neuron bleaching 

model to each GCaMP neuron when computing its signal variation and used this corrected 

F, in order to ensure that apparently-active neurons were not due to GCaMP neurons having 

worse-quality bleach correction than the GFP controls.

Based on this analysis, 5.3% of the neurons were inactive across our recordings. The fraction 

of inactive neurons here appears to be lower than in some prior brain-wide recordings.3,26 

This may be related to experimental conditions (immobilized versus freely-moving; off-food 

versus on-food) or differences in the SNR of the recordings, which determines the minimal 

neural signal that can be resolved from motion and data extraction artifacts.

Scrambled Control: We furthermore wanted to ensure that the model would not overfit to 

spurious correlations between neural activity and behavior. To accomplish this, we fit 11 

SWF415 animals with CePNEM, but replaced the behaviors v, θℎ, and p with spurious 

behaviors from other recorded animals, which should result in few neurons showing 

behavioral encoding. The spurious behaviors were generated as follows: we first assign pairs 

of datasets to minimize the behavioral correlation across the datasets within a given pair. 

To do this, we compute correlation across all possible behavior and dataset combinations. 

After that, we determine the pairing such that it minimizes the maximum absolute cross-

correlation value across all pairings. To penalize high correlation values, we raised the 

correlations to the power of 4.

When we analyzed the CePNEM model results, we found that only 2.7% of neurons 

detected as having behavioral encoding, suggesting that the vast majority (>95%) of our 

detected encodings are not due to overfitting.

Median model fits: For display purposes, or analyses where it was necessary to represent a 

neuron with a single model, we computed the median model by computing ni t  for each set 

of parameters i in the neuron’s posterior distribution, and then defining nmed t = mediani ni t . 

This is what is meant by “median CePNEM fit” unless otherwise noted.
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Validation metrics and analyses

Cross-validation (cv) score: The cross-validation pseudo-R2 metric, named ‘cross-

validation score’ or simply ‘cv score’ in the text, is defined by

cv = meani 1 − MSE Mi ti , N ti
MSE μi, N ti

Here MSE x, y  is the mean squared error between data vectors x and y, Mi ti  is the 

evaluation of the median CePNEM model fit over the ith training data split evaluated on 

the corresponding testing data ti, μi is the mean neuron activity over the ith training data 

split, and N ti  is the observed neuron activity vector on the testing data ti. This metric is an 

approximation of the variance of the neural activity explainable by the model on the testing 

data.

Since CePNEM contains a Gaussian process residual model, it can only be trained over 

continuous data. Additionally, the presence of this Gaussian process residual model could 

cause the mathematical properties of the model to change slightly based on the length of 

training data. Thus, we structured our five-fold training/testing splits such that each training 

data split consisted of 8 minutes of continuous data, exactly as the model was fit in the rest 

of the paper. These training splits were uniformly tiled along the 16-minute recordings. The 

testing splits were then constructed such that they were equal length (20% of full dataset), 

each time point in the recording was included in exactly one of the testing splits, and each 

testing split was near (but not overlapping with) its corresponding training split.

We only computed the cross-validation score in situations where it would be reasonable 

to expect our model to cross-validate. In particular, since there is no expectation of our 

behavior-based model to cross-validate for neurons that don’t encode behavior, we ran it 

only on neurons that encoded behavior in both of the original 8-minute CePNEM fits in the 

dataset. Additionally, we excluded train/test splits where the training data did not contain 

feeding information while the testing data did, since in such splits there would be no way 

for any model to be able to constrain a feeding parameter in the training data (feeding was 

episodic in these datasets, giving rise to the necessity of imposing this constraint).

Bayesian Generalization Index (BGI): We also computed a separate metric, which we 

call the Bayesian generalization index, to assess performance of the full CePNEM model, 

including the residual model, to generalize to withheld testing data. To compute it, each 

dataset was split in half temporally, and for each neuron, CePNEM models were fit on each 

half of the data (the training data). Each of those training models was then evaluated on the 

other half of the data (the testing data) as follows.

First, 500 training samples were drawn from the CePNEM posterior distribution from the 

training model. Each sample (a 10-vector of all CePNEM parameters) was then evaluated on 

the testing data using CePNEM likelihood to compute a training array of test-time scores.

Similarly, 500 control samples were drawn from the set of all CePNEM posteriors from 

all neurons in our 14 SWF415 baseline datasets. This was done instead of sampling from 
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the model prior to ensure that high BGI values were specifically learned from the training 

data, rather than being generally learned properties that apply across neurons. Each of the 

10 model parameters was drawn independently. Each of these control samples was then 

evaluated with CePNEM on the testing data to compute a control array of test-time scores.

The Bayesian generalization index for the given CePNEM training fit was then computed as

BGI = 2 * Prob train > control − 1

Here train and control are randomly sampled from the respective distributions of test-time 

scores. In this manner, if the BGI is very close to 1, it means that it is extremely unlikely 

for a randomly-sampled model set of model parameters to be able to match the performance 

of any of the training model parameters on the testing data. On the other hand, a BGI 

of 0 means that the training model did not outperform the control model, either because 

CePNEM failed to constrain the training posterior distributions, or because a substantial 

portion of them failed to generalize to the testing data. Negative BGI values indicate 

overfitting, where the model performs worse on the testing data than simply randomly 

sampled model parameters.

We computed this index over all neurons in all SWF415 datasets. Note that unlike the 

cross-validation score, we included non-encoding neurons in this analysis because we would 

expect them to generalize to the testing data through their CePNEM residual parameters, 

which are included in the BGI computation (though we note that they did perform worse 

on average than the encoding neurons). We observed that 91% of neurons had positive BGI 

values, and 48% of neurons had BGI values above 0.9, indicating a high level of model 

generalization. The results were very similar between SWF415 and NeuroPAL strains.

Comparison with simpler models

MSE model fits: For some analyses (in particular model degradation analyses where fitting 

many different models with probabilistic inference would be extremely computationally 

expensive), we found it useful to fit our model in a more conventional manner, simply trying 

to minimize the mean-squared error (MSE) between the model fit and neural activity rather 

than using Gen to compute the posterior. For these fits, we deleted the residual component 

of our model and instead simply fit n t  by trying to minimize the MSE between it and 

the observed neural activity, set n 0 = 0, and ignored the first 50 time points after each 

recording began for the MSE calculation (so for datasets with a gap in the middle, we would 

ignore the first 50 time points, as well as time points 801:850). We used L-BFGS for local 

optimization and MLSL-LDS for global optimization, and performed these fits using the 

NLopt Julia package.

Model degradation analysis: We tested how each component in the model affects the 

performance by quantifying the increase in error, compared to the full model, when 

removing the following component individually: each predictor (velocity, head curvature, 

feeding), the velocity non-linearity, removing the EWMA, and all non-linear features 

(resulting in a fully linear model). The models were fitted using our MSE fitting technique 
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with L2 regularization. Out of the 14 pan-neuronal GCaMP baseline datasets, 5 were 

excluded from this analysis due to low variance in the pumping rate. 3 datasets were used 

to optimize the regularization parameter, and the remaining 6 datasets were used to compute 

the increase in error. Models were fit with 5-fold cross-validation set, splitting each dataset 

into 5 equal length time segments. The error was computed as the mean test time error of the 

cross-validation splits. For each degraded model type, neurons encoding the removed feature 

were selected for analysis. For example, degraded model without velocity was tested on the 

neurons with velocity encoding. The increase in error was computed by comparing the error 

in degraded model to the error of the full model. Finally, we used the Wilcoxon signed rank 

test for statistical significance.

Comparing exponentially-weighted moving average (EWMA) to other filtering methods: 
In Fig. S1D, alternative smoothing methods were evaluated to compare against the EWMA 

in the model. The alternatives were: optimal Gaussian kernel (Gaussian smoothing), optimal 

shift (shifting to maximize the absolute correlation), and optimal lowpass filter. For each 

method, including the EWMA, gradient descent was used to minimize the error (MSE) 

between the neural trace and the transformed velocity in order to find optimal filtered 

versions of velocity for each metho. This was repeated across all recorded neurons for the 

analysis in Fig. S1E. As is shown, EWMA performed the best.

Statistical tests to determine encoding properties of neurons

Summary of statistical approach: Our strategy for determining whether neurons encode 

a particular behavioral feature (for example, whether the neuron encoded ventral head 

curvature during forward locomotion) is briefly summarized here. More details are provided 

below.

• We first convert the CePNEM parameters into a space where the encoding of the 

neuron to that behavioral feature can be quantified for each point in the posterior.

(‘Deconvolved activity matrix’ section below)

• Compute an empirical p-value based on the fraction of points in the posterior 

with sufficiently strong encoding of the behavioral feature. “Sufficiently strong” 

means exceeding two thresholds that were defined based on GFP and wrong-

behavior controls. (‘Statistical encoding tests’ section below).

• Multiple-hypothesis correct these p-values across different types of tunings to 

each behavior, across neurons, and/or across time ranges, as appropriate for the 

analysis in question.

Deconvolved activity matrix: In order to be able to make statistical assertions about the 

neural encoding of behavior based on the posterior distributions from CePNEM fits, we first 

needed to transform model parameters into a more intuitive space. To accomplish this, for 

each neuron, we constructed a 10001 × 4 × 2 × 2 deconvolved activity matrix M constructed 

as follows: Mnijk corresponds to the modeled activity of the nth particle from that neuron’s 

CePNEM fit at velocity V i , head curvature θH j , and pumping rate P k . Here, where θℎ
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is the animal’s head curvature (dorsal is positive) and p is the animal’s pumping rate over the 

course of the recording, we have:

V = med rev speed , 1
100med rev speed , 1

100med fwd speed , med fwd speed
θH = percentile θℎ, 25 , percentile θℎ, 75

P = percentile p, 25 , percentile p, 75

For this calculation, the EWMA and residual components are excluded from the modeled 

activity; the idea is that this matrix contains information about the neuron’s activity at high 

and low values of each behavior, so we can now run analyses on this matrix and not have to 

take into account the actual behavior of the animal. In particular, many simple combinations 

of entries in this matrix have intuitive meanings:

• The slope of the neuron’s tuning to velocity during forward locomotion is

Mn4jk − Mn3jk

• The slope of the neuron’s tuning to velocity during reverse locomotion is

Mn2jk − Mn1jk

• The neuron’s deconvolved forwardness (overall slope of the neuron’s tuning to 

velocity) is

Mn4jk − Mn3jk + Mn2jk − Mn1jk

• The rectification of the neuron’s tuning to velocity (difference between forward 

and reverse slopes) is

Mn4jk − Mn3jk − Mn2jk − Mn1jk

• The slope of the neuron’s tuning to head curvature during forward locomotion 

(positive means dorsal during forward) is

Mn42k − Mn41k

• The slope of the neuron’s tuning to head curvature during reverse locomotion 

(positive means dorsal during reverse) is

Mn12k − Mn11k

• The neuron’s deconvolved dorsalness (overall slope of the neuron’s tuning to 

head curvature) is

Mn42k − Mn41k + Mn12k − Mn11k
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• The rectification of the neuron’s tuning to head curvature with respect to 

locomotion direction (positive means the neuron is more dorsal during forward; 

negative means the neuron is more ventral during forward) is

Mn42k − Mn41k − Mn12k − Mn11k

• The neuron’s tuning to feeding follows the same pattern as its tuning to head 

curvature.

Importantly, the linear structure of the multiplexing component of CePNEM implies that 

the value of the unset parameters i, j, k in the expressions above do not change the value 

of those expressions. For head curvature, since worms can lay on either side, we manually 

checked the location of the animal’s vulva from the NIR recordings of each animal and 

flipped dorsal/ventral labels as appropriate.

Statistical encoding tests: With the intuition derived from the deconvolved activity matrix, 

for each particle in the posterior distribution of the neuron, we can ask whether that particle 

satisfies a certain property. For example, to categorize a particle as representing forward 

locomotion, we would check whether that particle had a sufficiently large deconvolved 

forwardness value. Specifically, we would check whether its deconvolved forwardness value 

was at least max ξ1, ξ2 , where ξ1 = 0.125
signal  (here signal = std F

mean F  and F  is the un-normalized 

ratiometric fluorescence of the neuron in question), and ξ2 = 0.25 σD
σM

 (here σD is the standard 

deviation of the model fit corresponding to that particle with s = 0 and σM is the standard 

deviation of the model fit corresponding to that particle). The number 0.125 was selected 

based on its ability to filter out the small amount of motion artifacts observed in our three 

GFP control datasets (see Methods section on that control above). Specifically, we chose 

a value that filtered out almost all of the motion artifacts (leaving only 2.1% of GFP 

neurons showing false behavioral encoding), while removing as few true encodings from 

our GCaMP data as possible. Similarly, the number 0.25 was selected based on its ability 

to filter out extremely weak correlations between neural activity and behavior, which was 

measured by our controls attempting to fit neurons with behaviors from different animals 

(after the correction, only 2.7% of such neurons showed behavioral encoding). The σD
σM

 term 

is a correction for the fact that neurons with large s values will have higher values in M. If 

the particle’s deconvolved forwardness value was at least max ξ1, ξ2 , it would be classified as 

representing forward locomotion.

By the same token, we would classify a particle as representing reverse locomotion if its 

deconvolved reverseness (negative forwardness) value was at least max ξ1, ξ2 , we would 

classify a particle as representing more dorsal information during forward locomotion if its 

rectification to head curvature with respect to locomotion direction was at least max ξ1, ξ2 , 

and so on.

Now that we can classify particles, we can create empirical p-values for neurons based on 

the fraction of their particles that share a category. For example, if 98% of particles for 
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a neuron are classified as representing forward locomotion, then that neuron’s p-value for 

forward locomotion would be 0.02. We can then construct a list of such p values computed 

for each neuron in an animal that was fit with CePNEM and use Benjamini-Hochberg 

correction with FDR=0.05 to get a list of forward-encoding neurons in that animal. We can 

similarly get a list of reversal neurons, dorsally-rectified head curvature neurons, neurons 

activated by feeding during forward locomotion (i.e. have a positive slope to feeding during 

forward locomotion), and so on.

To construct larger categories, such as neurons with any behavioral encoding, or neurons 

with head curvature encoding, another multiple hypothesis correction step is necessary. For 

this step, we first use Bonferroni correction on opposing categories where it is impossible 

for a neuron to have both categories (for instance, dorsal and ventral tuning), followed by a 

Benjamini-Hochberg correction step on the Bonferroni-corrected p-values. We then proceed 

with the inter-neuron Benjamini-Hochberg correction, as before.

A neuron is categorized as encoding head curvature if it expresses statistically significant 

information about any of the four head curvature categories outlined above, in either 

direction; feeding encoding is computed similarly. A neuron is categorized as encoding 

velocity if it either expresses statistically significant information about any of the four 

velocity categories, or if it expresses statistically significant information about any of the 

rectified categories, since rectification of head curvature or feeding based on forward/reverse 

locomotion state is a form of velocity information. A neuron is categorized as encoding if it 

has statistically significant information in any of the tests. Note that for datasets without any 

feeding information (defined as the 25th and 75th percentile of feeding in that dataset being 

the same, causing P 1 = P 2 ), neurons cannot encode feeding information, so feeding is 

not included in the multiple-hypothesis correction to check whether a neuron encoded any 

behavior.

Time ranges: One final note is that all neurons are fit twice – once over the first half of the 

data, and once over the second half. Thus, for consistency between all our datasets, we fit all 

of our SWF415 and NeuroPAL datasets in this manner.

For Figure 2A, the encoding statistics are computed on a per-neuron basis, with an 

additional Benjamini-Hochberg correction step to account for the fact that each neuron 

got two chances to qualify as encoding. Time ranges with insufficient feeding variance (this 

time, defined as the difference between the 25th and 75th percentile of feeding being at 

most 0.5) are excluded from feeding analysis. To avoid different behaviors having different 

amounts of available data, animals that never had sufficient feeding variance are excluded 

from Figure 2A entirely. For Figure 2B, the same analysis is used, and there is an additional 

multiple-hypothesis step across the three behaviors. For Figures 2C and S2I–J, all time 

ranges are used. Fits on different time ranges from the same animal are added to the CDF 

independently of each other, but only encoding neurons are included. For example, a neuron 

that encoded behavior in both time ranges would have its EWMA timescale from both fits 

added to the CDF, while a neuron that only encoded behavior once would have that EWMA 

timescale added. In Figure S2I–J, only neurons that statistically significantly encoded the 

appropriate behavior are included
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Neuron Subcategorization: We next sought to combine various pieces of information from 

our encoding analysis together to generate a holistic view of how a given neuron is tuned to 

a given behavioral parameter (Figure 2E). To accomplish this, we sorted neurons as follows 

(this analysis is done independently on each time range):

• If the neuron had a different sign to its tuning to behavior during forward and 

reverse (eg: a slow neuron that has a positive slope in its tuning to velocity 

during reversal, but a negative slope during forward locomotion), then the neuron 

was categorized as such. In Figures 2G–2I, these neurons would appear in the 

bins (+,−) and (−,+); for head curvature, they would be (D,V) or (V,D).

• Otherwise, if the neuron has rectified tuning to the behavior (depending on 

the behavior, one of the following categories: forward slope > reverse slope, 

reverse slope < forward slope, more dorsal during forward, more ventral during 

more activated during forward, more activated during forward, or more inhibited 

during forward), it will be placed in one of the four rectified bins (+,0), (−,0), (0, 

−), or (0,+), depending on the sign of the rectification and sign of the slopes of 

the neural tuning to behavior.

• Otherwise, if the neuron had the same slope during both forward and reverse 

movement, it will be classified in one of the two analog bins (+,+) or (−,−) 

depending on the sign of that slope. Notably, it would be placed in a rectified 

bin (and not an analog bin) if it had rectified information, even if it had the same 

slope during both forward and reverse locomotion.

• If none of the above were true, the neuron lacked statistical significance in at 

least two of the three parameters (forward slope, reversal slope, rectification) 

with respect to the behavior in question, and it will be excluded from Figure 2E.

Methods to determine encodings of neuron classes across recordings

Hierarchical model to fit neuron classes recorded across multiple animals: Neuron 

classes that were detected in multiple animals had multiple CePNEM fits. To attain a more 

accurate depiction of the neuron across datasets, we used a hierarchical model that takes into 

account the parameters and uncertainty of each CePNEM fit to compute the global mean 

and variability between datasets. The global mean provides the best overall model to the 

neuron class, while the variability (see below for further details) provides a description of 

how reliably the neuron encodes behavior.

Specifically, if the neuron was detected n times, with CePNEM posteriors P i corresponding 

to each model fit 1 ≤ i ≤ n, the hierarchical model fits maximum a posteriori (MAP) 

estimates of vectors of parameters μ, σ, xi, where 1 ≤ i ≤ n. Here μ corresponds to the 

global mean parameters for the neuron taking into account its data across observations, 

σ corresponds to the global variability, and xi corresponds to a point estimate for the 

parameters of the neuron in each observation. The rough form of the hierarchical model is 

that xi come from a distribution determined by μ and σ, but simultaneously come from the 

distributions P i, so they are fit in such a way as to maximize the likelihood under both of 

these distributions.
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More specifically, the parameters μ and xi are comprised of a 5-vector cvT, r, θ, φ, s , where 

cvT and s are analogous to their respective CePNEM parameters, r, θ, φ  is a spherical-

coordinate transform of cv, cθℎ, cP . The variability σ is comprised of a 4-vector σcvT, σr, κ, σs . 

The reason for the spherical transform is that some neural variability could be simply a 

result of different normalization in different animals, which is difficult to perfectly correct 

for; in spherical coordinates, all of that possibly-spurious variability is encapsulated in one 

parameter σr, rather than being spread across multiple parameters.

The likelihood function of the hierarchical model then specifies the distribution of the 

xi given μ and σ. Specifically, for the non-angle parameters, model assumes the normal 

distributions xiv ∼ N μv, σv  for 1 ≤ i ≤ n, v ∈ cvT, r, s . Meanwhile, the angular parameters are 

determined by a von Mises-Fisher distribution: xiv ∼ V MF μv, κ  for 1 ≤ i ≤ n, v ∈ θ, φ .

Finally, to ensure that the xi carry information about the actual CePNEM fits, the posterior 

distributions P i are first approximated by fitting them with a multivariate-normal distribution 

MV Ni. This approximation was necessary in order to make the problem of fitting the 

hierarchical model computationally tractable. We verified using manual examination of 

Q-Q plots that the posteriors were well approximated by multivariate-normal distributions, 

though the approximation was not perfect. After this approximation, the parameters xi are 

transformed back to Cartesian coordinates x̂i = cvT, cv, cθℎ, cP, s  and then the likelihood of 

these parameters under the multivariate-normal approximation is computed: x̂i ∼ MV Ni. The 

other five CePNEM parameters are not of biological interest and are not included in the 

hierarchical model.

The priors for the hierarchical model are as follows (the priors for the mean values were 

created by examining the full set of CePNEM parameter values, after fitting):

μ cvT ∼ N 0,0.3

ln μ r ∼ N 0.1,0.4

μ θ, φ ∼ unit sphere

ln μ s ∼ N 0.7,0.7

ln σcvT ∼ N − 1, 1

ln σr ∼ N − 1, 1
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ln κ ∼ N 1, 1

ln σs ∼ N − 1, 1

Cartesian average: The hierarchical model was designed to compute neural variability, but 

we also found that it provided a useful method of measuring mean neural parameters across 

animals. However, for neurons with high variability, simply using μ as the mean parameters 

is not the correct metric since the spherical coordinates prevent it from properly canceling 

out opposing tunings (rather, it would instead try to pick an angle in between and keep the 

same r). Thus, we decided to instead convert all the xi of the model back into Cartesian 

coordinates and average them to produce μcart, the Cartesian average model parameters of the 

neuron under the hierarchical model. This μcart is what is being plotted in Figure S5E.

Forwardness, Dorsalness, and Feedingness: The forwardness metric for a neuron class 

is computed as FD ⋅ σM
σD

⋅ signal, where FD is the deconvolved forwardness of the Cartesian 

average μcart of the hierarchical model fit to that neuron class (see “Deconvolved activity 

matrix” and “Hierarchical model” methods sections above for more details; the behavior 

values used in the deconvolved forwardness computation were constructed by appending 

together all of the behaviors for the neuron class), σD is the standard deviation of the 

model fit corresponding to μcart with s = 0, σM is the standard deviation of the model fit 

corresponding to μcart, σD, and signal as before. This ratio is intended to correct for the fact 

that the model parameters need to be larger (resulting in larger deconvolved forwardness 

values) for the same neural response size if the neuron has a long EWMA decay. Dorsalness 

and feedingness are computed in a similar fashion.

Encoding strength and relative encoding strength: Encoding strength is a metric designed 

to approximate the information content a neuron contains about each behavior, given its 

CePNEM model fits. It is computed on each particle i of the CePNEM posterior by 

generating three model traces niv, niθℎ, and niP, each of which is identical to the full model ni t
except that the behavior b is set to 0 for model nib. Thus, the MSE between ni and nib provides 

a metric of how important behavior b was for the neuron. We compute the relative encoding 

strength of a neuron to behavior b as the ratio

RESb = mediani
MSE ni, nib

c ∈ v, θℎ, P MSE ni, nic

For neuron classes labeled with NeuroPAL (eg: in Figures 4 and 5), instead of taking the 

median over parameters from the posterior distribution, we used one set of parameters 

which was the Cartesian average of the hierarchical model fit for that neuron, and we 

used behaviors constructed by appending together the behaviors from all observations of 
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that neuron class. Then we define the encoding strength of the neuron to behavior b as 

ESb = RESb
MSE n, 0 , where n was the full model fit.

Analyses of dynamic encoding of behavior

Statistical tests to examine dynamic changes in neural encoding.: To determine whether 

a given neuron in a recording changed how it encoded behavior, we used the following 

procedure. First, we fit two CePNEM models to compare against each other. For baseline 

datasets without any stimulation (both SWF415 and NeuroPAL), we split the dataset in 

half and used fits from each half – the same fits used in the encoding analysis. For the 

NeuroPAL heat-stimulation datasets, we took one fit from the timepoints up until just before 

the stimulation (799 or 800 timepoints), and another fit from the 800 time point block 

(stim+10) to (stim+809). For the SWF415 heat-stimulation datasets, we took one fit from 

the timepoints up until just before the stimulation, and another fit from the 400 timepoint 

block (stim+10) to (stim+409) for heat-stimulation datasets without a gap in the middle, 

or alternatively (stim+10) to 800 for datasets with such a gap. Note that almost all of the 

heat-stim analysis uses the NeuroPAL datasets rather than the SWF415 ones, because the 

longer durations and equal time lengths of the pre-stim and post-stim data allow for much 

more powerful analysis.

Next, we computed deconvolved activity matrices as defined above on each of the CePNEM 

fit posteriors. We ran the same procedure used to detect encoding, but this time instead 

of computing metrics on individual particles, we computed those metrics on differences 

between the deconvolved activity matrices for all possible pairs of particles from each of 

the two model fits, which was a total of slightly more than 108 such differences per neuron. 

We used our residual threshold ξ1 as before, but ξ2 is set to 0 for this test because it is not 

well-defined when considering multiple model fits. Neurons that passed our encoding test 

at p = 0.05 using the differences between the deconvolved activity matrices for behaviors 

other than feeding (there were too few datasets with enough feeding variance in both time 

ranges to make a meaningful statistical comparison), and encoded behavior (using our 

standard behavior encoding test) in at least one time range were added to the list of encoding 

changing neuron candidates. Additionally, we checked whether the EWMA parameter s
changed by computing differences between all possible values of s in the two model fits, and 

asking whether that was greater than 0. This comparison was Benjamini-Hochberg corrected 

over all neurons, and neurons that passed the test at p = 0.05 and also encoded behavior 

(using our standard behavior encoding test) in both time ranges were added to the list of 

encoding changing neuron candidates.

Variability index: To compute the variability index of labeled neurons, we fit our 

hierarchical model (see above) on all CePNEM fits for that neuron, and then computed 

the variability index as σcvT + CircSD κ , where CircSD is a function that computes the 

circular standard deviation from the von Mises-Fisher concentration parameter κ. Note that 

variability in the EWMA parameter s is not included as this parameter is not meaningful 

if the neuron lacked behavioral information. Furthermore, variability in encoding strength r
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is also not included as this can include variability related to data normalization differences 

between animals.

Inter-dataset variability: To compute the inter-dataset variability, first the set of model 

parameters xi of the neuron within the same animal are transformed into Cartesian 

coordinates (because normalization is the same within the same animal, we can use the 

scaling information), averaged together, and projected back into spherical coordinates to 

produce a per-animal model estimate yi. Then σcvT is computed as the standard deviation of 

the cvT component of the yi, and κ is estimated by fitting a von Mises-Fisher distribution to 

the angular parameters θ, φ of the yi. Variability is then computed as above.

Intra-dataset variability: To compute the intra-dataset variability, first the set of model 

parameters xi corresponding to different observations of the neuron in the same animal in the 

same time range are averaged together as with inter-dataset variability. This results in a set 

of averaged model parameters yi1 and yi2, where i is the animal number, corresponding to the 

CePNEM fits in the first and second halves of the recording. We then compute

di = yi1 cvT − yi2 cvT , 2 EuclideanDist(yi1 cv, cθℎ, cP , yi2 cv, cθℎ, cP )
yi1 r + yi2 r

Here yij p  is the value of the parameter or vector of parameters p in the averaged model 

parameters yij, transforming coordinates as appropriate. This di represents a distance in 

model parameter space between the two CePNEM fits in the same animal; the normalization 

by 1
2 yi1 r + yi2 r  serves to ensure that differences in normalization do not result in different 

animals being weighted differently, similarly to how r wasn’t included in the variability 

index. The intra-dataset variability can then be computed as 1
2 mean di 1 + mean di 2 , 

where the division by 2 transforms distance into standard deviation.

Amount of encoding change (Figure S7G): The amount of encoding change of a neuron in 

an animal is defined as 0 if that neuron did not exhibit an encoding change in that animal, 

and the variability index of a hierarchical model fit on data from only that animal (for 

Figure S7G, pre-stim and post-stim data) if that neuron did exhibit an encoding change. It 

is computed separately for different components of neuron pairs, and in Figure S7G it is 

averaged over all detections of the given neuron.

Feeding decoder analysis for encoding change (Figure 7I–J): In order to detect encoding 

changes in the feeding circuit triggered by the heat stimulus, we needed to develop a 

different approach. This is because the animal doesn’t feed after the heat stimulation, so the 

CePNEM post-stim feeding parameters for each neuron will not be possible to constrain, 

resulting in it being impossible to statistically demonstrate a difference when compared with 

the pre-stim condition. Thus, instead of using the CePNEM encoder model, we compared 

the performance of decoder models on the pre-stim and post-stim data to determine if an 

encoding change was taking place for a given neuron class.
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More specifically, for each neuron class, we trained a linear decoder model to predict 

feeding behavior from neural activity. Each model was trained on detections of its neuron 

class in the 21 baseline NeuroPAL animals, with the neural activity and feeding behavior 

being appended together for the training. The neural activity was normalized as F
F10

, where 

F10 was the 10th percentile of the raw (ratiometric) fluorescence in each animal.

After training, we determined the set of neuron classes where the decoder analysis 

succeeded. This was determined based on the MSE of the predicted feeding rate in the 

training data (compared to the actual feeding rate) being at least 0.0075 better than the 

MSE of the null model (which is given a constant vector as neural activity). We also only 

considered neurons that had at least 3 detections in both the baseline and heat-stim datasets. 

This yielded a set of neurons that are almost exactly the same as the feeding-encoding 

neurons from CePNEM: AIN, AQR, I2, I3, I6, IL2L, M1, M3, M4, M5, MC, MI, RIH, RIR, 

RMG, and SIBV. For this set of neurons, we then evaluated the performance difference of 

the trained model and the null model on each heat stimulus dataset, evaluating the pre-stim 

and post-stim halves of each dataset separately. We then ran a Wilcoxon rank-sum test on 

this paired data to identify neuron classes where the decoder performed significantly worse 

on post-heat-stim data. Benjamini-Hochberg multiple-hypothesis correction was applied 

across the list of neurons subject to this analysis.

Modified intra-dataset variability (Figure 7G): In Figure 7G, we also made a 

modification to the intra-dataset variability index (see above) to account for CePNEM’s 

inability to resolve feeding information post-stim (which would erroneously lead to neurons 

with feeding encoding changes having low variability). Specifically, we defined the modified 

intra-dataset variability of a neuron to be

MIV = IV + 10 ⋅ max 0, Perfpre − Perfpost

Here IV  is the intra-dataset variability index for the neuron and Perfx is the mean 

performance (measured as MSE of the training model minus MSE of the null model) of the 

feeding decoder for that neuron evaluated on the x-stim data. Thus, if the decoder performs 

better on the pre-stim data and degrades on the post-stim data, it will result in an increase to 

the modified intra-dataset variability index for that neuron.

Connectome analysis

Connectomes used: For all quantitative analysis, the two adult datasets from Witvliet et al. 

2021 were averaged. Self-looping edges and single-synapse edges were excluded. For the 

pharyngeal circuit analysis, the connectome from the original White et al. 1986 was used, 

as the Witvliet connectome only covers the head ganglion. For the 2D embedding of the 

connectome (the sensorimotor layer and the graph eigenvector; see below), the White et al. 

1986 connectome was used to replicate the embedding previously used in the field61. On 

Fig. 4 (B,C,D), the Witvliet connectome was used for visualization.

2D embedding of the connectome: The 2D embedding of the connectome was performed 

by determining the sensorimotor layer (referred to as processing depth in the original paper) 
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for each neuron and the 2nd eigenvector of the Laplacian of the graph. See the Supporting 

Text S1 in Varshney et al.61 for the exact methods used in determining those values.

Connectome localization analysis: In Fig. 5 (E,F,G), the marginal distribution (kernel 

density estimation using KernelDensity.jl) of the group of neurons of interest (top 15th 

percentile of the feature of interest, which was either (i) high encoding strength, (ii) 

long decay, or (iii) high variability) was compared to the marginal distribution of the 

random control group (shuffling the features across the neurons that were recorded). One-

proportion z-test was used in each trisected segment, along the sensorimotor layer axis of 

the connectome region axis. All selected neuron distributions (blue lines) were significantly 

different from the random control distributions (overall, without trisecting) at *p<0.05. 

Mann-Whitney U test. For the localization in the connectome region axis (Fig. 5G), further 

testing was done to show that the high variability group of neurons were interconnected 

above chance. For that test, the variability values were shuffled across the recorded neurons 

and the intra-group synapse fraction was computed in the same way for these random 

shuffles (Fig. 5H). The random sampling was repeated 100,000 times. Then the p-value 

was empirically determined by computing the percentile of the actual intra-group synapse 

fraction among the random control samples.

Connectivity vs joint encoding change analysis: To assess the relationship between the 

connectivity type and joint encoding probability for neuron pairs (Fig. 6I), a random 

shuffling test was used. Among the joint encoding neurons shown in Fig. 6H, we iterate 

through all possible pairs (other than self-pairing). For each pair of neurons, we record 

the type of the connection (no connection, unidirectional chemical, bidirectional chemical, 

bidirectional electrical/gap junction) and the joint encoding change probability. For control, 

we shuffle the neuron assignments on the joint encoding change matrix and repeat the 

analysis (1000 random samples). Finally, the actual value was compared to the random 

shuffled distribution for each connection type to empirically compute p-value.

Handling of left/right bilateral pairs: For the neuron classes with bilateral pairing (left/

right), the left/right pairs were merged for all quantitative analysis, except for the group 

of neurons with bilateral asymmetry in encoding (ASE, SAAD, IL1, IL2). Analysis of 

relationships between connectivity and correlation (or other aspects of encoding) were then 

conducted on merged neuron classes. The purpose of this merging was to prevent the special 

case of left/right connectivity and correlation from dominating our analyses of connectome 

trends. Left/right pairs are typically well connected and strongly correlated, so including 

them in these analyses would have resulted in there being strong relationships between 

connectivity and activity, even if these were only found in the left/right pairs. Excluding 

them allowed us to ask whether connections between neuron classes were associated with 

trends in neural activity and behavior encoding.

For visualization (2D embedding of the connectome), left/right pairs were kept separate and 

not merged.
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Other analysis methods applied to neural recordings

Decoding behavior from neural activity

Full activity, current behavior: We trained L1-regularized linear decoder models to predict 

the worm’s current velocity, head curvature, feeding rate, angular velocity, and body 

curvature based on its current (z-scored) neural activity. To set the regularization parameter, 

we withheld three datasets that were randomly selected from the set of datasets with 

feeding standard deviation of at least 0.5. The other eleven datasets were used to evaluate 

decoder performance. The decoders were evaluated using five-fold cross-validation splits. 

All behaviors were z-scored for the decoder, and the decoder accuracy is reported as one 

minus the MSE between the decoder’s prediction and actual behavior, evaluated on the 

test-time data.

Model residuals, current behavior: We computed model residuals for each neuron by taking 

that neuron’s activity and subtracting the modeled n t  (computed based off of the median 

of all posterior CePNEM parameters for that neuron), and then z-scoring the resulting 

residual trace. We then trained separate decoder models using the same procedure as above, 

except using the model residuals instead of neural activity. We regularized these decoders 

separately using the same three set-aside datasets.

Decoding past and future behavior (Figures 2D, S2K): The following outlines the decoder 

method for predicting past (retrospective) or future behavior (prospective). For predicting 

head curvature and velocity, the same method was used; for ease of explanation, in this 

description we focus on velocity. We trained linear decoder models to predict the average 

velocity of the worm at various temporal shifts, based on the worm’s current (z-scored) 

neural activity; only neurons that encoded velocity (or head curvature, for the head curvature 

prediction) were included. The models were trained on data from all 14 SWF415 animals. 

A separate model was trained for each time point. The average velocity was computed in 

the window spanning Δt − 8, Δt + 8  where Δt is the difference between the time point to 

be predicted and the current time (Δt = 0 is current; positive values indicate future values 

of behavior while negative values indicate past values). This approximately corresponds to 

a 10-sec time window. Velocity across the full 1600 time points was z-scored before being 

averaged. Each dataset was split into 5 segments for cross-validation, with 100-timepoint 

gaps in between to prevent the training time information from spilling over to the test time 

segment. The models were regularized using an elastic net (L1 and L2).

As a control, separate models were trained that attempted to predict shifted velocity, 

which should scramble the relationship between neural activity and behavior. Velocity 

was circularly shifted by an amount between 125 and 600 time points, and, additionally, 

shifts that would result in a correlation of greater than 0.2 with actual velocity were 

discarded. 50 such decoders were trained, each using a different, randomly-selected shift. 

The performance of the decoder trained to predict averaged velocity Δt time points into 

the past was then defined as the difference between the cost (square root of MSE) of that 

decoder and the average cost of each of the 50 decoders trained on shifted velocity.
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To ensure that decoder performance based on neural activity with Δt > 0 was actually a 

representation of historical velocity information, and not simply due to the autocorrelative 

nature of velocity, a separate family of decoders were trained that was given the worm’s 

current (z-scored) velocity as input instead of neural activity. The error of those decoders 

to their shifted controls is also displayed in Figure 2D. Finally, to estimate the maximum 

possible performance of these decoder models, separate “perfect” decoders were trained 

that were given the worm’s (z-scored) velocity at time points t + Δt for each value of 

Δt ∈ − 108, 108 , and were then subjected to the same shift test.

Constructing low-dimensional embeddings of neurons via UMAP: We wanted to use 

CePNEM to construct a low-dimensional UMAP space where any neuron from any animal 

could be embedded. To accomplish this, we took the three modeled behaviors from 12 

SWF415 animals and appended them, so as to have a wide range of possible behavioral 

dynamics. Then, we took 4,004 median CePNEM fits (sampled from 4004 neurons across 

14 SWF415 animals) and extrapolated them over the appended behavioral data, to estimate 

what the neuron would have done under our model over a wide range of behaviors. We then 

ran UMAP on the resulting 4004 × 19200 matrix to define a two-dimensional embedding 

space. Finally, we projected all posterior CePNEM fits from each neuron into this UMAP 

space to create the point cloud shown in Figure 3A. We also projected subsets of neurons 

based on encoding type (Figures 3B–3F), identity (Figure 5E), and dataset (Figure S3); to 

do this, we simply run the same projection procedure on all posterior CePNEM fits from 

each neuron in the subset in question (i.e. the UMAP space was the same for all embeddings 

shown in the paper).

Neural trace reconstruction using principal component analysis: To determine the 

number of principal components needed to reconstruct each neuron, PCA was performed 

first on all neurons in each dataset. Neurons without high enough SNR were excluded from 

the analysis. We determined the SNR cutoff based on our GFP datasets. Specifically, a given 

neuron needed to have signal standard deviation higher than 1
1 − pσGFP, where σGFP is the GFP 

signal standard deviation and p is the required fraction of variance explained. To reconstruct 

the neurons, each neuron’s loadings were sorted by absolute value. Then we increase the 

number of principal components used to reconstruct until the required variance explained is 

met. In each dataset, this process is repeated for all neurons with high enough SNR.

Neural trace clustering analysis: To estimate the optimal number of clusters in the neural 

traces (Fig. S4A), we first mean center neuron. Then k-means clustering is performed on 

each dataset with varying number of clusters, k, ranging from 2 to 10. For each k, we 

compute the Calinski-Harabasz index. We repeat this on all SWF415 datasets.

State neuron detection analysis (Figure 7F–G): For detecting state neurons whose 

persistent activity changes are aligned to the heat-induced state change, we needed to find 

neurons with activity changes that were approximately time-locked to the heat stimulus, 

rather than neurons that simply have very slowly varying activity. To accomplish this, we 

trained decoder models to decode the indicator function of a time point t from neural 

activity, and then asked whether the neuron was able to decode better when t was the time 
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of the heat-stim, when compared to other control values of t. Neurons where the heat-stim 

decoder outperformed all of the other decoders were considered to have time-locked state 

responses to the stimulus. Time points that were too close to the beginning or end of the 

recording, or too close to the heat-stim were excluded from the controls.

The average persistent change in activity in response to the heat stimulus metric displayed 

in the Figure 7G heatmap was computed as the average difference between mean pre-stim 

and post-stim neural activity F
Fmean

. When the neuron statistically failed to have time-locked 

responses to the stim in a dataset, the difference was entered into the average as 0 for that 

dataset in order to filter out responses that were not time-locked to the stimulus.

Behavioral analyses during cellular perturbations—For behavioral analysis in 

animals that had single neuron classes chronically silenced or ablated, we (i) recorded 

animal speed on multi-worm trackers, as previously described62, (ii) recorded head curvature 

behaviors on high-resolution single worm trackers, as previously described63, and (iii) 

quantified pharyngeal pumping manually. For single neuron manipulations that involved 

optogenetic activation or silencing, we used the same methods for behavioral quantification, 

but delivered blue (250 uW/mm2) or red (700 uW/mm2) wavelength light at defined times, 

as described in the figures and figure legends.

List of key software packages used—Gen.jl, PyPlot.jl, PyCall.jl, 

HDF5.jl, ProgressMeter.jl, Distributions.jl, Images.jl, Nlopt.jl, DelimitedFiles.jl, 

NaNMath.jl, Clustering.jl, DataStructures.jl, Interpolations.jl, MultivariateStats.jl, Optim.jl, 

TotalVariation.jl, UMAP.jl, Lasso.jl, VideoIO.jl, Impute.jl, JLD2.jl, JSON.jl LsqFit.jl, 

MLBase.jl, ImageTransformations.jl, HypothesisTests.jl, MultipleTesting.jl, GLM.jl, 

GLMNet.jl, ForwardDiff.jl, FFTW.jl, Distances.jl, DSP.jl, CoordinateTransformations.jl, 

Combinatorics.jl, Colors.jl, ColorTypes.jl, Cairo.jl, CUDA.jl, KernelDensity.jl

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical methods used in the paper are described in the figure legends and, where 

indicated, additional details are provided in the Method Details. Definitions of sample 

size, measures of center and dispersion, and precision measures are also indicated in 

figure legends. Statistics were computed using Julia, MATLAB, and GraphPad Prism. Non-

parametric statistics were exclusively used in the study. When appropriate, corrections for 

multiple comparisons were implemented via Benjamini-Hochberg or Bonferroni correction, 

as indicated in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A probabilistic encoder model reveals how neurons across the C. elegans brain 
represent behavior
(A) Light path of the microscope. Top: behavioral data are collected in NIR brightfield. 

Images (panel B) are processed by the online tracking system, which sends commands 

to the stage to cancel out the motion. Bottom: spinning disk confocal for imaging head 

fluorescence.

(B-C) Example images from the two light paths in (A). Panel (C) is a maximum intensity 

projection.

(D) Software pipeline to extract GCaMP signals from the confocal volumes. See Methods.
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(E) Heatmap of neural traces collected from a pan-neuronal GFP control animal. Data are 

shown using same color scale as GCaMP data in (G).

(F) Comparison of signal variation in all neurons from GFP and GCaMP recordings.

(G) Example dataset, with GCaMP data and behavioral features. GCaMP data displayed on 

same color scale as (E). Body segment is a vector of body angles from head to tail. Inset 

(green) shows a zoomed region to illustrate fast head oscillations.

(H) Three example neurons from one animal that encode velocity over different timescales. 

Each neuron (blue) is correlated with an exponentially-weighted (red kernels) moving 

average (gray) of the animal’s recent velocity, over different timescales. Inset shows half-

decay times of exponentials and correlations of neurons to gray traces.

(I) Example tuning scatterplots for three neurons (different from those in H) showing how 

their activity relates to velocity. Dots are individual timepoints.

(J) Example tuning scatterplots for three neurons that combine information about head 

curvature (color) and velocity (x-axis). Dots are individual timepoints. For each neuron, the 

red and green dots separate from one another only for negative or positive velocity values.

(K) Simplified expression of the deterministic component of CePNEM. Here, we represent 

the effect of timescale via an integral, whereas Equation 1 in the text represents timescale 

via recursion.

(L) Left and Middle: Fitting procedure. Likelihood weighting selects a particle with the 

best fit to the data and uses it to initialize a Monte Carlo process that infers the posterior 

distribution (see Methods for details). Gray shading indicates model likelihood. Right: 

example posterior distribution for a neural trace, shown for two model parameters for 

illustrative purposes.

(M) Example neural traces and median of all posterior CePNEM fits for that neuron. Inset 

cross-validation (cv) scores are pseudo-R2 scores on withheld testing data (see Methods).

See also Figure S1, Figure S2, and Movie S1.
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Figure 2. Varied representations of behavior across the C. elegans brain
(A) Fraction of neurons per animal that encode indicated behaviors. If a neuron encoded >1 

behavior, it is represented in multiple categories. Error bars show standard deviation between 

animals.

(B) Fraction of neurons per animal that encode 0, 1, 2, or 3 of the behaviors. Error bars show 

standard deviation between animals.

(C) ECDF of the median model half-decay time for neurons that encode at least one 

behavior. Shading shows standard deviation between animals.
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(D) Performance of linear decoders that predict velocity at times offset from current neural 

activity (brown). Performance is the difference in error between the actual decoders and 

control scrambled decoders. Predicted velocity values were averaged over a 10-sec sliding 

window centered Δt seconds from the current time. Decoders trained to make this prediction 

based on current velocity (black) or velocity values at all times (gray) are also shown. 

Shading shows standard deviation across animals.

(E) Distributions of how neurons encode the indicated behaviors. Neurons were categorized 

based on their tuning curves to each behavior (see Methods). Example tuning curves are 

shown above and prototypical tuning curves for each category are shown.

(F) Five example neurons that encode forward locomotion, together with CePNEM-derived 

tuning curves for each neuron, and the mean and standard deviation of each neuron’s 

half-decay time.

(G) Three example neurons that encode head curvature in conjunction with movement 

direction, together with CePNEM-derived tuning parameters.

(H) Three example neurons that encode feeding information, together with CePNEM-

derived tuning parameters.
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Figure 3. Global analysis of how neurons encode behavior in the C. elegans nervous system
(A) UMAP embedding of all neurons in 14 animals, where proximity indicates encoding 

similarity (see Methods). Here, we projected all points from each neuron’s CePNEM 

posterior. Fig. S3D shows only one dot per neuron.

(B-E) UMAP space where neurons are colored by their behavioral encodings. Long versus 

short timescale is split at half-decay time of 20 sec.

(F) Zoomed portion of UMAP space, where neurons are color-coded by their velocity tuning 

curves.

(G) Example animal, showing neurons’ tuning to behavior and loadings onto the top five 

PCs. Neurons are hierarchically clustered by their PC loadings.

(H) Number of PCs needed to explain 75% of the variance in a given neuron, averaged 

across neurons in 14 animals. Data are means and standard deviation across animals.

See also Figure S3.
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Figure 4. An atlas of how the different C. elegans neuron classes encode behavior
(A) An atlas of how the indicated neuron classes encode behavior, derived from analysis of 

fit CePNEM models. Columns show:

• Encoding strength: approximate variance in neural activity explained by each behavioral 

variable.

• Forwardness, Dorsalness, and Feedingness: slope of the tuning to each behavior.

• Enc. timescale: median half-decay time

• Overall act. level: standard deviation of the calcium traces when normalized as F/Fmean.
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• Enc. Variability: how differently the neuron class encoded behavior across recordings. 

Other columns show the fraction of recorded neurons that significantly encoded behaviors:

• Fwd, Rev, Dorsal, Ventral, Activated, and Inhibited: neurons with that overall tuning to 

behavior.

• Fwd slope −, Fwd slope +, Rev slope −, and Rev slope +: neurons with that slope in their 

velocity tuning curves during the specified movement direction.

• F slope > R slope and F slope < R slope: neurons displaying rectification in their velocity 

tuning curves.

• Dorsal during F, Ventral during F, Dorsal during R, Ventral during R, Act during 
F, Inh during F, Act during R, and Inh during R: neurons with that tuning to behavior 

during the specified movement direction (Forward or Reverse).

• More D during F, More V during F, More A during F, and More I during F: neurons 

with different tunings to behavior during forward versus reverse.

Parenthesis on right indicates the number of CePNEM fits per neuron class (first and second 

halves of videos, which have different model fits, are counted separately).

(B-C) Circuit diagram of neurons that innervate head muscles with overlaid behavioral 

encodings during forward (B) and reverse (C) movement. Edge thickness indicates number 

of synapses between neurons. Left/right neurons shown separately, because one of these 

pairs (SAAD) exhibited asymmetric activity, suggesting an asymmetry in this circuit.

(D) Circuit diagrams of behavioral circuits.

See also Figures S4, Figure S5, and Table S1.
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Figure 5. Neural encoding features map onto different regions of the connectome
(A) Cumulative distribution of the correlation coefficients of activities of pairs of neurons 

connected in different ways. Left/right pairs were merged for this analysis, so it only 

considers relationships between different neuron classes. *p<0.05 **p<0.005 ***p<0.0005, 

Mann-Whitney U-test.

(B) Median correlation coefficients between each neuron and its synaptic inputs (blue) or 

outputs (orange). Control (gray) shows randomly selected neurons of equal group size.
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(C) Neurons (circles) and connections (gray lines) in the C. elegans connectome, with 

behavior encoding information. Connectome region (x-axis): neurons with similar wiring are 

adjacent on this axis, computed as the second eigenvector of the laplacian of the connectome 

graph. Sensorimotor layer (y-axis): neurons arranged from sensory to motor (see Methods). 

Some neurons are labeled to provide rough orientation to the layout.

(D) Same as in (C), but one behavior per plot.

(E-G) Distribution of encoding features in the connectome, arranged as in (C). Marginal 

distributions (blue) show values of each behavioral feature along each axis. Gray control 

lines show how behavioral features are distributed when randomly shuffled. *p< 0.05 

**p<0.005, ***p<0.0005, one sample Z-test for proportion.

(H) The number of synapses connecting the neurons with high variability (see Methods) is 

shown as a red line. Gray shows the number of synapses connecting random neuron groups. 

Inset shows rank of the true value in this shuffle distribution.
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Figure 6. Neural representations of behavior dynamically change over time
(A) Analysis of inter- versus intra-dataset encoding variability. Each dot is a neuron class.

(B) For the group of neurons that frequently change encoding, red line shows percent of 

synapses onto these neurons that come from neurons within the group. Gray controls are the 

same values for random groups of neurons of similar size. Inset percentile shows rank of 

true number.

(C) How neurons changed encoding across SWF415 animals. Categories are: “lose all” (lost 

tuning to behavior), “lose some” (lost tuning to one or more behavior), “gain all”, “gain 
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some”, “swap” (both gained and lost tuning to behaviors), and “modify” (encode the same 

behavior(s), but differently).

(D) Two example neurons with CePNEM fits, showing a change in neural encoding of 

behavior. Yellow dashed lines indicate times when neurons across the full dataset displayed 

a sudden shift in encoding (see (F)).

(E) Example neurons OLQDL and URYDL, depicted as in (D).

(F) Data from same animal as (D) showing a sharp change in neural encoding of behavior. 

We fit CePNEM models to the first and second halves of the recording (Model 1 and Model 

2). We then computed the difference between the errors of the two median model fits and 

smoothened with a 200-timepoint moving average. This was then averaged across encoding 

changing neurons. A sudden change (yellow line) indicates a sudden shift in behavior 

encoding across neurons.

(G) Data from the same animal as (E) showing a sudden change in neural encoding, 

displayed as in (F).

(H) Fraction of times that neuron classes changed encoding at the same moment, relative to 

their encoding changes overall. Rows were clustered and white outlines depict main clusters. 

**p<0.005, empirical p-value that clustering would perform as well during random shuffles. 

Within each cluster, the neurons were more likely to have unidirectional synapses and/or 

gap junctions with one another compared to random shuffles, as indicated. ***p<0.0005, 

empirical p-value.

(I) Neuron pairs with unidirectional synapses or electrical synapses were more likely 

to change encoding together, compared to random shuffles (gray distributions). *p<0.05, 

**p<0.005, empirical p-value.

See also Figure S6.
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Figure 7. Behavioral state changes cause a widespread remapping of how neurons encode 
behavior
(A) Illustrative cartoon: a 1436nm IR laser transiently increases the temperature around the 

animal’s head by 10°C for 1 sec.

(B) Event-triggered averages of behavior of 32 animals in response to the heat stimulus. 

**p<0.05, Wilcoxon signed rank test, pre- versus post-stimulus.

(C) Neural data from an animal that received a heat stimulus (red line).

(D-F) Event-triggered averages of neural activity aligned to the heat stimulus for some 

neurons with (D) excitatory or (E) inhibitory responses to the stimulus, or (F) persistent 
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activity changes. ETAs in (F) are smoothed over 30 seconds; dashed lines indicate where the 

stim is within the moving average window.

(G) Responses of different neuron classes to the heat stimulus (n=19 animals):

• Immediate (<4 seconds) and sustained (15–30 seconds) GCaMP responses

• Persistent activity changes. See Methods.

• Encoding variability pre- vs post-stimulus. See Methods.

(H) Example neurons that showed abrupt changes in their behavior encoding immediately 

after the stimulus.

(I) Example dataset. Light blue neurons had persistent activity changes. Dark blue neurons 

changed encoding after the stimulus.

(J) Top three plots: Average activity, computed as F − Fmean
Fmean

, before and after the heat 

stimulus. Error bars show SEM across animals. **p<0.005, ***p<0.0005, Wilcoxon signed 

rank test. Bottom four plots: tuning curves to feeding behavior for each neuron class (pre- 

versus post-heat-stimulus data). Data are pooled across 19 animals.

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

E. coli: Strain OP50 Caenorhabditis Genetics 
Center (CGC)

OP50

Chemicals, Peptides, and Recombinant Proteins

Rhodamine 110 Millipore
Sigma

Cat#83695

Rhodamine B Millipore
Sigma

Cat#83689

Deposited Data

Original code and data related to recording and analyzing neural 
activity and behavior

This paper Data: https://doi.org/10.5281/
zenodo.8150515 and 
www.wormwideweb.org Code: 
https://doi.org/10.5281/zenodo.8151918 
and https://github.com/flavell-lab/
AtanasKim-Cell2023

Experimental Models: Organisms/Strains

C. elegans: flvIsl 7[tag-168: :NLS-GCaMP7F, gcy-28.d::NLS-tag-
RFPt, ceh-36:NLS-tag-RFPt, inx-1::tag-RFPt, mod-1 ::tag-RFPt, 
tph-1 (short)::NLS-tag-RFPt, gcy-5::NLS-tag-RFPt, gcy-7::NLS-
tag-RFPt]; flvIs18[tag-168: :NLS-mNeptune2.5]; lite-1(ce314); 
gur-3(ok2245)

This paper SWF415

C. elegans: flvIs17; otIs670 [low-brightness NeuroPAL]; 
lite-1(ce314); gur-3(ok2245)

This paper SWF702

C. elegans: flvEx450[eat-4::NLS-GFP, tag-168: :NLS-
mNeptune2.5]; lite-1(ce314); gur-3(ok2245)

This paper SWF360

C. elegans: flvEx451[tag-168::NLS-GFP, tag-168::NLS-
mNeptune2.5]; lite-1(ce314); gur-3(ok2245)

This paper SWF467

C. elegans: flvEx207[nlp-70::HisCl1, elt-2::nGFP] This paper SWF515

C. elegans: flvEx301[tbh-1:: TeTx: :sl2-mCherry, elt-2::nGFP] This paper SWF688

C. elegans: flvEx481[flp-8::inv[unc-103-sl2-GFP], ceh-6::cre, 
myo-2::mChrimson]

This paper SWF996

C. elegans: flvEx482[unc-25::inv[unc-103-sl2-GFP], flp-22::cre, 
myo-2::mChrimson]

This paper SWF997

C. elegans: kyEx4268 [mod-1::nCre, myo-2::mCherry]; 
kyEx4499 [odr-2(2b)::inv[TeTx::sl2GFP], myo-3::mCherry]

This paper SWF703

C. elegans: leIs4207 [Plad-2::CED-3 (p15), Punc-42::CED-3 
(p17), Plad-2::GFP, Pmyo-2::mCherry]

This paper UL4207

C. elegans: leIs4230 [Pflp-12s::CED-3 (p15), Pflp-12s::CED-3 
(p17), Pflp-12s::GFP, Pmyo-2::mCherry]

This paper UL4230

C. elegans: flvEx485[gcy-21::Chrimson-t2a-mScarlett, 
elt-2::nGFP]

This paper SWF1000

C. elegans: flvEx502[ceh-28::GtACR2-t2a-GFP, 
myo-2::mCherry]

This paper SWF1026

C. elegans: flvEx499[ceh-19::inv[GtACR2-sl2-GFP], 
ins-10::nCre, myo-2::mCherry]

This paper SWF1023

Recombinant DNA

pSF300 [tag-168 ::NLS-GCaMP7F] This paper pSF300
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REAGENT or RESOURCE SOURCE IDENTIFIER

pSF301[tag-168::NLS-mNeptune2.5] This paper pSF301

pSF302[tag-168::NLS-GFP] This paper pSF302

pSF303 [tag-168::NLS-tag-RFPt] This paper pSF303

Software and Algorithms

NIS-Elements (v4.51.01) Nikon https://www.nikoninstruments.com/
products/software

Other

Zyla 4.2 Plus sCMOS camera Andor N/A

Ti-E Inverted Microscope Nikon N/A
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