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A multiplex metabolomic approach 
for quality control of Spirulina 
supplement and its allied 
microalgae (Amphora & Chlorella) 
assisted by chemometrics 
and molecular networking
Nesrine Hegazi 1*, Amira R. Khattab 2, Hamada H. Saad 1, Bishoy Abib 3 & 
Mohamed A. Farag 4*

Microalgae species are of economic importance regarded as “green gold” being rich in bioactive 
compounds. Spirulina and Chlorella are the most popular microalgal species and are marketed as 
healthy food supplements. At the same time, Amphora holds potential as a source of healthy lipids 
and essential fatty acids. Yet, there are considerable variations in their reported chemical composition, 
and less is known about their compositional differences. A multiplexed metabolomic approach 
was adopted for the quality control (QC) of Spirulina supplements and to compare its constitutive 
metabolome to Chlorella and Amphora. The adopted protocol comprised gas chromatography-mass 
spectrometry (GC–MS), ultra-high performance liquid chromatography coupled with high-resolution 
tandem mass spectrometry (UPLC-HRMS/MS), and ultraviolet–visible spectrophotometry (UV/
Vis) for mapping their primary and secondary metabolome. Interestingly, UPLC-HRMS/MS analysis 
delineated the abundance of fatty acids in Amphora versus glycolipids enrichment in Spirulina, 
and porphyrins were the main pigments identified in Spirulina, with scarce occurrence in Chlorella. 
Orthogonal projections to latent structures discriminant analysis (OPLS-DA) analysis of GC–MS data 
set revealed palmitic acid, 3-mannobiose, and glyceryl-glycoside as being most enriched in Spirulina, 
versus sucrose and leucine in Chlorella and Amphora, respectively. Despite being of low discriminatory 
potential, UV/Vis OPLS-DA modeling showed that Spirulina was distinguished with the UV 
absorbances of carotenoids and chlorophyll pigments, as indicated by its OPLS-DA derived S-plot. Our 
study provides a QC approach for the analysis of the microalgal species and poses alternative spectral 
and compositional markers for their discrimination.

Nowadays, sustainable food production is a pressing need to combat the scarcity of natural resources and reduce 
associated environmental effects1. Transformation to sustainable food production aims at providing a globally 
accessible healthier diet. Healthier diets should include food rich in polyunsaturated fatty acids (i.e., omega-3 
and omega-6 fatty acids). Commonly fish oil is the most consumed for its omega-3 content, yet there is a growing 
necessity to find an alternative source for the limits of fishing and to meet the needs of vegetarians and vegans2. 
To fill such a need, microalgae have attracted increasing attention as a rich source of omega-3 and omega-6 
lipids. Besides being nutritional rich, they are grown under sustainable conditions, thus helping us preserve our 
scarce ocean resources3. Microalage compromises a massive number of species ranging from 200,000 to 800,0004. 
Some species are of economic and industrial importance and could be regarded as “green gold” being a source 
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of bioactive compounds for the production of food, feed, cosmetics, and biofuel5. Besides being abundant in 
proteins, carbohydrates, and lipids, they are also a superior resource of vitamins and minerals6. Compared to 
extensive phytochemical studies on plant-based nutraceuticals7, much less is reported in the literature regarding 
marine-based neutraceuticals, including those derived from microalgae and their commercial preparations.

Presently, microalgae are promoted as healthy food and are available as dietary supplements in different 
forms i.e. powders, tablets, capsules, and liquids8. Among the widely consumed microalgae species are Spirulina 
(Arthrospira maxima and Arythrospira platensis) and Chlorella sp., which are dominating the global market due to 
their nutrient-rich profile9. In addition, they are also used as feed for terrestrial and aquatic animals10. According 
to WHO, Spirulina is recognized as a “superfood” and is marketed by NASA as the most concentrated human 
food11. Many studies have dealt with its chemical composition. Chlorella sp. as well is industrially cultivated as 
human food and is recognized for its high lipid content (specially enriched in omega-3 and omega-6 fatty acids)3. 
Yet, there are considerable variations in the reported chemical composition of the same algal species or even 
strains which could be attributed to differences in the cultivation conditions12.

Besides the widely recognized Spirulina and Chlorella, Amphora sp. holds potential as an alternative source 
of healthy lipids and essential fatty acids. Amphora is a pennate diatom microalga, which recently has attracted 
interest as a biofuel, and as a source of essential lipids being highly productive and environmentally friendly12.

In this regard, a multiplex metabolome approach was undertaken to map the metabolome of different com-
mercially marketed Spirulina samples and to compare it to those of Chlorella and Amphora species as other 
microalgae. Metabolomics provides a comprehensive insight into organisms’ chemical composition, increasingly 
reported for quality control of herbal drugs and less reported in the case of marine nutraceuticals. Metabolomics 
typically employs chromatographic tools, i.e., gas chromatography (GC) or liquid chromatography (LC), cou-
pled to spectroscopic tools, i.e., MS or NMR, for metabolites detection, followed by analysis using multivariate 
data analyses for data visualization. In this study, metabolomics tools, including ultra-high performance liquid 
chromatography coupled to high-resolution tandem mass spectrometry (UPLC-HRMS/MS) and gas chroma-
tography coupled to mass spectrometry (GC–MS) post-silylation were recruited for such a purpose. Recently, 
metabolomics has been an irreplaceable approach for fingerprinting and analyzing complex food matrices, 
offering valuable insights into their composition and their nutritive value13, and is scarcely applied in algae 
analysis. Additionally, their discrimination based on their UV–vis spectroscopic profile was compared to their 
acquired metabolomics data considering its robustness, less expensive, and more applicable at the industrial 
scale14. Owing to the complexity of metabolomics-driven data, multivariate data analysis was recruited to further 
determine discriminating metabolites among algal samples and identify markers for each taxon. Additionally, 
an inspection of the recorded metabolome (i.e., UPLC-HRMS/MS data) was aided by the spectral similarities 
network available through the GNPS platform (https://​gnps.​ucsd.​edu) for the first time to be reported in algae, 
which allows for propagation of the metabolites annotation and mapping metabolites distribution among the 
studied samples (Fig. 1).
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Figure 1.   Schematic representation of the adopted metabolomics workflow for the analysis of Spirulina 
supplements in comparison to other microalgal species (i.e. Chlorella and Amphora).
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Results and discussion
UPLC‑HRMS/MS analysis of Spirulina samples versus Amphora and Chlorella
The current study aimed to broadly compare the metabolome of Spirulina samples in context to those of other 
nutritionally significant algal species (i.e. Chlorella and Amphora) targeting their large secondary and primary 
metabolome.

UPLC-HRMS/MS in both ionization modes was employed for mapping of the selected algal species metabo-
lome. The base peak chromatogram in both ionization modes showed a quite similar metabolome profile of the 
Spirulina samples, albeit being different from Chlorella and Amphora (Fig. 2, Supplementary Fig. 1). Subsequently, 

Figure 2.   Base Peak Chromatogram (BPC) of the studied algal species in the positive ionization mode. Refer to 
Supplementary Table S3 for sample codes.
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feature-based molecular network (FBMNs) was employed for a deeper comprehensive view of the chemical 
similarities and differences among the studied samples. The generated FBMNs offered a global overview of 
the existing chemical space and highlighted the similarities and differences among the selected algal species. 
The positive FBMN constituted 3798 nodes with 2046 connected features and the remaining as single nodes 
(Fig. 3). While the negative FBMN included 1411 features with 727 grouped nodes and the rest as singletons 
(Supplementary Fig. 2).

Annotation of the detected features relied on their elution order, chemical formulas, and their fragmentation 
pattern, synchronized with the FBMNs and the in silico fragmentation trees proposed by Sirius and searching 
literature15,16.

Visual exploration of chromatographic fingerprints among algal samples (i.e. Spirulina, Amphora, and Chlo-
rella) delineated the abundance of fatty acids in Amphora, glycerolipids, glycolipids, and porphyrins in Spirulina, 
versus acyl amino acids enrichment in both Amphora and Chlorella. A total of 89 metabolites were annotated 
belonging to different classes, including fatty acids, phospholipids, glycolipids, glycerolipids, and porphyrins 
(chlorophyll pigments) (Supplementary Table S1).

Fatty acids
Microalgae are recognized as chief producers of a wide array of fatty acid derivatives such as hydroxyl fatty acids, 
oxylipins, alkenones, and polyols of potential nutraceutical and biotechnological applications17. For instance, 
unsaturated fatty acids (i.e., ω-3 fatty acids) represent an indispensable ingredient of healthy human diets, in 
addition to their potential to reduce the risks of atherosclerosis, cancer, and inflammation17. Recently, microal-
gae have attracted attention as an alternative and sustainable source of such nutritionally valuable molecules18.

Metabolome mapping of the selected algal specimens identified Amphora sp. as the most abundant in various 
types of fatty acids derivatives (i.e., hydroxylated fatty acids, keto fatty acids, and polyunsaturated fatty acids) 
as delineated from both FBMNs, positive FBMN (Fig. 2, clusters a–c), and negative (Supplemenatry Fig. 2, 
clusters a-g).

Annotated fatty acids included hydroxylated fatty acids (1–7, 12, 18, 19, 22), keto fatty acids (8, 10, 17, 20, 
21), and unsaturated fatty acids (13, 15, 16) (Supplementary Table S1). Oxygenated fatty acids (i.e., hydroxy-
lated and keto derivatives) showed the successive loss of H2O molecules [M-H-18]−, followed by consecutive 
losses of 14 Da indicative of the cleavage of the C–C bonds (Supplementary Figs. S3, S4). Currently, the widely 
consumed microalgae species include Spirulina (Arthrospira spp.) and Chlorella spp., and our profiling suggests 
that Amphora spp. presents a potential source of essential lipids, which may have a wide range of applications 
ranging from biofuels to nutraceuticals.

Figure 3.   Feature-based Molecular Network (FBMN) of acquired UPLC-HRMS/MS data (positive ionization 
mode) of Spirulina samples versus Amphora and Chlorella. Clusters (a–c) fatty acids, (d) phospholipids, (e–h) 
nitrogenous lipids, (j) glycolipids, and (k) porphyrins.
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Phospholipids
Comparable to the abundant fatty acids in Amphora, phospholipids were present in the studied species, albeit 
with higher abundance in Chlorella. Two classes of phospholipids were detected in the studied algal samples 
exemplified by phosphocholines detected in the positive ionization mode (Fig. 3, cluster d), and phosphatidyl 
glycerols in the negative mode (Supplementary Fig. 2, cluster h) and highlighting the advantages for MS detection 
in different ion modes. Phosphocholines are characterized by the presence of fragment ions at m/z 184 and 104 
corresponding to the phosphocholine and choline moieties19 (Supplementary Fig. S5). Detected phosphocholines 
included dioctanoyl phosphocholine (28), which grouped with other related unidentified analogs that have yet 
to be identified using other spectroscopic techniques post isolation.

Glycerophosphate lipids were distinguished by the loss of the two acyl moieties represented by several isomers 
of O-linoleoyl-O-stearoyl-sn-glycero-phosphate (33, 34, and 35) with an insignificant pattern of distribution 
among all algal samples (Supplementary Fig. S6).

Nitrogenous lipids
Several nitrogenous compounds were detected in positive ion mode, mainly sphingosines and acyl fatty acids 
(Fig. 3, clusters e–h) detected in both Amphora and Chlorella samples. The detected sphingosines produced a pre-
dominant fragment ion of [M + H-H2O]+ corresponding to the loss of a water unit, followed by the loss of another 
water moiety and formaldehyde, which results in the formation of highly abundant fragment [M + H-H2O-
CH2O]+. Annotated sphingosines included aminohexadecanediol (36), aminotetradecanol (37), aminoocta-
decenediol (38), aminoheptadecanediol (39), aminoicosanetetrol (40), N-(dihydroxypropyl)octadecanamide 
(43), C20 sphingosine (44), and icosasphinganine (45) (Supplementary Fig. S7).

In addition to sphingosines, acylated amino acids were detected exemplified by N-palmitoyl-L-arginine (42) 
(Supplementary Fig. S8), detected in Spirulina, versus palmitoylputrescine (47), N-icosanoyl-glycine (48) in 
Chlorella, and octadecanoyl-L-carnitine (49) in both Amphora and Chlorella. Fatty acyl amides were also detected 
as linoleic acid amide (41) in Chlorella (Supplementary Fig. S9).

Phytoprostanes (Eicosanoids)
Phytoprostanes are produced through the autoxidation of α-linolenic acid under the influence of both biotic 
and abiotic factors. They are widely detected in terrestrial plants and scarcely reported in macroalgae20. Two 
phytoprostanes were detected in positive FBMN as self-looped nodes and were tentatively assigned as phytopros-
tane A1 (51), and deoxyphytoprostane (52), which have yet to be confirmed using other tools to be conclusive.

Glyco/ and glycerolipids
The positive FBMN unveiled the occurrence of glycolipids mainly as digalactosylacyl glycerols (DGG) and 
monogalactosyl acylglycerols (MGG) (Fig. 3, cluster j). As previously reported, glycolipids were detected chiefly 
as [M + Na]+ ions, which upon fragmentation, shows the loss of a hexosyl (− 162 Da), two hexosyls (-324 Da), 
and the loss of the fatty acyl chains as acid derivatives (–RCOOH)21.

Several DGG features were detected chiefly in Spirulina and were annotated as hydroxy-[(oxooctadecatrienyl)
oxypropyl O-dihexoside (54), O- octadecaenoic-O-di-O-hexosyl-glycerol (55), and isomers of hexadecanoic 
acid- O-di-O-hexosyl-glycerol (56 & 57) (Supplementary Fig. S10). While MGG analogues were O-linolenoyl-O- 
hexosyl-glycerol (58), O-hexadecenoyl-hexosyl-glycerol (59), O-hexadecanoyl-hexosylglycerol (57), O-palmitoyl-
O- hexosylglycerol (62) (Supplementary Fig. S11), and one diacyl MGG annotated as O-linoleoyl-O-palmitoyl-
O- hexosyllglycerol (63).

Similar to the abundant glycolipids, several monoacylglycerols were also detected in Spirulina and Chlorella, 
mainly as singletons. Annotated features included monolinolenoyl glycerol (64), glyceryl palmitoleate (65), 
palmitoyl glycerol (66) (Supplementary Fig. S12), and isomers of linoleoyl glycerol (67 and 68).

Sulpholipids
Contrariwise to glycolipids abundance in positive FBMN, sulpholipids (i.e. sulphoquinovosyl monoacyl glyc-
erols) were predominated in the negative FBMN (Supplemenatry Fig. 2, cluster J),  specifically occurring in 
Spirulina samples. Sulphoquinovosyl monoacylglycerols are acylglycerols esterified with various fatty acids and 
a sulphoguinivose moiety (i.e. sulphonated hexose), which are better observed in the negative ionization mode 
owing to their strongly acidic sulphate group22.

Their MS2 spectra showed characteristic fragment ion at m/z 225 corresponding to [C6H9O7S]- and the neutral 
loss of the fatty acyl side chain. Annotated sulphoquinovosyl monoacylglycerols included isomers of O-palmitoyl-
O-(sulfo-galactosyl) glycerol (86 and 87) (Supplementary Fig. S13. Sulphoquinovosyl monoacylglycerols were 
previously detected in Spirulina23 and were isolated from the brown alga, Ishige sinicola, and exhibited algicidal 
activities24

Porphyrins
Porphyrins are chlorophyll pigments with a highly conjugated system showing a characteristic UV spectrum 
with λmax values at 450 and 680 nm25, (Supplementary Figs. S14, S15), and are known to occur in green algae26. 
Their identification is mainly aided by their distinctive UV spectrum, as they often fail to yield MS/MS fragments 
under the range of collision energy frequently set for small molecules16.

The positive FBMN revealed the abundance of porphyrins among examined Spirulina samples versus trace 
levels in Chlorella and Amphora (Fig. 3, cluster l), and suggestive that Spirulina presents a potential source 
of porphyrins. The MS2 spectra of porphyrins showed fragments resulting from the consecutive loss of H2O 
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molecules, followed by the loss of CO and CH2 based on their substitutional pattern as previously reported27,28, 
(Supplementary Figs. S14, S15).

The annotated porphyrins included bacteriopheophorbide a (74), mesoporphyrin IX (77), harderoporphyrin 
(78), methyl 8-ethyl-12-methylbacteriopheophorbide c (81),  tetramethyl-3-(methoxycarbonyl)-5-(1,2-dioxo-2-
methoxyethyl)-13-vinyl-18-ethyl-7,8-dihydro-21H,23H-porphyrin-7-propionic acid (82), hydroxy pheophorbide 
a (83), and pheophorbide a (84). It is worth mentioning that along the known porphyrins, several unknown 
analogs were observed within the same cluster (Fig. 3, cluster l).

Primary metabolites profiling of Spirulina samples versus Amphora and Chlorella via GC–MS 
post‑silylation
For an overview of the constitutive primary low molecular weight metabolites of the examined microalgal 
samples, GC–MS post-silylation was employed to better assess its nutritive value and to complement UPLC-MS 
results. A total of 56 metabolites (Supplementary Table S2) were identified, including alcohols, amino acids, fatty 
acids/ esters, glycosides, hydrocarbons, inorganic compounds, nitrogenous compounds, organic acids, sugars, 
sugar alcohols, and terpene alcohols, as detailed in the next subsections.

Fatty acids/esters
GC–MS analysis of the examined algal samples delineated the abundance of fatty acids/ esters, including saturated 
and unsaturated fatty acids (i.e. ω-3, ω-6, and ω-9), in algal species (14- 38%), thus representing a potential food 
supplement. Among the annotated fatty acids/ esters, palmitic acid (17) was the predominant form in Spirulina 
and Amphora versus glyceryl monostearate (25) in Chlorella. Other saturated fatty acids/ esters included stearic 
acid (21), arachidic acid (22), 2-palmitoyl glycerol (23), and 1-monopalmitin (24). With regards to unsaturated 
fatty acids, linoleic acid (18) was the most abundant in all samples, followed by linolenic (18) and oleic acid 
(19). Linoleic acid is evidenced to exert beneficial actions on blood lipids and lower serum cholesterol and blood 
pressure. Further, The nutritional value of linoleic acid is metabolized metabolism at tissue levels to produce the 
hormone-like prostaglandins29.

Glycosides
In contrast to the abundant fatty acids in all samples, glycerol glycosides were the second dominating metabo-
lite class in Spirulina (24–40%) samples occurring as glycerol glycosides (26, 27 & 28), and in accordance with 
UPLC-HRMS/MS findings (Fig. 3, Supplementary Fig. 2).

Sugars
Following the abundant fatty acids and their acyl derivatives, Spirulina samples showed much higher sugar 
levels (9–27%) compared with Amphora (2%) and Chlorella (14%). The predominant sugars in Spirulina were 
3-mannobiose (51), followed by melibiose (54) and sucrose (53). For Amphora, sucrose (53) and melibiose (54) 
were the most abundant forms vs. sucrose (53) and glucose (50) in Chlorella. Lastly, the sugar alcohol; myo-
inositol was detected at trace levels in all samples and suggestive that disaccharides account more for examined 
microalgal sugar profile and likely taste.

Mannobiose is well reported to act as an immunostimulatory molecule in murine dendritic via stimulating 
cytokine production in RAW264.7 macrophages30. Whereas, melibiose exerts immunostimulatory and anti-
allergic actions and enhances minerals absorption, promoting the growth of beneficial gut microbiota, especially 
Bifidobacterium and Lactobacillus strains31. The effecot fo algal products as prebiotics should be encouraged 
based on these detailed chemical analyses.

Amino acids/ nitrogenous compounds
In contrast to the abundance of sugars in Spirulina samples, Amphora and Chlorella showed higher levels of 
free amino acids (28% and 17%, respectively). Chlorella and Amphora were specifically enriched with essential 
amino acids such as valine (5), leucine (6), isoleucine (7), and allo-isoleucine (8). These essential amino acids 
add to the high nutritional value of microalgae and promote their use as supplements or nutraceuticals32. While 
non-essential amino acids included alanine (4), serine (9), asparatic acid (10), L-5-oxoproline (11), and glutamic 
acid (12).

Besides being enriched with amino acids, other nitrogenous compounds abundantly observed in Amphora 
and Chlorella (i.e., at 14 & 12%, correspondingly) including niacin (33) as the most prominent one. Other 
nitrogenous compounds included uracil (35), adenine (36), and adenosine (37).

Organic acids & alcohols
Organic acids showed comparable levels (7–14%) among examined microalgae, with caproic acid (40) as the 
major form (≈ 5–8%) in all the studied samples. Other organic acids included 3-hydroxybutyric acid (44), 
succinic acid (38), lactic acid (39), glycolic acid (40), and pyruvic acid (41). These organic acids are important 
intermediates of the tricarboxylic acid (TCA) cycle contributing to energy production and to the biosynthesis 
of more valuable metabolites such as lipids, proteins, and pigments33.

Amphora and Chlorella samples showed higher alcohol levels (6% and 4%) compared with Spirulina samples 
(0.6–1.5%), exemplified by 2,3 butandiol (1) and glycerol (2 and 3).
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Miscellaneous
Other metabolites included 1,2,4-benzenetriol (47) as the only detected phenolic specially enriched in Spirulina 
samples (0.7–2.8%). While phytol (56); a terpene alcohol, was detected in all samples. Aliphatic hydrocarbon 
was represented by 2,6,10-trimethyl- pentadecane (29), and phosphoric acid (30 and 31) as the only inorganic 
acid detected.

Multivariate unsupervised HCA and PCA analysis of GC–MS dataset
Multivariate analysis was further conducted via unsupervised pattern recognition methods i.e., principal com-
ponent analysis (PCA), hierarchical cluster analysis (HCA) using GC–MS data matrix to establish a metabolite-
based clustering of the three algal species and assess their metabolome similarity and/or heterogeneity34.

PCA modeling of GC–MS dataset of algal samples (S1, S3, S4, Am., Chl.) was performed with the two prin-
cipal components (PCs), explaining 87.7% and 8.2% of the total variance, respectively. PCA score plot (Fig. 4A) 
showed grouping of one sample of S3 along with S4 samples to the right-hand side of the plot; however, a separate 
group of Spirulina and Amphora and Chlorella (S1, Am. and chl.) samples was located towards the left side of the 
plot. Loading plot (Fig. 4B) explained such clustering owing to the abundance of both Spirulina samples (S3 & 
S4) in palmitic acid, mannobiose, glyceryl-glycoside, and niacin, versus glycerol enrichment in Spirulina sample 
(S1), Amphora (Am.), and Chlorella (chl.).

Hierarchical cluster analysis (HCA) further provided sample grouping in the form of a dendrogram encom-
passing two main clusters (I & II); cluster (I) contained majorly Spirulina samples (S1, S3 and S4), and cluster (II) 
included Amphora and Chlorella samples along with one Spirulina sample (S1) (Fig. 4C). Accordingly, Spirulina 
(S1) sample was omitted from subsequent modeling.

Supervised OPLS‑DA analysis of GC–MS dataset
In order to achieve a clear separation among samples and aid in identifying potential compositional markers, 
orthogonal projection to latent structures-discriminant analysis (OPLS-DA) of the GC–MS dataset was further 
attempted. When Spirulina, Amphora and Chlorella samples were modeled against one another using OPLS-DA, 
no separation between the samples was achieved in the derived score plot (Supplementary Fig. S16A). Hence, 
another OPLS-DA model was employed by modeling GC metabolite profiles of Spirulina samples (S3 and S4) 
against Chlorella (Chl.), and Amphora (Am.) samples each at a time (Fig. 5A–D). A better separation was obtained 
in both models, which explained 96 and 98% of the total variance (R2 = 0.99 and 0.98) with the prediction good-
ness parameter Q2 = 0.87 and 0.85, respectively (Supplementary Figs. S17B, S18B). Other validation parameters 

Figure 4.   Principal component analysis (PCA) and hierarchical clustering analysis (HCA) of GC–MS dataset 
of Spirulina (S1, S3 & S4), Amphora (Am.), Chlorella (Chl.). (A) Score plot of PC1 vs. PC2 scores. (B) Loading 
plot for PC1 & PC2 contributing metabolites and their assignments. The metabolome clusters are located at 
the distinct positions in two-dimensional space described by two vectors of principal component 1 (PC1) and 
principal component 2 (PC2) = 78.7% and PC2 = 8.2%. (C) HCA plot. Refer to Supplementary Table S3 for 
sample codes. 
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were calculated for both models including permutation tests that showed negative Q2 intercept value and CV-
ANOVA with p value below 0.05 (Supplementary Fig. S17 and S18C,E, respectively) typical for valid models. The 
model classifcation ability was tested by ROC curve (Supplementary Figs. S17, S18D, respectively), which showed 
area under the ROC curve (AUC) of 1.0 indicating an efective classifcation model. The S-plot (Fig. 5B,D) showed 
that palmitic acid, mannobiose, and glyceryl-glycoside were more abundant in Spirulina and in agreement with 
PCA results. In contrast, Chlorella was more enriched in sucrose, whereas, Amphora was more rich in leucine.

UV/VIS fingerprinting assisted by multivariate analysis
As revealed from the UPLC-HRMS/MS analysis, metabolites with active UV chromophores were detected (i.e. 
porphyrins and, to less extent, carotenoids) in the studied microalgal species. Accordingly, UV–Vis spectro-
photometric analysis was adopted to offer a rapid and affordable analysis when compared to other hyphen-
ated techniques (i.e. UPLC-HRMS/MS and GC–MS), to examine its classification potential of the examined 
microalgal samples. Representative UV–Vis spectra of Spirulina, Amphora, and Chlorella samples are shown in 
Supplementary Fig. S19. The spectra displayed UV maxima at wavelengths of 210 nm and 400–410 nm due to 
the absorbance of carotenoids, in addition to UV maxima at wavelengths of 650–670 nm corresponding to the 
absorbance of porphyrins35.

Carotenoids act as provitamin A precursors being converted inside the human body into vitamin A. Zeax-
anthin, lutein, and β-carotene are the carotenoids previously identified in Spirulina. Lutein and zeaxanthin 
exhibit a protective action against visual disturbances and cognitive diseases. Chlorophyll is another chief green 
pigment present in Spirulina that has been characterized for its antimutagen, chemoprotective, antioxidant, 
anti-inflammatory, and antimicrobial properties35.

In our study, Spirulina was found to be more enriched in chlorophyll pigments (i.e., porphyrin) which are 
evident from the higher absorbance at wavelengths of 400–430 nm than that of Chlorella and Amphora samples. 
Spirulina species were formerly reported to be distinguished from the Chlorella by their higher content of carot-
enoids and chlorophyll pigments35.

Multivariate data analyses of Spirulina, Chlorella, and Amphora via UV/VIS spectral fingerprints
For the sake of selecting the most discriminative wavelengths in the separation among algal species under study, 
PCA analysis of their UV/VIS fingerprints was carried out (Supplementary Fig. S18). A total variance of 99.7% 
was explained by the first two components, though the model did not show a clear segregation between the three 
species as depicted in the PCA score plot (Supplementary Fig. S20A). Accordingly, supervised OPLS-DA was 
further employed to model UV/VIS fingerprints of Spirulina samples against Chlorella and Amphora samples, 
each at a time to build two classification models for the discrimination between the three species (Fig. 6).

Both OPLS-DA models (Fig. 6) showed a good classification performance, as implied by R2 and Q2 (0.85 and 
0.54) and (0.83 and 0.68), respectively. The models were validated using permutation test with 200 times and CV-
ANOVA which demonstrated that the model is not over fitted (Supplementary Figs. S21, S22C,E, respectively), 

Figure 5.   OPLS score plot derived from GC–MS dataset modelling of Spirulina (S3 and S4) samples against 
Chlorella (Chl.) and Amphora (Am.) samples each at a time (A,C). Their corresponding S-plots (B,D) show the 
covariance p1 against the correlation p(cor)1 of the variables of the discriminating component of the OPLS-DA 
model. Cut-off values of P < 0.05 were used,selected variables are highlighted in the S-plot with identifications 
are discussed in text. Refer to Supplementary Table S3 for sample codes.
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with negative Q2 intercept value and p value below 0.05. ROC curve obtained for both models had an AUC of 1, 
which is indicative of an efective classifcation model (Supplementary Fig. S21, S22D, respectively).

The derived score plot (Fig. 6A,C) showed a clear separation between Spirulina and the other microalgae 
species (i.e., Chlorella and Amphora), respectively. The UV/VIS spectral regions of 400–430 nm (corresponding 
to carotenoids absorbance) and 650–680 nm (due to chlorophyll absorbance) were identified by the S-line plot 
of loadings (Fig. 6B,D) as the most discriminative wavelengths between the samples in both models.

Discussion
Microalgae represent a potential source of nutraceuticals and important bioactive metabolites. In the current 
study, we aimed to map the metabolome of different commercial Spirulina samples in comparison to Chlorella 
and Amphora, via different metabolomics technologies (i.e., UPLC-HRMS/MS and GC–MS post-silylation). 
UPLC-HRMS/MS analysis allowed for exploring their large molecular weight metabolome, such as polar lipids, 
including phospholipids, nitrogenous lipids, glycerolipids, and glycolipids, in addition to free fatty acids, and 
pigments.

Spirulina samples were enriched in glycolipids (i.e. digalactosylacyl glycerols) as the predominant lipid class, 
with the occurrence of few sulphoquinovosyl monoacylglycerols, versus the abundance of phospholipids in 
Chlorella. Similarly, Amphora was proven as a rich source of nutritionally important fatty acids supporting its 
potential use as a biofuel and food supplement, agreeing with previous studies12. Glycerolipids are reported 
to exert anti-inflammatory properties12, sulpholipids to exhibit antiviral, anticancer, immunsuppressive and 
anti-inflammatory properties23, while phospholipids are recognized as an excellent source of polyunsaturated 
fatty acids targeting the brain thus improving memory in elderly and neurological patients12. Owing to these 
nutraceutical and pharmaceutically significant ingredients, there is a growing trend in the incorporation of 
microalgal biomass in novel cuisine3.

Similarly, the main pigments detected were porphyrins chiefly among the examined Spirulina samples and 
sporadically in Chlorella and Amphora. These findings contradict previous reports in which higher amounts of 
these photosynthetic pigments were observed in Chlorella in comparison to Spirulina supplements36, which may 
be attributed to the variation in the cultivation conditions and extraction protocols. These green-colored pig-
ments are valued not only as food colorants but also as beneficial ingredients for their antimutagenic, antioxidant, 
chemopreventive, and antimicrobial activities37.

Comparably, GC–MS analysis was recruited for cataloging their low molecular weight primary metabolites 
and to highlight their nutritive value, and delineated fatty acid/ esters and glycosides as the most predominant 
and following UPLC-HRMS/MS results, though revealing other markers. For instance, GC–MS analysis deline-
ated higher content of essential amino acids in Chlorella and Amphora, contributing to their high nutritional 
value and advocating their use as nutraceutical and nutritional supplements.

For the discrimination of the studied microalgal species, multivariate data analysis of the GC–MS metabolite 
profiles showed that palmitic acid, mannobiose, and glyceryl-glycoside were more abundant in Spirulina samples. 
In contrast, Amphora and Chlorella were more enriched in leucine and sucrose, respectively.

Figure 6.   OPLS score plot derived from UV–Vis dataset modelling of Spirulina (S3 & S4) samples against 
Chlorella (Chl.) and Amphora (Am.) samples each at a time (A,C). Their corresponding S-line plots (B,D) 
show the covariance p1 against the correlation p(cor)1 of the variables of the discriminating component of 
the OPLS-DA model. Cut-off values of P < 0.05 were used,selected variables are highlighted in the S-plot and 
discussed in text. Refer to Supplementary Table S3 for sample codes.
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For their routine discrimination, UV/VIS spectral fingerprints were efficient in distinguishing between sam-
ples based on their pigment composition, serving as a rapid  tool for routine quality control. UV absorbance of 
porphyrins and carotenoid pigments at wavelengths of 400–430 nm and 650–680 nm were revealed by modeling 
of the UV/Vis spectral fingerprinting as being the most differentiating wavelengths.

Conclusively, both UPLC-HRMS/MS and GC–MS analyses revealed the studied microalgal species as valu-
able sources of essential lipids. Yet considerable variations in metabolome were observed among the Spirulina 
samples, which could be attributed to differences in cultivation settings, which warrants the need to optimize the 
cultivation conditions to unrestrictedly promote their use as dietary supplements and to prevent the growth of 
undesired organisms. Additionally, more information is needed about the safety of microalgae as nutraceuticals 
for their possible contamination with cyanotoxins, heavy metals, and pesticides in the future. The enrichment 
of Spirulina in several metabolites of a potential prebiotic nature warrants its inclusion in nutraceuticals to serve 
for improving gut functions.

Materials and methods
Microalgae samples
The study included four Spirulina platensis samples (S1, S2, S3 and S4) procured from USA, Germany, and Egypt, 
in addition to two allied species, namely Amphora (Am.) and Chlorella (Chl.), which were kindly obtained from 
National Research Center, Dokki, Egypt. Sample codes are listed in Supplementary Table S3.

Chemicals and materials
All chemicals and standards were purchased from Sigma-Aldrich (St. Louis, MO, USA). MilliQ water was sup-
plied by a Millipore MR3 purifier system and was used for UPLC-HRMS/MS analysis.

Extraction and sample preparation for UPLC‑HRMS/MS
The powdered samples (5 g) were extracted by soaking in 100 ml of 100% methanol for 48 h. The extract was then 
filtered and evaporated under reduced pressure at 40 °C. The obtained extracts were further purified using Strata® 
Silica-Based Solid Phase Extraction (SPE) column (Phenomenex, CA, USA) with gradient 0∼100% methanol /
water and 100% methanol as final elution to reduce the chlorophyll content. Collected fractions were then filtered, 
evaporated under reduced pressure, and finally lyophilized and kept frozen at − 20 °C.

UPLC‑HRMS/MS analysis
MaXis-4G instrument (Bruker Daltonics, Bremen, Germany) attached to an Ultimate 3000 HPLC (Thermo Fisher 
Scientific) was used for HR-MS analysis. The HPLC method was (0.1% FA in H2O as solvent A and MeOH as 
solvent B), an isocratic gradient of 10% B for 10 min, 10% to 100% B in 30 min, 100% B for an additional 15 min, 
using a flow rate of 0.3 ml/min; 5 µl injection volume and UV detector (UV/VIS) wavelength monitoring at 336, 
280 and 238 nm. The separation was performed on a Nucleoshell 2.7 mm 150 × 2 mm column (Macherey–Nagel), 
and the range for MS acquisition was m/z 50–1800. A capillary voltage of 4500 V, nebulizer gas pressure (nitro-
gen) of 2 (1.6) bar, ion source temperature of 200 °C, a dry gas flow of 9 l/min source temperature, and spectral 
rates of 3 Hz for MS1 and 10 Hz for MS2 were used. For MS/MS fragmentation, the 10 most intense ions per 
MS1 were chosen for subsequent CID with stepped CID energy applied. The employed parameters for tandem 
MS were applied following38.

Feature‑based molecular networking and compounds annotation
Raw data inspection was performed using Compass Data Analysis 4.4 (Bruker Daltonics®). Metaboscape 3.0 
(Bruker Daltonics®) was utilized for feature detection, grouping, and alignment, employing the T-ReX 3D (Time 
aligned Region Complete eXtraction) algorithm39.

Bucketing was performed with an intensity threshold of 10 × 104 and 10 × 103 for the positive and negative 
modes, respectively. The retention time range was from 0.5 to 40 min with a restricted mass range m/z from 
190 to 1800. The produced MGF files and the feature quantification tables (CSV file) were used to construct 
two feature-based molecular networks (FBMNs) for both ionization modes, following the online workflow in 
the GNPS platform (http://​gnps.​ucsd.​edu)40. The parameters applied for the construction of the FBMNs via the 
GNPS platform are detailed in Supplementary Table S4.

Cytoscape version 3.7.1.60 was used for the network visualization. Sirius + CSI: FingerID 5.6.3 was used for 
the manual putative structures identification41, assisted by the molecular formula prediction and candidate search 
with m/z tolerance set to 20 ppm connected to online Pubchem42,43.

GC–MS analysis of silylated primary metabolites
The finely ground algal powders (100 mg) were extracted with 100% methanol (5 ml) with sonication with 
frequent vortex shaking. The obtained extracts (100 µl) were aliquoted in screw cap vials and evaporated under 
a stream of nitrogen gas until complete dryness. Derivatization and GC–MS analysis were performed following 
a previously described protocol44.

Metabolite identification was based on their Kovat retention indices (KI) relative to C6-C20 n-alkane series 
and spectral matching with the NIST and WILEY libraries. Peaks deconvolution was performed through AMDIS 
software (http://​www.​amdis.​net) before the mass spectral matching, and MS-Dial was used for the extraction of 
the peaks abundance data following45.

http://gnps.ucsd.edu
http://www.amdis.net
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UV/VIS fingerprinting
For UV fingerprinting, 200 µl of each extract in MeOH were pipetted into microplate wells (n = 4) of the 96-well 
quartz cell of the Gen 5 UV/Vis microplate reader (BioTek Instruments, Inc., Winooski, VT, USA). The absorp-
tion spectra were recorded in the range of 200–800 nm following the exact procedure described in14.

Multivariate data analysis (MVA) of GC–MS and UV spectral datasets
MVA was employed to highlight differences and similarities of different commercial Spirulina samples together 
with Amphora and Chlorella samples in an untargeted manner and to aid in identifying markers for each. The 
normalized GC–MS data matrix to spiked standard internal xylitol was modeled using unsupervised pattern 
recognition methods i.e. principal component analysis (PCA) and hierarchical cluster analysis (HCA), as well 
as supervised method i.e. orthogonal projection to latent structures-discriminant analysis (OPLS-DA). PCA 
was implemented to visualize spacing between the samples as an unsupervised model, while OPLS-DA served 
as a discriminatory tool to identify how Spirulina samples are discriminated from each other and Amphora and 
Chlorella. Variations between sample sets were demonstrated using a score plot either in PCA or OPLS-DA model 
using SIMCA software (version 14.1) as in14. In addition, permutation tests and CV-ANOVA and ROC curve 
were used to validate the results of the developed OPLS-DA models.

Likewise, UV/Vis spectral data matrix exported using Excel (Excel 2016, Microsoft®, Redmond, WA, USA) for 
all samples, including their replicates, were mean-centered and Pareto scaled for variables representing absorb-
ance readings between 200 and 650 nm. The data set was then modeled, similar to GC–MS, using PCA and 
OPLS-DA models. The OPLS-DA models were calculated using the default seven-fold cross-validation method 
yielding acceptable R2X, R2Y, and Q2 with no negative values and values for both above 0.5. The same validation 
procedure was performed as in the GC–MS dataset to ensure no model overfitting.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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