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Key Points

• Comprehensive
genomic profile of
patients with FPDMM
with germ line RUNX1
mutations.

• Rising clonal
hematopoiesis related
secondary mutations
that may lead to
myeloid malignancies.
Familial platelet disorder with associated myeloid malignancies (FPDMM) is caused by

germline RUNX1 mutations and characterized by thrombocytopenia and increased risk of

hematologic malignancies. We recently launched a longitudinal natural history study for

patients with FPDMM. Among 27 families with research genomic data by the end of 2021, 26

different germline RUNX1 variants were detected. Besides missense mutations enriched in

Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-

region mutations and large deletions were detected in 6 and 7 families, respectively. In 25 of 51

(49%) patients without hematologic malignancy, somatic mutations were detected in at least 1

of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia

(AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple

BCOR mutations were identified in 4 patients. Mutations in 6 other CHIP- or AML-driver genes

(TET2, DNMT3A, KRAS, LRP1B, IDH1, and KMT2C) were also found in ≥2 patients without

hematologic malignancy. Moreover, 3 unrelated patients (1 with myeloid malignancy) carried

somatic mutations in NFE2, which regulates erythroid and megakaryocytic differentiation.

Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic

mutations over time, and stable clones were more frequently found in older adult patients. In

summary, there are diverse types of germline RUNX1mutations and high frequency of somatic

mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring changes in

somatic mutations and clinical manifestations prospectively may reveal mechanisms for

malignant progression and inform clinical management. This trial was registered at www.

clinicaltrials.gov as #NCT03854318.
Introduction

RUNX1 is a transcription factor indispensable for the development and function of definitive hemato-
poietic stem cells (HSCs).1 Chromosome translocations and somatic mutations affecting RUNX1 are
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frequently detected in hematologic malignancies, such as myelo-
dysplastic syndrome (MDS), acute myeloid leukemia (AML), and
acute lymphoblastic leukemia (ALL).2 Germline RUNX1 mutations
lead to familial platelet disorder with associated myeloid malig-
nancy (FPDMM; Online Mendelian Inheritance in Man no. 601399),
a rare autosomal dominant disease associated with platelet
defects, both quantitatively and qualitatively, resulting in easy
bleeding and bruising.3 Patients with FPDMM are predisposed to
hematologic malignancies,4,5 for example, MDS, AML, chronic
myelomonocytic leukemia, or ALL.6-8 The current consensus for the
incomplete penetrance of malignancy is that germline RUNX1
mutations are insufficient for leukemogenesis. Additional risk fac-
tors, such as somatic mutations, are important for the development
of hematologic malignancies.4,9

Somatic mutations in HSCs may lead to accelerated proliferation
and reduced cell death, resulting in clonal expansion of the
mutation-carrying HSC, or clonal hematopoiesis (CH).10,11 CH
increases with age. Large population studies showed that CH
increases the risks of atherosclerotic cardiovascular diseases,12,13

hematologic neoplasms,11,14 and other nonmalignant diseases.15

Previous studies have described early onset of CH in patients
with FPDMM without hematologic malignancy.4,16 However, it is
still unclear what the role of CH is in the development of hema-
tologic malignancies.

To improve our understanding of FPDMM pathogenesis and
identify potential driver alterations for malignancy transformation,
we initiated a natural history study in 2019 to longitudinally inves-
tigate the genomic and clinical profile of FPDMM. Here, we report
the genomic data from 62 patients enrolled in our study whose
samples had been sequenced for research purposes by the end
of 2021.

Methods

Patients and samples

Patients were enrolled in the clinical study entitled “Longitudinal
Studies of Patients with FPDMM,” after obtaining informed consent
in accordance with the declaration of Helsinki. RUNX1 variants
were determined to be pathogenic (P), likely pathogenic (LP), or
variants of uncertain significance (VUSs) by American College of
Medical Genetics (ACMG) ClinGen Myeloid Malignancy Variant
Curation Expert Panel criteria.17 Clinical studies of the enrolled
participants have been described recently by Cunningham et al.18

Genomic DNA, RNA, and cryopreserved cell samples were pro-
cessed and biobanked for further needs.

Exome sequencing and data processing

Exome sequencing (ES) of genomic DNA samples at the NIH Intra-
mural Sequencing Center (NISC) is described in supplemental
Methods. In brief, genomic DNA were fragmented to the size around
300bp, ligated and pre-amplified with adapters, following exome
panels capture. Libraries were sequenced on NovaSeq 6000 platform
with PE151 strategy. Our IDT xGen Exome Research Panel data
achieved a mean coverage of 87X-353X, with a median of 174X,
expect to identify somatic mutations with variant allele frequency
(VAF) above 3-5% in most of the region, and lower VAF at regions
with higher coverage. Detailed information about the sequenced
samples is described in supplemental Table 1 and supplemental
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Figure 1. Sequencing data were analyzed with in-house pipelines on
NIH high-performance computing system “Biowulf.” Detailed
descriptions of data analysis, workflow and parameters can be found
in supplemental Figure 2 and supplemental Methods. All RUNX1
mutations listed in this manuscript are based on the representative
transcript NM_001754 (coding RUNX1c).19

Bulk RNA-seq and analysis

RNA sequencing (RNA-seq) was performed at NISC with Illumina
TruSeq stranded chemistry and PE151 strategy on NovaSeq 6000.
The sequenced samples are listed in supplemental Table 1, and
detailed information on sequencing and data analysis is described in
supplemental Methods. Published healthy donor bone marrow (BM)
RNA-seq data were used for splice junction analysis.20

Cytogenetics and CNV analyses

Cytogenetic analyses of BM cells were conducted at the Mayo
Clinic Laboratories. For single-nucleotide polymorphism (SNP)
array, Infinium OmniExpressExome-8 kit was used to analyze guide
DNA samples (supplemental Table 1). CNVPartition and
PennCNV21 were used to identify candidate copy number variation
(CNV) events. CNVkit22 (version 0.9.8) was used to identify CNVs
from ES data for samples without SNP-array data. All CNV calls
were revised with Integrative Genomics Viewer illustration.

Results

Study cohort and RUNX1 variant evaluation

The natural history study was launched in early 2019, and by the
end of 2021, 111 patients and 45 family controls had been
enrolled. This report focuses on 62 patients in 27 families whose
research genomic data were available. Sequential samples had
been collected for 19 patients who visited NIH Clinical Center
(NIHCC) more than once (Figure 1A; supplemental Table 1).

Our cohort excluded families carrying benign, likely benign, or
VUSs without enough evidence of familial platelet disorder (FPD)-
like clinical features. In total, 26 different germline RUNX1 variants
were detected in the 27 families. The most common types of
RUNX1 mutations are mutations causing truncated RUNX1 protein
(including splice-site mutations, frameshift mutations, and stop-gain
mutations), or large CNVs that cause complete loss or partial loss
or gain of the RUNX1 gene (Figure 1B-C; supplemental Table 2).
All RUNX1 mutations listed here are based on NM_00175419).
Four families had 4 different missense variants; all located in the
Runt homology domain, with 3 predicted to be P or LP, and 1
predicted to be VUS per ACMG ClinGen Myeloid Malignancy
Variant Curation Expert Panel criteria.17 We included the family
(FPD_5) with a RUNX1 VUS variant (c.477T>G, p.Asn159Lys) in
the study because all 5 RUNX1 variant carriers in this family
(across 3 generations) had mild-to-moderate thrombocytopenia as
well as abnormal platelet functions and/or platelet morphological
abnormalities. On the other hand, 2 noncarriers from the family,
who were tested, had normal platelet counts.

Large-scale genomic alteration is common in our study cohort.
Among the 27 families, 3 had large deletions covering the entire
RUNX1 gene and, in some cases, additional genes. Three other
families had smaller deletions, and 1 family has an intragenic
duplication that affects several RUNX1 exons (Figure 1C).
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Figure 1. Overview of NIH FPDMM natural history study. (A) Study schema. Enrolled patients with germline RUNX1 variants and family member controls visited the National

Institutes of Health (NIH) clinical center and/or sent remote samples annually. Both clinical and research data stored in the clinical and genomic databases were used for

downstream research and guide clinical management. (B) RUNX1 mutations carried by the patients are included in this manuscript. Numbers in the circle indicate patient number

who carries the mutation. (C) CNVs affecting RUNX1 gene. Blue bars are showing deletions, and red bars are showing duplication. (D) VAF correlation between exome

sequencing and RNA-seq data. Red dots are RUNX1 variants, and gray dots are all other variants (all variants with ≥20× coverage in both RNA-seq and ES, including both

germline and somatic) in all samples that have 2 platform data set. Histograms (top and right) show the VAF distributions in exome sequencing and RNA-seq, respectively.
To determine whether the mutations alter RUNX1 expression, we
compared allele frequencies between ES and RNA-seq data from
7 patients, which have adequate coverage (including both germline
and somatic mutations). The RUNX1 variant alleles were expressed
between 40% and 70% at the RNA level, in the expected germline
variant allele frequency (VAF) range (Figure 1D).

RUNX1 splice-site mutations

Multiple families have mutations at or near splice donor or acceptor
sites, located in introns 4, 5, and 8 (Figure 1B). These mutations
led to aberrantly spliced transcripts, as detected by RNA-seq
(Figure 2; supplemental Figure 3). The c.351+1G>A variant,
detected in 2 independent families, caused 2 types of exon-4
23 JANUARY 2024 • VOLUME 8, NUMBER 2
skipping: E2 to E5 and E3 to E5 (Figure 2B; supplemental
Figure 3B). Junction counts showed a significantly higher propor-
tion of the novel splicing products than the wild-type splicing
products. The c.352-1G>C variant led to the usage of a cryptic
acceptor site in exon 5 (Figure 2C; supplemental Figure 3C), which
is also the cryptic acceptor site resulting from a c.352-1G>T
variant.3 In this case, the mutant and wild-type transcripts were
detected at similar levels. A cryptic splice donor site near the end of
exon 5 was identified in patients with c.508+3delA (Figure 2D;
supplemental Figure 3D), as previously reported.23 Interestingly, a
missense variant c.508G>C (p.G170R) affects the adjacent splice
donor site at the end of exon 5, leading to the usage of the same
cryptic splice donor site associated with c.508+3delA
GENOMIC FINDINGS FROM FPDMM NATURAL HISTORY STUDY 499
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(Figure 2E,H; supplemental Figure 3D); only 5% to 10% of tran-
scripts are in the missense form. For both c.508+3delA and
c.508G>C variants, the splice product resulting from the cryptic
donor site had fewer aberrant splicing junction counts when than
the wild-type junction, but there is a strong signal of intron retention
(Figure 2D-E; supplemental Figure 3D). Finally, a
c.967+2_967+5delTAAG variant caused exon 8 skipping
(Figure 2G,I; type 7) and the activation of cryptic splice donors in
intron 8 (Figure 2G,I; types 5 and 6); 1 of them (type 5) has been
reported previously.24 At the protein level, it is predicted that the
first 5 splice-site–related variants will produce truncated RUNX1
proteins, whereas the c.967+2_967+5delTAAG variant will lead to
2 in-frame products: an insertion of 37 amino acids in the middle of
transactivation domain (TAD) domain for type 6 and a deletion of
55 amino acids at the beginning of the TAD domain for type 7
(Figure 2J). Most of the splice-site variants reported lead to an early
stop codon, similar to nonsense or frameshift variants; we did not
observe a reduced transcript expression level from the RUNX1
mutant allele caused by nonsense-mediated messenger RNA
decay.25 Most of the RUNX1 splice-site variants had an estimated
VAF of ~50% in RNA-seq, but the c.351+1G>A samples even
showed higher mutant allele VAF of ~84% (supplemental Table 1).
Somatic mutation landscape in patients with FPDMM

We have generated ES data from 58 patients with FPDMM for
somatic mutation identification. We applied 2 strategies
(supplemental Figure 2) to identify somatic mutations. For 31
patients with ES data from fibroblast, true somatic mutations were
confirmed by comparing BM/peripheral blood (PB) data with
fibroblast data. For the remaining 27 patients without fibroblast
data, we used Mutect2 single sample mode to identify likely
somatic mutations in the PB or BM samples with a panel of normal
reference, which was composed of sequencing data from all
unaffected family members in our cohort. The variants were further
verified according to their population frequency (at <1%), absence
in any members of the same family, and presence in the Catalogue
of Somatic Mutations in Cancer database. The number of identified
somatic mutations in these patients is likely an underestimate
because we have been conservative with somatic mutation calling.

The somatic mutation landscape of hematopoietic cells in the
patients with FPDMM of our cohort is depicted in Figure 3A. The
middle heat map shows the aggregated somatic mutation land-
scape that merged all mutations in CHIP- or AML-driver genes26,27

(CL genes for CHIP- and leukemia-driver genes are listed in
supplemental Table 3) detected in each patient and recurrently
detected in multiple individuals. Interestingly, 25 of 51 (49%)
patients without hematologic malignancy and 4 of 7 (57%) patients
with hematologic malignancy have at least 1 somatic mutation in
CL genes (supplemental Table 3). Somatic mutations were recur-
rently (>1 patient) observed in the following CL genes: BCOR,
TET2, DNMT3A, KRAS, LRP1B, IDH1, KMT2C, KMT2D, NRAS,
PHF6, and SF3B1. BCOR was the most frequently mutated CL
gene because BCOR mutations were found in 11 of 58 patients
(19%) and most BCOR mutations resulted in frameshifts. More-
over, 4 patients had >1 somatic BCOR mutation detected at the
same time. Recurrent mutations were also obsereved in 7 non-CL
genes (NFE2, GSTT1, KDM3A, PRKDC, PTPN14, RRBP1, and
SPTBN2).
502 YU et al
The overall somatic mutation numbers in each patient are shown in
the top bar graph in Figure 3A. There seemed to be a correlation
between the overall number of somatic mutations and the presence
of CL gene mutations. Notably, 26 of 51 (51%) patients without a
hematologic malignancy had no mutation detected in CL genes.
However, somatic CL mutations in patients without fibroblast ES
data might have been underdetected (CL mutations were found in
14 of 25 patients with fibroblast ES data, whereas in only 11 of 26
patients without such data). As expected, the total numbers of
somatic mutations correlated with patients’ ages (Figure 3B;
supplemental Figures 4B and 8B). Based on the published data
from The Cancer Genome Atlas (TCGA) program, myeloid malig-
nancies showed a relatively lower mutation burden than other
cancer types.28,29 For the 43 patients without a hematologic
malignancy in our cohort, the median mutation burden is <0.1
mutations per megabyte, which is less than that in reported AML
and MDS cohorts. Meanwhile, 9 samples from 8 patients with
myeloid malignancies in our cohort showed mutation burden close
to that in the TCGA AML cohort (supplemental Figure 5A).

Between the top bar graph and the middle heatmap in Figure 3A
are heatmaps for patient age, sex, mean platelet volume, the
International Society on Thrombosis and Haemostasis Bleeding
Assessment Tool (a tool to record both the presence and the
severity of bleeding symptoms in patients) score,30 platelet count,
somatic mutation data type (whether fibroblast ES data are avail-
able), and RUNX1 mutation type. The existence of any correlations
between these measures and the detected somatic mutations is
further depicted in supplemental Figure 4, by sorting the landscape
heatmap with different annotation items. Total somatic mutation
number and CHIP gene mutations most frequently seen in the
general population (TET2 and DNMT3A) and in high-risk genes
(such as KRAS, NRAS, PHF6, ZRSR2, and SF3B1), all trend up
with increasing age (supplemental Figure 4B). BCOR mutations
were significantly enriched in patients aged between 20 and
60 years (supplemental Figure 4B) and correlated with lower
platelet count (supplemental Figure 4D) and mean platelet volume
level (supplemental Figure 4E). Patients with BCOR mutations
tended to have low platelet count (supplemental Figure 4D). With
current data, we did not find correlations between somatically
mutated genes and RUNX1 mutation types or sex.

The bottom bar plot of Figure 3A shows the types of base sub-
stitutions associated with the somatic mutations. C>T and T>C
transitions are more common than transversions.

Pathway and gene ontology analyses of somatically mutated genes
showed enrichment of regulation of histone methylation (also seen
in CHIP studies10,15). Highly related pathways also include RAS,
PI3K-AKT, MAPK, and interleukin-6 (IL-6) signaling, which are
related to inflammation (Figure 3C). In addition, mutations were
enriched in genes with hemostasis functions and genes tran-
scriptionally regulated by RUNX1.

Recurrent somatic mutations in NFE2

As mentioned earlier, we found 7 recurrently mutated genes in the
somatic mutation landscape besides the CL genes. Notably, NFE2
was mutated in 3 unrelated patients, including 2 nonsense muta-
tions and 1 missense mutation in the important basic region leucin
zipper domain (Figure 4A). NFE2 somatic mutations have been
reported in an FPDMM case report31; it encodes a transcription
23 JANUARY 2024 • VOLUME 8, NUMBER 2
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factor involved in megakaryocyte development and platelet pro-
duction,32,33 which is mutated in 0.6% to 1.3% of patients with
MDS, 0.5% of those with leukemia, and 1.6% of pediatric patients
with AML34,35 (Figure 4B). However, NFE2 has not been reported
as a gene associated with CH. Reported functional studies also
indicate that NFE2 is a downstream target of RUNX1.36 Published
chromatin immunoprecipitation sequencing data37-39 showed a
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strong RUNX1 binding signal in the promoter region of NFE2 in
CD34+ hematopoietic stem and progenitor cells and umbilical cord
blood–derived megakaryocytes (Figure 4C). In our cohort, 2 of the
NFE2 mutation carriers had already developed premonoclonal
gammopathy of undetermined significance and myeloma, respec-
tively. Our data suggest that somatic NFE2 mutations might be
related to FPDMM disease progression.
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Increased frequency of CH in patients with FPDMM

It has been reported that patients with FPDMM could develop
detectable CH with a cumulative risk of >80% by 50 years of
age,16 which is far younger than the population average,41 and that
detection of these clones may help inform risk of developing
hematologic malignancy.42 We set out to determine the frequency
of CH in our cohort by comparing our data with those of the
population cohort reported by the Trans-Omics for Precision
Medicine (TOPMed) research program.27 To meet the criteria
applied to the TOPMed study, only somatic mutations detected in
the previously reported 74 CHIP genes27 with VAF>5% were
included for the comparison (Figure 5A; supplemental Figure 6).
Fourteen of 51 (27.5%) patients without hematologic malignancy
in the FPDMM cohort have mutations in 11 CHIP genes at VAF >
5%. This frequency is significantly higher (2-tailed z-score test, z =
8.138; P < .00001) than that of the general population (4.3%).27

Moreover, 13 of the 14 (92.9%) patients without any hemato-
logic malignancy with CHIP gene mutations were aged <65 years,
with a median age of 42 years, and the youngest patient was aged
only 13 years. In the general population, only 10% of people aged
>65 years and 1% <50 years were reported to carry CHIP gene
mutations. In our cohort, CHIP gene mutations were detected in 1
23 JANUARY 2024 • VOLUME 8, NUMBER 2
of 3 patients aged >65 years, 9 of 46 patients (19.6%) <50 years,
and 1 of 20 (5%) <20 years.

We determined whether there are differences in mutation signa-
tures43 between patients with CL gene mutations and those
without the mutations (Figure 5B; supplemental Figure 5B-C). In
both CL+ and CL− groups, at least half of the mutations belonged
to single-base substitution (SBS) signatures SBS1 and SBS5,
which are both “clock-like” mutations44 that accumulate with time.
Interestingly, in the CL+ group, 35% of the mutations were
assigned to SBS6, which is associated with defective DNA-
mismatch repair44,45; in CL⁻ group, 21.4% of the mutations were
related to this but classified as SBS15, a signature that also
belongs to the defective DNA-mismatch repair category.

We also compared phenotype data between CL+ and CL− groups
(Figure 5C). Patients in the CL+ group had significantly lower
platelet counts (P = .007) and higher the International Society on
Thrombosis and Haemostasis Bleeding Assessment Tool scores
(P = .045) than patients in the CL− group. Patients in the CL+

group had lower numbers of CD34+ cells in the BM (P = .012), but
a higher proportion of these cells also expressed CD123, which is
overexpressed in many hematologic malignancies, including 80%
GENOMIC FINDINGS FROM FPDMM NATURAL HISTORY STUDY 505



of AML and B-cell ALL.46 Moreover, patients in the CL+ group had
significantly higher blood immunoglobulin A level (P < .001), which
may lead to increased proinflammatory cytokine production
through the activation of Fc fragment of IgA receptor-expressing
immune cells.47,48 Interestingly, patients in the CL+ group were
significantly older than those in the CL− group (average age of 40
years and 22 years, respectively; P < .01). On the other hand, both
groups had balanced male-to-female ratio, and no significant dif-
ference was observed in RUNX1 mutation types.

Dynamic changes of somatic mutations over time

Multiple patients in our cohort had completed their second or third
annual visits, and we sequenced their samples to monitor the dynamic
changes in their somatic mutations. We observed a patient (patient 1)
with a stable dominant clone (clones detected in ≥2 consecutive time
points with relatively stable VAFs) characterized by a high VAF BCOR
mutation (Figure 6A). Additional mutations in DNMT3A and
RUNX1T1 also remained stable at low VAF. Patient 2, who already
developed MDS with ring sideroblasts, had a splicing factor SF3B1
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mutation, which was stable at 25% VAF (Figure 6B). Mutations in
SF3B1 were reported in multiple patients with chronic lymphocytic
leukemia and MDS.49 However, VAFs of THOC2 and SMC2 muta-
tions increased significantly at the second visit for patient 2
(Figure 6B). THOC2 is a member of the transcription-export complex,
which is indispensable for messenger RNA export50; SMC2 is vital for
the structural maintenance of chromosomes.51 The combined
annotation–dependent depletion Phred-score of THOC2 and SMC2
mutations are 32 and 29.2, respectively, both predicting a highly
deleterious risk. Similarly, we observed rising clones with potential risk
in patient 3 (Figure 6C). In the third yearly BM sample, we detected a
new frameshift mutation in ZRSR2, which may cause dysregulated
RNA splicing,52 and a new somatic mutation in IL6ST, which encodes
a signal transducer shared by multiple cytokines, including IL-6 and
leukemia inhibitory factor.53 Sequential data on more patients are
shown in supplemental Figure 7.

Although comparing multi-timepoint mutations in our cohort, we
observed a pattern that younger patients usually have fewer stable
clones over time (fewer somatic mutations that could be detected
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in multiple time point samples). As shown in Figure 6D and
supplemental Figure 8A, fewer mutations were stable (present in at
least 2 time points at VAF > 0.01) in patients aged <30 years. In
contrast, the fraction of stable mutations increased with age,
suggesting the presence of more stable clones in older patients.

Additional genomic risk factors in FPDMM

Besides somatic mutations identified by ES, we also investigated
other genomic alterations as potential risk factors cooperating with
RUNX1 mutations for malignant transformation.

With SNP-array–based CNV analysis, we detected increased fre-
quency of CNVs in patients with FPDMM. Specifically, we identified
CNVs in 10 of 25 (40%) patients without hematologic malig-
nancies (supplemental Table 4), whereas we detected a CNV in
only 1 of 8 family controls (12.5%). For most patients with CNVs,
there were no more than 2 CNVs, and only limited genomic regions
were affected. By cytogenetics analysis, only 1 of the 51 analyzed
patients without a hematologic malignancy had an abnormal kar-
yotype (a marker chromosome in the BM cells; supplemental
Table 4). In addition, fusion-gene analysis did not reveal any in-
frame fusion events in the 21 patients for whom we had RNA-
seq data.

We have also cataloged and analyzed germline variants in the
enrolled families in an attempt to identify modifiers of disease. We
focused on genes related to myeloid cell differentiation and
hemostasis functions. In 9 families, we detected germline variant
either classified as P/LP by Clinvar or classified as P/LP following
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ACMG criteria. Affected genes included CSF3, MITF, PLEK,
FGFR3, FGG, JAG1, SPTA1, and USH2A (Figure 7). We also
included the percentage of patients in each family who developed
hematologic malignancies to highlight genes enriched in these high
penetrance families.

Because disease modifiers are not essentially P/LP mutations, we
also demonstrated the distribution of variants predicted to be
deleterious by in silico modeling, although these were not neces-
sarily considered pathogenic based on the ACMG criteria with
respect for monogenic disease17 (supplemental Figure 9A). For
example, we found TNFSF9 variants in 3 families; the protein
encoded by this gene belongs to the tumor necrosis factor ligand
family, and it correlated with platelet phenotypes in genome-wide
association studies.54 We found germline variants in genes
closely related to myeloid malignancies, such as GATA2, FGFR3,
and ITGB2, and in genes involved in biological functions related to
the phenotype of FPDMM, such as SERPINA10, SRF, and VWF.

In our cohort, we identified predicted-deleterious germline variants
in Fanconi anemia genes. Among the 7 families with these variants,
4 showed a high rate of hematologic malignancies within their
family (supplemental Figure 9B; supplemental Table 5). Genes in
the RTK-RAS-PI3K pathway also showed germline alterations
(supplemental Figure 9C; supplemental Table 5). Our current
cohort size is still limited to the power of discovering the influence
of germline variants, and the exact significance of these germline
variants is unknown; however, it is possible that stronger associa-
tions will be detected in the future with more participants enrolled
through our longitudinal study.
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Discussion

In our cohort, germline variants were found to disrupt RUNX1
mainly in following 2 ways: (1) loss-of-function variants truncating
or completely deleting the RUNX1 protein and (2) missense vari-
ants affecting critical functional domains. In addition, we have
observed splice donor and acceptor sites as mutation hotspots in
our patients, which lead to the usage of cryptic splice sites and
alternative splicing events, resulting insertions, deletions, frame-
shifts, and truncations. Because of the deleterious nature of the
pathogenic germline RUNX1 variants and the presence of muta-
tional hot spot, therapeutic strategies can be envisioned to
increase or restore RUNX1 expression from the normal allele and
block or repair hot spot mutations through antisense oligo,
CRISPR, or other targeted strategies.

Our somatic mutation landscape demonstrated that approximately
half of the patients with FPDMM have at least 1 somatic mutation in
a CL gene. Compared with patients without these mutations, the
affected group showed significantly different phenotypes, including
lower platelet count, lower percentage of CD34+ cells in the
marrow, and higher blood immunoglobulin A level. These findings
are neither related to the difference in the sex ratio nor to different
RUNX1 mutation types, but the CL+ group is associated with more
advanced age. Functional enrichment analysis of the mutated
genes identified several essential functions or pathways related to
inflammation and RAS/PI3K-AKT-mTOR/MAPK. Mutation signa-
tures also indicate that the affected group has a higher signal
linked to DNA-mismatch repair. Besides CHIP genes frequently
seen in the general population, BCOR is the top mutated gene in
patients with FPDMM.27 Moreover, BM samples from 4 patients
without hematologic malignancy harbored >1 BCOR mutation. In 1
of them, there were 5 different BCOR mutations, with VAFs
ranging from 2.3% to 40%. From our data, most patients with
BCOR mutations have not developed hematopoietic malignancy,
even for those with BCOR mutations at relatively high VAFs.
Therefore, the mutation mechanism and the impact of BCOR
mutations on malignant transformation need further investigation. In
addition, NFE2, a RUNX1 target gene that encodes a regulator of
megakaryocyte differentiation, was found to be frequently mutated.
Overall, patients with FPDMM seemed to have a distinct somatic
mutation landscape, which might have been shaped by RUNX1
haploinsufficiency caused by the germline mutations, as recently
described for Shwachman-Diamond Syndrome.55

Our study identified somatic mutations in several genes that were
already reported in MDS or AML, such as NRAS, KRAS, SF3B1,
PHF6, and ZRSR2. Interestingly, we found somatic NFE2 muta-
tions in 3 unrelated patients: 1 of them developed a lymphoid
malignancy. As a gene downstream of RUNX1 and involved in
megakaryocyte development, NFE2 has not received much atten-
tion in the context of FPDMM, except for a single recent case
report.31 It could be an important player and, therefore, a candidate
to study its role in FPDMM in the context of hematologic malig-
nancy development.

We do not have enough evidence to link other recurrently mutated
genes with FPDMM. But for example, histone demethylase KDM3A
is an essential member of the JAK2-STAT3 signaling pathway56

that might be related to hematologic malignancy. We may find
more recurrently mutated genes when we gather data of more
508 YU et al
patients. Therefore, we will pay attention to these genes and further
confirm their possible link to the disease development with addi-
tional data and through in vitro and in vivo functional studies.
LRP1B is a large (90 exons) gene, so the detected LRP1B
mutations may not be significant. However, we did not detect
mutations in several other large genes, such as BRCA1, APC, and
NF1.

In previous studies, somatic mutations in RUNX1 were found to be
common in patients with FPDMM who have developed malig-
nancies.4 However, for the 12 patients with hematologic malig-
nancy in our cohort, only 1 carried a RUNX1 somatic mutation, a
large deletion. This frequency is far below the reported frequency
(>40%). It is unclear why we have not seen more somatic muta-
tions in RUNX1 in our cohort. It would be interesting to see
whether we detect more RUNX1 somatic mutations as we expand
our cohort and continue our longitudinal study of the patients.

Longitudinal tracking of somatic mutations can help us monitor
dynamic changes of clonal expansion and transformation to
malignancies. We observed multiple patients with 2 or 3 time
points; some of them had somatic mutations with stable VAFs,
whereas others have mutations with fluctuating VAFs. Interestingly,
younger patients tended to have higher VAF fluctuations between
time points, whereas older patients tended to have more stable
mutations. The clinical significance of these findings is unclear and,
hopefully, will become more apparent with longer follow-up of
these patients.

In addition to somatic mutations, deleterious germline variants in
genes related to hematologic malignancies may also increase the
risk of malignancy development in patients with FPDMM. However,
determining which candidate germline variants are relevant to
pathogenesis and progression of FPDMM is difficult without
experimental validation or statistical power. We believe that after
accumulating more data from the patients and their families and
performing experiments for functional confirmation, we will be able
to identify germline modifiers that may stratify the risk for patients
with FPDMM.

Early and accurate detection of disease progression in FPDMM is
imperative for clinical management and improving outcomes. We
will continue following enrolled patients to collect more “snap-
shots” of their genomes and clinical phenotypes, with the goal of
identifying risk factors as early as possible. Hopefully, our study will
determine the significance of somatic mutations for malignant
transformation, which may lead to discoveries of biomarkers for
disease progression in FPDMM, eventually benefiting clinical
management for patients with FPDMM.
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