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The roles and regulatory mechanisms of TGF-β and BMP
signaling in bone and cartilage development, homeostasis and
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Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform
essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and
homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit
different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis,
osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner.
BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the
osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including
latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm
transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest
advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions
and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP
signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical
applications in treating bone and cartilage disorders.

Cell Research (2024) 34:101–123; https://doi.org/10.1038/s41422-023-00918-9

INTRODUCTION
Transforming growth factor-βs (TGF-βs) and bone morphometric
proteins (BMPs) are cytokines belonging to the TGF-β super-
family. Around the 1970s, TGF-β was discovered as a growth
factor (GF) that can transform mammalian fibroblasts.1 At the
same time, BMP was found to be capable of inducing ectopic
bone formation.2 TGF-β and BMP signaling regulates a variety of
physiological and pathological processes. TGF-β and BMP
signaling is also critical for skeletal system development and
homeostasis, which has been comprehensively investigated by
using cell and animal models and clinical studies. Numerous
mutations of the genes in TGF-β and BMP signaling are
associated with human skeletal disorders. Many mouse models
with dysregulated TGF-β and BMP signaling displayed certain
skeleton defects. In this review paper, we summarize the genetic
mouse models (Table 1) and human diseases (Table 2) related to
TGF-β and BMP signaling in the skeleton. We also comprehen-
sively review the essential roles and dynamic regulatory
functionality of TGF-β and BMP signaling in the skeletal system
during embryonic development and postnatal homeostasis,
mostly focusing on chondrocytes, osteoblasts, osteocytes, and
osteoclasts.

OVERVIEW OF TGF-β AND BMP SIGNALING PATHWAYS
In the TGF-β and BMP signaling pathways, the dimeric ligands
bind to heterotetrameric receptors comprising two type I and two
type II receptors.1–3 This binding ultimately results in the
phosphorylation and activation of a glycine-serine-rich domain
within the type I receptor by the constitutively active type II
receptor, transducing signals downstream through both suppres-
sor of mothers against decapentaplegic homolog (SMAD)-
dependent and -independent pathways (Figs. 1 and 2).1–3 The
heterogenous ligand–receptor combinations and the dynamic
regulations of TGF-β and BMP signaling result in versatile
outcomes.

Ligands and receptors: structure, diversity, and selectivity
More than 30 TGF-β superfamily members have been identified in
mammals, including TGF-βs, BMPs/growth differentiation factors
(GDFs), Nodals, and Activins. There are only a few studies
addressing the roles of Nodals and Activins in the skeleton,4–6

which indicate that they play a negative role in osteogenesis.
Activin A signaling was reported to increase in the skeleton of
patients with chronic kidney disease-mineral bone disorder and
might contribute to deranged bone turnover.5 In contrast, the
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functions of BMPs and TGF-βs in the skeleton have been more
extensively investigated, and this review will mostly focus on
them.
So far, more than 15 BMPs have been discovered in both

humans and rodents. The skeletal system synthesizes many
different BMPs, including BMP2, BMP3b/GDF10, BMP4, BMP5,
BMP6, BMP7, BMP9/GDF2, BMP13/GDF6, and BMP14/GDF5.7 All
three TGF-β ligands (TGF-β1, TGF-β2, and TGF-β3) are expressed in
the skeleton.8 TGF-βs and BMPs are synthesized and secreted as
pro-protein complexes which contain two N-terminal prodomains
(PDs) non-covalently interacting with the C-terminal mature GF
dimer (Fig. 3a, b).7,8 The PDs control the activity of GFs in different
ways, including latency, localization, stability, and proper dimer
formation.9 PDs of TGF-βs keep GFs latent in extracellular matrix
(ECM) and control their bioavailability.8,10 Pro-TGF-β is also known
as the small latent complex (SLC), with its PD known as latency-
associated peptide (LAP). LAP interacts with a latent binding

protein (LTBP) to form the large latent complex (LLC), which binds
to ECM proteins such as fibrillin (FBN).8,10 The release and
activation of TGF-βs from ECM involves dissociation at acidic pH
or proteolysis by matrix metalloproteinases (MMPs) of osteo-
clasts.11–13 Our work showed that activation of TGF-β is abolished
in ATP6i-deficient mice, whose osteoclasts were dysfunctional.14 In
contrast, PDs of some BMPs do not convey their latency, including
BMP4, BMP5, BMP7, and BMP9.15–17 Among them, BMP7 pro-
protein is bound with FBNs in ECM to form proper signaling
gradients,18 while BMP9 pro-protein is circulating,15 and the PD of
BMP4 is also essential for the generation of active BMP4/7
heterodimer.16 Therefore, the activity of BMPs and TGF-βs are
controlled by endopeptidases, and might also be controlled by
matrix composites or matrix degradation enzymes if they are ECM-
bound (discussed in more detail below).
Most TGF-β and BMP GF dimers are connected by a disulfide

bond, although this is absent in a few BMPs (GDF3, GDF9, and

Fig. 1 BMP signaling in bone remodeling. Pro-BMP proteins are bound with matrix proteins and are processed into active GF dimers
through the proteolytic degradation of the PD by ADAMTSs and MMPs. BMP activity is regulated by bone matrix proteins in the extracellular
region (FBN-1, COL1, HS) and by extracellular antagonists (Noggin, Grem1, Grem2, Chordin). Active BMPs bind to a receptor heterotetramer
comprising of Type I and II receptors. Co-receptors such as Neogenin and endoglin might cooperatively bind to BMP receptors or ligands. The
bindings ultimately result in the phosphorylation of type I receptors to transduce downstream signals through canonical and non-canonical
pathways. In the canonical pathway, BMP-specific R-SMADs (SMAD-1/5/8) are activated by phosphorylation at C-terminal SSXS domains and
form a complex with the Co-SMAD SMAD4 through the C-terminal MH2 domains. The activated SMAD complex then translocates into the
nucleus to regulate the transcription of target genes. In the cytoplasm, I-SMAD SMAD6 inhibits the signaling by interfering with receptor–R-
SMAD or SMAD complex formation. SMAD6 also cooperates with ubiquitin ligases (Smurf1 and Nedd4) to induce the ubiquitination and
degradation of R-SMADs. Deubiquitinases such as Usp15 and LMP-1 positively regulate BMP signaling by antagonizing R-SMAD degradation.
The nuclear translocation of the SMAD complex is regulated by nuclear envelope proteins such as TMEM53 and LEMD. In the osteoblast, the
transcription function of the SMAD complex is regulated by co-transcription factors (p300, β-catenin, CBP, TCF4, Runx2) or repressors (HDAC4/
5–SnoN; Ski complex, HDAC1–Nkx3.2 complex, Tob, Foxc1). In the non-canonical pathway, TRAF6 is recruited to the receptor to activate
downstream factors, including MAPKs, PI3K, and small GTPases (Rho, Rac, Cdc42). MAPK signaling positively regulates activity of
transcriptional factors, including Runx2 in osteoblasts and NF-кB in osteoclasts. Ultimately, BMP signaling promotes both osteoblast and
osteoclast differentiation at all stages. OB osteoblast, pre-OB pre-osteoblast, BMM bone marrow monocyte, OC osteoclast.
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BMP15).19 The disulfide-bonded dimeric structure is classically
portrayed as a “hand”, in which two sets of anti-parallel β-strands
form “finger extensions” that protrude from a central stabilizing
“wrist” α-helix.9 They bind their receptors at a composite binding
interface, which is formed by the “wrist” epitope of one monomer
and the convex “knuckle” epitope of the “finger extensions” of the
other monomer (Fig. 3c).9 Despite their structural similarity, TGF-β
and BMP ligands possess different interfaces, also called hotspot
regions or sites, to recognize diverse pairings of type I and type II
receptor complexes (Fig. 3d, e). In the skeleton, TGF-βs usually
bind to heterotetrameric receptors comprising of TGF-β type I
receptor (TGFBR1)/Anaplastic lymphoma kinase 5 (ALK5) and TGF-
β type II receptor (TGFBR2).8 Some studies also identified ALK1 as
a second type I TGF-β receptor.20,21 The receptor-binding nature
of BMPs is more heterogeneous than that of TGF-βs. In
the skeleton exist three type II receptors for BMPs, including
BMP type II receptor (BMPR2), Activin type IIA receptor (ActRIIA,
ACVR2A), and Activin type IIB receptor (ActRIIB, ACVR2B). More-
over, there exist four type I receptors, including BMP type IA

receptor (BMPRIA)/ALK3, BMP type IB receptor (BMPRIB)/ALK6,
Activin type I receptor (ACVR1)/ALK2, and ALK1.7,22–24 Combina-
tions of those type I and type II receptors form various
heterotetrameric complexes, which possess different binding
affinities for certain BMP ligands. For example, while both BMP7
and BMP14 bind to ALK6, only BMP7 binds to ALK2 and ALK3.
Therefore, BMP7 and BMP14 play distinct but overlapping roles in
skeletal development.25 Furthermore, BMP-2/4/9 stimulates bone
formation preferably through ALK-1/3/6,22,26,27 while BMP3
antagonizes osteogenesis through binding to ActRIIB.24,28

Canonical and non-canonical signaling
Upon binding to their receptors, the TGF-β superfamily transduces
signals through canonical (Smad-dependent) and non-canonical
(Smad-independent) signaling pathways (Figs. 1 and 2). In the
canonical signaling pathways, eight SMAD proteins have been
characterized in mammals (SMAD1–8), which could be classified
into three subtypes: common partner SMAD (Co-SMAD, SMAD4),
receptor-regulated SMADs (R-SMADs, SMAD-1, -2, -3, -5, and -8),

Fig. 2 TGF-β signaling in bone remodeling. Besides bone matrix proteins, the latency of TGF-βs is also maintained by LTBPs, which bind TGF-
β precursors to form the LLC. Active TGF-β peptides are released by osteoclastic bone resorption and proteolytic degradation by ADAMTSs
and MMPs. Active TGF-β binds with a receptor heterotetramer, which transduces signals through canonical and non-canonical pathways like
BMPs. Co-receptors β-glycan and Nrps facilitate ligand–receptor binding. In the canonical pathway, TGF-β-specific R-SMADs (SMAD-2/3) are
activated by phosphorylation at C-terminal SSXS domains and form a complex with the Co-SMAD SMAD4 through the C-terminal MH2
domains. The activated SMAD complex would then translocate into the nucleus to regulate the transcription of target genes. I-SMAD SMAD7
and Smurf2 antagonize signaling activation in the cytoplasm. The nuclear translocation of the SMAD complex is regulated by nuclear
envelope protein LEMD. In the osteoblast, the SMAD complex drives osteogenic gene expression (Dlx5, Runx2); however, it recruits HDAC4/5
to antagonize Runx2 activity and drives the expression of genes that inhibit osteoblast formation (HDAC6, Smurf1). The SMAD complex also
plays dual roles in osteoclastogenic gene expression in the osteoclast. In the non-canonical pathway, TRAF6 is recruited to the receptor to
activate downstream factors, including MAPKs, PI3K, and small GTPases (Rho, Rac, Cdc42). MAPK signaling positively regulates activity of
transcriptional factors, including Runx2 in osteoblasts and NF-кB in osteoclasts. Ultimately, TGF-β promotes osteoblast and osteoclast early
differentiation, limiting their later maturation. TGF-β also maintains the formation and property of osteocytes, while its mechanism remains
unclear. OB osteoblast, pre-OB pre-osteoblast, OCY osteocyte, BMM bone marrow monocyte, OC osteoclast, pre-OC pre-osteoclast.
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and inhibitory SMADs (I-SMADs, SMAD-6 and -7). Binding of TGF-βs
or BMPs with their receptors results in the phosphorylation and
activation of R-SMADs via interaction with the C-terminal SSXS
motif.3,29 The phosphorylated R-SMADs then form a complex with
the Co-SMAD SMAD4 through their C-terminal MH2 domains, and
translocate to the nucleus to regulate the transcription of target
genes via binding to DNA through their N-terminal MH1
domains.3,29 In most cases, BMPs elicit the activation of R-SMADs
SMAD-1, -5, and -8. In contrast, TGF-βs elicit the activation of
R-SMADs SMAD-2 and -3 (Fig. 3d, e). Alternatively, TGF-βs also bind
to ALK1 to transduce signals to SMAD-1, -5 and -8.20,21 Unlike
R-SMADs and Co-SMAD, I-SMADs lack the DNA-binding MH1
domain and coordinate the negative regulation of canonical
signaling, which is discussed in more detail in this review.
Alternatively, TGF-β or BMP receptors can transmit signals

independent of SMAD proteins (Figs. 1 and 2).3 Upon ligand
binding, TGF-β or BMP receptors associate with TNF receptor-
associated factors (TRAFs) to promote their polyubiquitylation,
which activates TGF-β activated kinase 1 (TAK1).
TAK1 subsequently phosphorylates mitogen-activated protein
kinases (MAPKs) or phosphoinositide 3-kinase (PI3K), which in
turn phosphorylates and activates target transcription factors (i.e.,
nuclear factor kappa-B (NF-κB), runt-related transcription factor 2
(RUNX2)). TAK1 might also activate small G proteins, including
Rac1 and Cdc42. Canonical and non-canonical signaling activation
reciprocally regulates each other. On the one hand, the activation
of non-canonical signaling could potentiate canonical signaling.
For example, PI3K was shown to stabilize SMAD1 protein through
GSK3 activation in vivo and in vitro, enhancing osteogenesis;30

furthermore, knockdown of extracellular signal-regulated kinase 1
(ERK1) was shown to inhibit TGF-β1-induced Smad3 phosphoryla-
tion in rat chondrocytes.31 On the other hand, non-canonical
signaling could also antagonize SMAD activity. For example, MAPK
might phosphorylate Smad1 to recruit Smurf1 for its cytoplasm
retention and degradation.32 NF-κB could interact with Smad4 and

antagonize its transcriptional activity to suppress BMP2-induced
bone formation.33 ERK signaling is reported to increase the
expression of Smurf1 to inhibit BMP’s function in osteoblasts.34 An
uneven activation of TAK1 over SMADs by c-Abl directs the
expression of p16(INK4a) to control mesenchymal stem cell (MSC)
maintenance and inhibit osteoblast differentiation.35

Target transcriptome
The Smad complex recognizes consensus DNA sequences, namely
Smad-binding element (SBE) or BMP-responsive element (BRE), to
regulate gene expression. The SBE element, also known as the GTCT
motif or its complementary extended CAGAC sequence, has been
previously identified.36 Smad1 and Smad5 were shown to also
recognize GC-rich motifs (GGCGC), termed BRE, in certain BMP-
responsive genes.36 As such, some target genes have been
identified for TGF-β and BMP signaling, including Id-1, Gremlin,
noggin, follistatin (FS), Smad6, and BambI.37 However, the target
transcriptome of TGF-β and BMP signaling also varies greatly
among cell types and pathological conditions, due to variable
cofactors and chromatin structure and accessibility. Therefore, the
development of chromatin immunoprecipitation followed by
sequencing (ChIP-seq), formaldehyde-assisted isolation of regula-
tory elements followed by sequencing (FAIRE-seq) or CUT&Tag-seq,
as well as ATAC-seq and RNA-seq techniques enables the genome-
wide analysis of SMAD-binding and SMAD-responsive sites in a cell
type-specific manner. Omata et al. 38 performed ChIP-seq combined
with FAIRE-seq in osteoclasts to analyze the TGF-β-responsive and
receptor activator of nuclear factor-κB ligand (RANKL)-regulated
genes. Their results indicated the cooperation of Smad2/3 with
c-Fos during osteoclastogenesis.38 Yu et al. 39 used RNA-seq, ATAC-
seq combined with H3K27Ac CUT&Tag-seq, to analyze deregulated
transcription factor networks in Bmp2-deficient osteoblasts, reveal-
ing that over 80% of deregulated elements are directly targeted by
transcription factors such as RUNX2, DLX5 (Distal-Less Homeobox 5),
MEF2C (MADS box transcription enhancer factor 2), OASIS

Fig. 3 Structure and selectivity of TGF-β and BMP ligands and receptors. a–c Structures of pro-TGF-β1, pro-BMP9, and TGF-
β1–TGFBR1–ALK5 complex were re-created from PDB files with accession codes 3RJR, 4YCI and 3KFD, respectively. Pro-TGF-β1 and pro-
BMP9 both contain PD and GF dimer which non-covalently interact with each other. PD of pro-TGF-β1 interacts with LTBPs and conveys
the latency of its GF. Unlike TGF-β1, PD of pro-BMP9 does not convey latency of its GF, and leave GF’s receptor-interacting domain ‘open’
(a, b). The active TGF-β1 is a GF dimer. Each monomer is like a “hand” with two β-strand “fingers” protruding from an α-helix “wrist”. The dimer
binds the receptor complex at an interface composed of the “wrist” of one monomer and ‘fingers’ of the other monomer (c). d, e Ligands and
receptors of TGF-β and BMP signaling in bone.
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(old astrocyte specifically induced substance), and KLF4 (Krüppel-
like factor 4). These transcriptional factors may function together
with or downstream of SMAD proteins to regulate the biological
outcomes induced by BMP2. With RNA-seq and ChIP-seq techni-
ques, Yan et al. 40 identified that Smad4 directly binds to the
regulatory region of the Runx2 promoter, which contributes to
osteoblast differentiation and chondrocyte hypertrophy. The diverse
target transcriptome could be explained by the notion that SMAD
proteins recruit different transcription co-regulators on the chromo-
somes, which is discussed in more detail in this review.

TGF-β AND BMP SIGNALING IN SKELETON DEVELOPMENT
The mammalian skeleton is formed through intramembranous
ossification (i.e., calvarial bones) or endochondral ossification (i.e.,
appendicular bones and axis bones).41,42 During intramembranous
ossification, condensed mesenchymal cells are directly differentiated
into osteoblasts and osteocytes.41,42 During endochondral ossifica-
tion, condensed mesenchyme undergoes chondrogenesis to form
cartilage primordium, which develops into a cartilage anlage of
embryonic bone shape, surrounded by the perichondrium.41,42 The
cartilage anlage further develops into growth plates at the two
epiphyseal ends, which are layered with chondrocytes in continuous
differentiation stages (resting, proliferative, pre-hypertrophic, and
hypertrophic).41,42 The hypertrophic chondrocytes undergo terminal
differentiation and apoptosis and are gradually replaced by bone
structures in the metaphyseal part. Multiple signaling pathways (i.e.,
Hedgehog, fibroblast growth factor (FGF), parathyroid hormone-
related protein (PTHrP), BMP, and TGF-β) cooperate to determine
the morphology of the skeleton in the cartilage primordium stage
and modulate bone growth and maturation in the growth
plates.41,42 Our work showed that transcriptional factor complexes
Runx1/Cbfβ and Runx2/Cbfβ control chondrocyte proliferation and
hypertrophy during growth plate development.43–47 Here, we will
discuss the specific roles of BMP and TGF-β signaling in skeleton
development, especially endochondral ossification.

BMP signaling in skeleton development
BMP signaling plays critical roles in multiple stages of
skeletogenesis, including MSC condensation, cartilage

primordium formation, skeleton patterning, and growth plate
development (Fig. 4). As mentioned earlier, BMP signaling
consists of a variety of ligands and receptors with hetero-
geneous binding affinities and patterns, which produce variable
physiological outcomes. BMP ligands have different expression
patterns during skeleton development, delineating their diverse
physiological functions. For example, Bmp14 and its receptor
Alk6 have a restricted expression pattern in appendicular
bones.25 Consistently, mice carrying the Bmp14 mutation, Alk6
null mutation, or both display malformation of appendicular
bones but not axis bones.25,48,49 Bmp-2, -4, -7, and -14 (GDF5)
are expressed in the early stage of skeletal development,
indicating their roles in the initiation of skeletogenesis.25,50–52

Consistently, embryonic deletions of Bmp-2, -4, -7, or -14 genes
result in malformed skeletons.25,50–52 Among them, MSC-specific
Bmp-2 and -4 double knockout (DKO) mice displayed the most
severe malformation, highlighting their critical functions during
embryonic skeletal development.51 At the molecular level, loss
of BMP impairs prechondrogenic differentiation at mesenchyme
condensations due to expressional loss of key chondrogenic
transcription factors, including Sox-5, -6, and -9.48

Moreover, BMP signaling is critical in early limb bud develop-
ment (Fig. 4). BMP-2, -4, and -7 are expressed in both the anterior
and posterior margins of limb bud mesenchyme.51 BMP antago-
nist Gremlin is also expressed in the posterior margins of the limb
bud.53 Msx2-Cre-mediated Bmp4, Bmp2, and Bmp7 deletion in
apical ectodermal ridge (AER) cells resulted in the disruption of
dorsal-ventral polarization of mesenchyme and AER disorganiza-
tion.54–57 During distal progression of limb bud development,
Sonic Hedgehog (SHH) activity leads to the upregulation of the
BMP antagonist Gremlin in the posterior mesenchyme (or zone of
polarizing activity) to prevent BMPs from downregulating FGF
production in the AER, which feeds back to maintain SHH
production.58 Mutations of genes in BMP signaling, including
NOGGIN, GDF5, BMP2, and BMPR1b, are associated with human
diseases characterized by symphalangism or brachydactyly59–64

(Table 2). Manipulating the aforementioned genes in mice
emulates these human disease phenotypes while also having
additional autopod patterning defects, such as polydactyly and
missing phalange elements.25,48–52,65–67

Fig. 4 TGF-β and BMP signaling in endochondral bone development. Endochondral bone development begins with the condensation of
mesenchyme, which develops into limb bud, cartilage analogue, and embryonic bone with a well-organized growth plate in a step-wise
fashion. In the early stage, BMPs are expressed in the anterior and posterior margins of the limb bud. IHH induces the expression of BMP
antagonist Gremlin in the posterior margins. Gremlin prevents BMPs from downregulating FGF production which feeds back to maintain IHH
production. The BMP-IHH-FGF regulatory loop establishes the dorsal-ventral and anterior-posterior axes of the limb bud and determines limb
patterning. In the growth plate, BMP signaling promotes chondrocyte proliferation and differentiation at all stages, while TGF-β promotes the
terminal differentiation of chondrocytes while inhibiting hypertrophic differentiation. BMP positively regulates IHH signaling to promote
chondrocyte proliferation through the IHH-PTHrP loop, negatively regulates FGF signaling, a negative regulator of chondrocyte proliferation
and hypertrophy, and promotes Runx2 activity to enhance hypertrophic and terminal differentiation. In contrast, TGF-β decreases IHH
expression. BMP and TGF-β promote Sox9 expression or activity, favoring cartilage matrix production.
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BMP signaling promotes chondrocyte proliferation and differ-
entiation at all stages of growth plate development (Fig. 4). In the
growth plate, expression is found for Bmp2, Bmp4, and Bmp5 in
the perichondrium, Bmp2 in hypertrophic chondrocytes, and
Bmp7 in proliferating chondrocytes.7 Severe chondrodysplasia
and shortened long bones are observed in chondrocyte-specific
Bmp2 conditional knockout (CKO) and Bmp-2 and -4 DKO mice but
not in Bmp4 CKO mice, indicating that Bmp2 outweighs Bmp4 in
regulating chondrocyte differentiation during growth plate
formation.50 As for their receptors, ALK-2, -3, and -6 play
redundant roles during skeleton development since all the
chondrocyte-specific DKO mice display a more severe, perinatal,
lethal chondrodysplasia phenotype than the single gene CKO
mice, exhibited by delayed chondrocyte proliferation, matrix
production, hypertrophic differentiation, and terminal differentia-
tion.25,48,49,65 Similar phenotypes could also be observed in mice
with R-Smad or Co-Smad proteins deleted specifically in
chondrocytes.40,50,68,69 Conversely, augmentation of BMP signal-
ing accelerates chondrocyte maturation and cartilage expansion,
as observed in chick limbs loaded with constitutive active (CA)
forms of BMP receptors and mouse models with activated BMP
signaling.66,67,70 BMP regulates chondrocyte proliferation and
hypertrophic differentiation through several different mechan-
isms. First, BMPs maintain the expression of Sox9, a master
chondrogenic transcription factor.48,71 Second, BMP signaling
induces the expression of Indian Hedgehog (Ihh),27,65,69 a cytokine
critical for maintaining proliferating chondrocyte pool. Third, BMPs
negatively regulate FGF signaling by inhibiting the expression of
FGFR1.65 FGF signaling was shown to inhibit chondrocyte
proliferation and hypertrophy through STAT and MAPK signal-
ing.65 Furthermore, BMP/Smad4 promotes the expression and
activity of Runx2, which positively regulates chondrocyte hyper-
trophy and ossification.40

TGF-β signaling in skeleton development
Like BMPs, TGF-β signaling is also indispensable for skeleton
development. In humans, deregulated TGF-β signaling caused by
the mutations of TGFΒR2, TGFΒ2, TGFΒ3, SMAD2, SMAD3, and
FBN-1 is associated with Loeys-Dietz syndrome or Marfan
syndrome, both of which are characterized by various skeletal
anomalies such as long bone overgrowth72–77 (Table 2). In mice,
deletion of Tgfbr2 abolished TGF-β signaling and resulted in
severe defects in calvarial, appendicular, and axis bones.78 TGF-β
also plays a critical role in joint morphogenesis. Tgfbr2 deficiency
results in ankylosis of the interphalangeal joints and missing or
incomplete intervertebral discs (IVDs).78–81 TGF-βs regulate the
expression of several joint morphogenic genes, including Noggin,
Wnt9a, GDF5, and MCP-5 (monocyte chemotactic protein-5).81,82

Unlike BMPs, the roles of TGF-β in chondrogenesis are
differentiation stage-dependent. At an early stage of differentia-
tion, TGF-β signaling is not required to initiate chondrogenesis but
limits chondrogenesis for osteoblast lineage commitment. Neither
MSC-specific nor chondrocyte-specific Tgfbr2 CKO mice experi-
ence difficulty in forming the primordium.78–80 Deletion of Alk5 in
mice also led to a thinner perichondrium accompanied by ectopic
cartilaginous tissues protruding into the perichondrium.83 At a
later stage of differentiation, TGF-β signaling prevents chondro-
cyte hypertrophy while promoting terminal differentiation.78,81,84

TGFBR2 is the only type II receptor for TGF-βs, and deletion of
Tgfbr2 effectively abolished TGF-β signaling and resulted in severe
defects in calvarial, appendicular, and axis bones.78 However,
severe skeleton defects were not observed in TGF-β1, 2, and 3
single gene KO mice,85–88 indicating that they play redundant
roles. During terminal differentiation, Tgfbr2 deficiency acceler-
ated the transition from pre-hypertrophic to hypertrophic
chondrocyte while delaying ossification.78,81,84 Similar defects
were observed in the chondrocyte-specific Smad-2 and -3 CKO
and DKO mice, while Smad2-deficient mice displayed a more

severe phenotype, indicating that Smad2 plays a more critical role
than Smad3 in endochondral bone development.89 Smad2 is
shown to inhibit the expression of Ihh at the transcriptional level
to a greater extent than Smad3.89

TGF-β AND BMP SIGNALING IN BONE FORMATION AND
REMODELING
Throughout the life of humans, bone tissues undergo continuous
remodeling, with bone resorption carried out by osteoclasts and
bone formation by osteoblasts.90,91 The differentiation program
from skeletal MSCs to osteoblasts is regulated by multiple signaling
pathways (i.e., IGF, WNT, Hedgehog, parathyroid hormone (PTH),
TGF-β, and BMP) and transcription factors (i.e., Runx2, Dlx5, Osterix,
β-catenin).91 Our works showed that Runx1/Cbfβ and Runx2/Cbfβ
control osteoblast differentiation and lineage commitment.44,92–94

Osteoclasts differentiate from bone marrow monocytes/macro-
phages, a process driven by two cytokines: M-CSF and RANKL.90

Osteoclast differentiation is also controlled by key transcription
factors like c-Fos, NF-кB, and nuclear factor-activated T-cells 1
(NFATc1).90 Osteocytes are terminally differentiated osteoblasts
embedded in the mineralized matrix.95 Osteocytes localized in the
lacuna of bones have multiple dendritic extensions to connect with
nearby osteocytes and cells on the bone surface, forming a
specialized structure called the lacuna-canalicular network.95

Osteocytes directly participate in perilacuna bone remodeling and
modulate osteoclast and osteoblast functions through paracrine
pathways.95 An imbalance between osteoclast and osteoblast
activity and dysregulated osteocyte function will disturb bone
homeostasis, resulting in bone metabolic diseases like osteopenia
and osteosclerosis. Here, we summarize the role of TGF-β and BMP
signaling in regulating osteoclast, osteoblast, and osteocyte
formation and function. Multiple genetic mutations in TGF-β and
BMP signaling are associated with various human sclerosing
symptoms (Table 2). Genome-wide studies and single-gene analysis
also identified genetic polymorphisms of several genes in both
pathways associated with bone mass, including TGF-β1, BMP2,
BMP4, SMAD9, SMAD2, Noggin, SOSTDC1, GREM2, NAB1, and
SPON1.96–106 The involvement of TGF-β and BMP signaling in
postnatal bone homeostasis is also substantiated by extensive
in vivo, in vitro and ex vivo studies.

BMP signaling in bone formation and osteoblast
differentiation
BMPs were first discovered and mainly referred to as osteogenic
proteins (Fig. 1). BMP2 is considered the gold standard for bone
regeneration and has been clinically applied to promote fracture
healing and spinal fusion.107,108 Additionally, BMP-2, -4, -6, -7, and
-9 are also osteogenic in vitro and in vivo.107–110 However,
endogenous BMP2 might have a unique and indispensable
function in fracture healing since BMP2 CKO mice also have
frequent fractures that fail to heal, which is not observed in BMP4
CKO mice.111,112 BMP9 has been recently found to be resistant to
endogenous antagonists such as Noggin and BMP3b, providing a
candidate alternative to BMP2 for treating fracture healing.109,110

In addition, mouse models were generated with BMP canonical
and non-canonical signaling suppressed in osteoblasts, including
Alk2 CKO mice,113 BmprII dominant-negative transgenic mice,114

ActRIIB-null mice,115 Smad1 CKO mice,50 Tak1 CKO mice,116 p38
CKO mice,117 and Smad4-deficient mice.118,119 All aforementioned
mice exhibited osteopenia phenotypes, further substantiating the
osteogenic role of BMP signaling in promoting osteoblast
differentiation and matrix production.
Moreover, hyperactivated BMP signaling leads to heterotopic

ossifications (HO). One of the major side effects of BMP
implementation in bone healing is inducing HO in muscle
tissues.120 Musculoskeletal trauma-induced HO in muscles and
tendons at a high ratio is associated with hyperactivated BMP
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signaling.121 Antagonizing BMP signaling activation is proposed to
be a potential treatment preventing trauma-induced HO.121

Fibrodysplasia ossificans progressiva (FOP; MIM #135100), a
genetic disorder manifesting progressive HO, is caused by gain-
of-function mutations (R260H and G356D) of ALK2/ACVR1, the type
I receptor of BMPs (Table 2).122,123 In animal and cell models of
FOP, the ACVR1 mutants transduce hyperactivated Smad1/5/8-
dependent signals downstream of either BMP or ALK2, explaining
the pathomechanism of FOP (Table 1).122,124–130 In contrast, under
normal circumstances, BMP-ACVR1 activates Smad1/5/8 and
Activin A-ACVR1 activates Smad2/3 signaling.131 Retinoic acid
receptor γ (RARγ) agonist Palovarotene, which suppresses BMP
signaling,132 has been recently approved by the U.S. Food and
Drug Administration for FOP treatment based on its Phase III
trial.133 Besides Palovarotene, selective ALK2 inhibitors (BLU-782,
Phase I; INCB00928, Phase II; Saracatinib) and the Activin A
neutralizing antibody also showed potential to alleviate FOP
symptons.128,134,135

At the molecular level, BMPs promote osteogenesis through
several different mechanisms. Firstly, BMP signaling positively
regulates the activity of Runx2, an osteoblast master transcription
factor. Smad1 physically interacts with Runx2 to bind to OSE2 sites
on its target gene.136 Runx2 is also phosphorylated by BMP non-
canonical signaling (TAK1-MEK-p38 or ERK), promoting its
association with the coactivator CREB-binding protein (CBP).116

BMP also stabilizes Runx2 through promoting its acetylation by
p300.137,138 Secondly, frequent crosstalk between BMP and WNT
signalings promotes the osteogenic program. For example,
transcription factor 4 (TCF4)/β-catenin complex physically inter-
acts with the SMAD complex on the corresponding DNA-binding
sites139; ablation of Smad4 causes cleavage of β-catenin and
depletion of the WNT receptor, a low-density lipoprotein receptor
(Lrp5)118; expression of LGR4, an orphan receptor and WNT
regulator, is also induced by BMP2.140 Thirdly, BMP signaling
induces the expression of several osteogenesis-related transcrip-
tion factors, including Msx2, Runx2, Dlx5, KLF10, Forkhead box C1
(Foxc1), Foxc2, and Dlx3.139,141–143 Fourthly, BMP2 also induces the
expression of PLCβ1 (phospholipase C β1) and IHH, both of which
promote osteoblast differentiation.144,145 Additionally, SMAD1
dislodges Hoxc-8 from its DNA-binding sites to induce osteoblastic
gene expression.146 Moreover, BMP signaling positively regulates
mTORC1 activity to promote osteoblast activity.147 Our work
showed that Runx1 regulates osteoblast differentiation through
promoting BMP signaling, by controlling Bmp7 and Alk3 expres-
sion at transcriptional level.94

However, BMP signaling also has adverse effects on bone
formation. BMP limits the proliferation of preosteoblasts and
antagonizes osteogenesis in osteoblast progenitors.147 BMP
signaling might also negatively regulate mineralization and
collagen maturation.148,149 At the molecular level, Alk3 induces
the expression of WNT antagonists, DKK1 (Dickkopf-related
protein 1), and sclerostin (SOST).150 BMP2 promotes an interaction
between Smad1 and Dvl-1 (Drosophila dishevelled gene) that
restricts β-catenin activation.151 Smad4 also competitively inter-
acts with Tcf and Lef (lymphoid enhancer binding factor) proteins
to inhibit the transcriptional activity of β-catenin.119 Collectively,
BMP antagonizes bone formation through perhaps inhibiting
WNT/β-catenin signaling.

TGF-β signaling in bone formation and osteoblast
differentiation
As discussed above, BMP signaling limits osteoprogenitor
proliferation while promoting osteogenesis afterward. In contrast,
TGF-β signaling promotes osteoprogenitor proliferation and
osteogenesis at the early stage of differentiation while inhibiting
bone formation at the later stage (Fig. 2). Many mouse models
with impaired TGF-β signaling have been generated, including
Tgfb1-null mice, MSC-specific and osteoprogenitor-specific Tgfbr2

CKO mice, Alk5-null mice, and Smad3-null mice.83,152–157 Those
TGF-β signaling-dificient mice displayed significant bone loss with
reduced osteoblast number, suggesting that TGF-β is anabolic for
bone formation.
Conversely, hyperactivated TGF-β signaling increased bone

mass. In humans, gain-of-function mutations in TGFB1 are
associated with Camurati-Engelmann disease (CED; MIM
#131300), characterized by osteosclerotic lesions within the long
bones and the skull.158 Mice carrying the same tgfb1 mutation
mirror the phenotype seen in humans.152 Somatic SMAD3-
activating mutations in humans are associated with endosteal
pattern melorheostosis (Leri’s disease; MIM #155950), character-
ized by asymmetric exuberant bone formation.159,160 Interestingly,
osteogenesis of SMAD3-activating mutant cells is stimulated by
TGF-β while inhibited by BMP2,159,160 indicating that SMAD3 links
the reciprocal regulation between BMP and TGF-β. Furthermore,
activating mutations of mitogen-activated protein kinase kinase 1
(MAP2K1) in non-canonical TGF-β signaling also caused sporadic
melorheostosis.161 At the molecular level, TGF-β positively
regulates the expression of Runx2, Osterix, Dlx5, and Msx2 to
initiate the osteogenic program.153 TGF-β1 induces the expression
of integrin Vα5 to promote osteoblast adhesion.162 TGF-β1-SMAD
signaling also regulates the expression of connective tissue
growth factor (CTGF), a matrix protein that positively regulates
osteoblast differentiation and function.163

During the late stage of osteoblast differentiation, TGF-β
signaling inhibits bone formation. TGF-β, SMAD3, and SMAD2
are shown to inhibit osteogenesis in vitro.164–167 Smad3 interacts
with Runx2 and recruits histone deacetylase 4 (HDAC4) and 5
(HDAC5).166 HDAC4 and HDAC5 deacetylate Runx2 to facilitate its
degradation.137 TGF-β regulates the expression of various signal-
ing proteins involved in osteoblast formation. TGF-β induces the
expression of vimentin, which negatively regulates the activity of
ATF4, an osteogenesis-related transcription factor.168 TGF-β
induces the expression of HDAC6, which distorts primary cilia to
impair mechanical-stimulated osteogenesis.169 TGF-β induces the
expression of Smurf1, which antagonizes osteogenic signaling
such as BMP.34,170 TGF-β also inhibits the expression of IGF-1, a
bone anabolic cytokine.171 In vivo, CKO of Tgfbr2 in mature
osteoblasts results in high bone mass in mice.172 Qiu et al.172

revealed that Tgfbr2 forms a complex with PTHrP for endocytosis.
With the deletion of Tgfbr2, PTH signaling is hyperactivated to
produce excessive bone mass.172 PTH signaling also reciprocally
regulates TGF-β signaling by inducing LTBP-1, TGF-β1, and Smad3
expression.173,174

BMP and TGF-β signaling in osteoclast differentiation
BMP signaling promotes osteoclast differentiation both directly
and indirectly. BMP promotes osteoblast-induced osteoclast
formation through upregulating the RANKL/osteoprotegerin
(OPG) ratio (Fig. 1). Disruption of Alk3, Alk2, or Smad4 in
osteoblasts or osteocytes results in an unexpected increase of
bone mass in mice due to the decreased RANKL/OPG ratio
causing less osteoclast formation.150,175–178 Alk2 and
Alk3 signaling upregulate WNT antagonists (i.e., Sost) to inhibit
WNT activation, and the latter regulates osteoclast formation by
inhibiting the RANKL/OPG ratio.150,175,176 Therefore, BMP might
be essential to promote osteoblast-osteoclast coupling in bones
requiring extremely active remodeling, such as during
regeneration.145

BMP signaling also stimulates osteoclast formation directly
(Fig. 1). BMPs (i.e., BMP2, BMP7) stimulate and BMP inhibitor
dorsomorphin blocks osteoclast formation and bone resorp-
tion.179–182 Consistently, deletion of ALK2, ALK3, SMAD1/5, or
SMAD4 also impairs osteoclastogenesis.180,182,183 At the molecular
level, BMP signaling promotes the expression or activity of
osteoclastic transcription factors. BMPRII couples with RANK to
activate p-Smad1/5/8 and NF-κB signaling simultaneously.181
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Smad1/5/8 promotes the nuclear translocation of NFATc1.182

Moreover, Smad1/5 induces the expression of c-Fos and Nfatc1.180

Unlike BMPs, TGF-β regulates osteoclast formation in a dose-
and stage-dependent manner (Fig. 2). Low-dose TGF-β induces,
whereas high-dose TGF-β inhibits, migration of osteoclast
precursors to the bone resorption pits.184 TGF-β at the monocyte
stage promotes, while at the later differentiation stage antag-
onizes, osteoclast formation. TGF-β regulates multiple signalings
in regulating osteoclast differentiation. TGF-β-induced p38 activa-
tion and Smad2/3 cooperation with c-Fos as a co-transcription
factor favor osteoclast differentiation.38,185 TGF-β inhibits RANK
expression, blocks Prdm1 activity to induce Irf8 and Bcl6
expression, and upregulates ROS production to block MAPK
signaling to antagonize osteoclast differentiation.185–187 TGF-β
also upregulates Bim expression to induce osteoclast
apoptosis.188,189

The role of TGF-β signaling in osteocytes
While the well-known osteocyte marker SOST is an antagonist of
WNT and BMP signaling and a critical regulator of skeletal
homeostasis, knowledge about the role of BMP signaling in
osteocytes is very limited. In contrast, recent studies brought up
the physiological role of TGF-β in regulating osteocyte formation
and function. TGF-β-Smad3 signaling has been previously shown
to inhibit the transition of osteoblasts into osteocytes.156 In
mature osteocytes, TGF-β signaling was recently demonstrated to
play a critical role in maintaining its perilacunar-canalicular
network and function (Fig. 2). In mice, intrinsic osteocytic TGF-β
signaling promotes the perilacunar-canalicular remodeling of the

osteocyte to control bone quality.190,191 Specific loss of TGF-β
signaling in the osteocyte reduces osteocyte connectivity,
impairing fluid dynamics and osteocyte exposure to mechanical
stimulation.192 Conversely, administration of TGF-β1 increases
osteocyte connectivity in bone tissue and an MLO-Y4 cell line by
inducing connexin43 and pannexin1 expression.193 TGF-β3 was
also shown to maintain the osteocyte differentiation of MLO-Y4
cells in an osteoblast-osteocyte co-culture 3D system as deter-
mined by stable E11 and osteocalcin mRNA expression.194

Furthermore, intrinsic osteocytic TGF-β signaling is also essential
for the mechanosensing property of articular cartilage. Mice with
impaired TGF-β signaling in osteocytes have thicker subchondral
bone plates, high SOST levels, and more severe cartilage
degeneration in an injury-induced osteoarthritis (OA) model.195

TGF-β AND BMP SIGNALING IN ARTICULAR CARTILAGE
HOMEOSTASIS
Joints are organized structures allowing constrained motion. They
are formed by adjacent bones with articular cartilage covering the
bone surface and contain the synovial lining of the joint cavity.
Articular chondrocytes govern articular cartilage homeostasis via
their ability to modulate ECM production and degradation, whose
imbalance causes degenerative joint diseases such as OA. In the
diseased joint, chondrocytes undergo abnormal hypertrophic and
terminal differentiation, followed by tearing of the cartilage
matrix, focal calcification, and ectopic bone (osteophyte)
formation.
On the one hand, TGF-β signaling plays a critical role in

maintaining articular homeostasis (Fig. 5). TGF-β1-coupled bioma-
terials have been proposed as a therapeutic method for cartilage
repair.196,197 TGF-β signalings protect articular cartilage by
inhibiting chondrocyte hypertrophy and apoptosis,198,199 promot-
ing cartilage matrix synthesis,200–202 and antagonizing inflamma-
tory cytokine production.203,204 In humans with grade 3 OA,
genetically modified allogeneic human chondrocytes that express
TGF-β1 show significant improvement in knee joint function and
reduce pain severity.205 Animal models with inhibited canonical
and non-canonical TGF-β signaling are prone to developing OA,
including dominant-negative Tgbr2 transgenic mice,206 mice with
postnatal cartilage-specific deletion of Alk5, Tgfbr2, or
Tak1,71,207–209 Smad3-null mice,199 and dominant-negative p38
transgenic mice.210 Pharmacological inhibition of TGF-β signaling
also leads to an OA-like phenotype in rodents.71,211,212 At the
molecular level, the reduction of TGF-β canonical signaling
induces the death of articular chondrocytes.198 TGF-β non-
canonical signaling induces the phosphorylation and activation
of ATF2 and FoxO, which inhibits OA by upregulating the
expression of Sox9 and autophagy proteins.71,213 Inhibition of
TGF-β activity enhances BMP and S1P (sphingosine 1-phosphate)
signaling, which accelerates chondrocyte maturation and matrix
degradation.199,214 Abolished TGF-β activity also alters IGF and
FGF signaling and upregulates the expression of biosynthesis-
related genes and electron transport chain-related genes,
contributing to chondrocyte hypertrophy.215 Our work showed
that Runx1 protects cartilage homeostasis through promoting
TGF-β signaling.216

On the other hand, TGF-βs also promote the progression of OA.
TGF-β expression is increased in osteoarthritic cartilage and joints
with ankylosing spondylitis.217–220 Furthermore, mechanical load-
ing during OA could induce TGF-β1 secretion.221 Excessive TGF-β
signaling is detrimental to joint degeneration. Notably, CED
patients or mouse models carrying gain-of-function mutations of
TGFB1 are prone to developing OA.221,222 Suppression of TGF-β
signaling by deleting Tgfbr2 in nestin-positive MSCs ameliorates
the development of OA after anterior cruciate ligament transec-
tion (ACLT) compared to a control.221 The contradictory roles of
TGF-β in OA have been linked to the opposite regulatory functions

Fig. 5 TGF-β and BMP signaling in cartilage homeostasis.
Postnatal cartilage homeostasis is maintained by matrix production
and degradation balance, and the imbalance results in cartilage
tearing and joint diseases like osteoarthritis. TGF-β plays dual roles in
cartilage homeostasis. To protect cartilage health, TGF-β, through
binding ALK5, activates SMAD-2 and -3 and TAK1-p38 signaling,
which enhances the Sox9 expression and activity and promotes
autophagy activity and matrix protein production. Conversely, TGF-
β, through binding ALK1, activates SMAD-1, -5, and -8, like BMPs,
which promotes MMP production and osteogenesis to aggravate
cartilage degeneration.

M. Wu et al.

113

Cell Research (2024) 34:101 – 123



of its type I receptors, ALK1 and ALK5, to transduce signals to
SMAD1/5/8 and SMAD2/3, respectively, in chondrocytes.20,21 ALK1
signaling is destructive by inducing the expression of matrix-
degrading enzyme MMP-13. In contrast, ALK5 signaling is
protective by inducing the expression of matrix proteins aggrecan,
type II collagen, and PRG4 (proteoglycan 4).207,223 In addition,
ALK1 opposes TGF-β-ALK5-induced phosphorylation of SMAD3
and inhibits the expression of chondrogenic genes induced by
TGF-β, including fibronectin and type II collagen.20 Furthermore,
ALK1/ALK5 ratio is increased in aging and osteoarthritic cartilage
in mice.223 Disturbed balance between ALK1 and ALK5 signalings
might contribute to articular cartilage degeneration.223 In addi-
tion, TGF-β signaling also promotes the clustering of nestin-
positive MSCs, leading to the formation of marrow osteoid islets
accompanied by high levels of angiogenesis to deteriorate OA
condition.221

Abnormal BMP activation is associated with OA since BMP
accelerates chondrocyte terminal differentiation.199 Recently,
Occhetta et al. 224 found that selective inhibition of BMP signaling
helps control differentiation of MSCs into chondrocytes at
precisely the stage as those in articular cartilage. As cultured
chondrocytes usually undergo terminal differentiation, this finding
indicates that targeting BMP signaling provides a strategy for
cartilage regeneration. BMP activity also needs to be inhibited
spatially in vivo during development or in postnatal cartilage to
prevent further chondrocyte differentiation as well as the over-
expression of its antagonists, such as Gremlin.224

REGULATION OF TGF-β AND BMP SIGNALING IN BONE
TGF-β and BMP signaling is regulated at multiple levels from
extracellular space to nucleus (Figs. 1 and 2). Extracellularly, matrix
proteins such as FBNs and collagens control the latency of TGF-βs
and BMPs; metalloproteinases contribute to the release and
activation of TGF-β and BMP peptides; antagonists interrupt the
binding of TGF-β and BMP ligands to their receptors. At the cell
membranes, co-receptors such as β-glycan and endoglin (ENG)
facilitate the ligand–receptor interactions. In the cytoplasm, I-
SMAD, ubiquitin ligases, and deubiquitinases regulate the activa-
tion and stability of SMAD complexes. Nuclear envelope proteins
control the transport of SMAD complexes from cytoplasm to
nucleus. Various transcription co-factors and epigenetic factors
cooperate with SMAD complexes in the nucleus to regulate their
transcription activity. Here, we will summarize how those
regulators coordinate BMP and TGF-β signaling in bone and
cartilage.

Latency and release control of the ligands
LTBPs interact with LAPs and active TGF-β peptides to form the
LLC. LTBP is indispensable for the latency, correct folding, and
secretion of TGF-β. It is also essential for storing TGF-β in the ECM
through interactions with platform proteins. Currently, four
different LTBPs (LTBP-1–4) have been identified.225 Among them,
LTBP-3 is the most studied. Ltbp-3-null mice have impaired TGF-β
signaling, exhibiting multiple skeletal malformations and an OA-
like phenotype.226,227 Impaired TGF-β signaling in LTBP-3 null cells
also reduced proliferation and osteogenic potential.228

The FBN microfibril network controls the latency of TGF-βs and
BMPs by serving as their reservoir in the bone and cartilage matrix.
The major component of the microfibril network, Fbn, binds the
LLCs or CPLXs through its unique N-terminal region. Fbn-1 and -2
are both found to be expressed in the cancellous bone.229 In
humans, mutations in FBN-1 and FBN-2 cause pleiotropic
manifestations in Marfan syndrome (MIM #154700) and congenital
contractural arachnodactyly (MIM #121050), respectively77,230

(Table 2). Fbn-1-null mice had systemic sclerosis due to abnormal
activation of both TGF-β and BMP signalings.231 However, Fbn-2
deficiency in mice induced a low bone mass phenotype due to

improper activation of TGF-β inhibiting osterix expression and
increasing osteoblast-induced osteoclast formation.231,232

Microfibril-associated glycoprotein-1 (MAGP1) is another constitu-
tive component in microfibril network.233,234 Magp1-null mice,
resembling Fbn-2-null mice, developed progressive osteopenia
due to abnormal activation of TGF-β.233,234

Type I collagens (COL1s), COL1A1 and COL1A2, also serve as
reservoirs for TGF-βs in the bone matrix. Autosomal dominant
mutations of COL1 in humans cause osteogenesis imperfecta (OI;
MIM #259420), a bone dysplasia characterized by bone deformi-
ties, low bone mass, poor bone quality, frequent fractures, and
high non-union rate (Table 2).235 Cartilage-associated protein
(CRTAP) catalyzes the maturation of COL1 by 3-hydroxylation, and
its mutations also cause OI. Both Col1a2G610c/+ and Crtap–/– mouse
models recapitulated OI phenotypes due to excessive TGF-β
signaling.236,237 Importantly, anti-TGF-β antibody 1D11 treatment
both corrects the bone phenotype and improves fracture healing
in the OI mouse model, highlighting the potential of targeting
TGF-β signaling in treatment for OI.236,237

Heparin sulfate (HS) is abundant in the cartilage matrix and
binds to latent TGF-βs and BMPs. EXT1 and EXT2 are Golgi-
resident glycosyltransferases participating in the biosynthesis of
HS.238 Mutations of EXT1 and EXT2 in humans cause hereditary
multiple exostoses (MIM #133700, #133701), a human autosomal
skeletal disorder characterized by the formation of cartilage-
capped bony growths (osteochondroma) at the ends of the bones,
due to excessive BMP signaling.238 Mouse models with CKO of
Ext1 in cartilage tissue develop osteochondroma and enhanced
chondrocyte hypertrophy due to increased BMP-SMAD
activity.239–241

CTGF is a cartilage matrix protein bound to latent TGF-βs.242 The
Ctgf-deficient mice developed more severe OA than control mice
due to increased TGF-β-SMAD activity.242

A disintegrin and metalloproteinase with thrombospondin
motifs (ADAMTS) and MMPs help release active TGF-βs and BMPs
from ECM via a proteolytic process. As reported, ADAMTSL2,
ADAMTS17, and ADAMTS10 regulate skeletal development by
activating TGF-βs or BMPs. Mutations of ADAMTSL2 in humans are
associated with recessive geleophysic dysplasia (MIM #231050),
characterized by short stature, short extremities, and skeletal
abnormalities243 (Table 2). Delhon et al. 244 generated whole-body
and chondrocyte-specific Adamtsl2-deficient mice, both of which
displayed skeletal abnormalities reminiscent of the human
phenotype due to impaired TGF-β signaling. Mutations of
ADAMTS10 and ADAMTS17 in humans cause Weill-Marchesani
syndrome (WMS; MIM# 277600, 608328) and WMS-like syndromes,
characterized by short stature and brachydactyly245 (Table 2).
Adamts17–/– mice recapitulated WMS phenotype with shortened
growth plate due to impaired BMP activation.246 TGF-βs or BMPs
are also activated by proteolytic processing of the PD by MMPs,
including MMP-2, -9, and -13.11–13

Extracellular antagonists
Noggin is a twelve-membered cystine knot protein and a critical
antagonist of BMP ligands in bone. The crystal structure of the
BMP–Noggin binding complex has been previously determined,
showing that Noggin acts by sequestering the ligand in an
inactive state.247 Noggin has a similar expression pattern to BMPs
in bone during prenatal and postnatal development.248,249 In
animal and cell models, Noggin blocks osteoblast formation by
inhibiting BMP activation. Administration of Noggin suppresses
osteogenesis,250,251 and neutralizing Noggin promotes osteoblast
differentiation.252 Mice with conditional overexpression of Noggin
showed dramatic decreases in bone mineral density and bone
formation rates.250,253 However, deletion of Noggin in mature
osteoblasts resulted in more osteoclast formation and osteope-
nia.254 Whether the detrimental impact on bone is attributed to
an excessive presence of BMP or whether Noggin plays a
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BMP-independent role in skeletal homeostasis remains uncertain.
In humans, mutations of NOGGIN are associated with various
ankylosis deformities, including proximal symphalangism (SYM1:
MIM #185800), multiple synostosis syndrome (SYNS: MIM#186500),
tarsal–carpal coalition syndrome (TCC; MIM#186570), and stapes
ankylosis with broad thumb and toes (SABTT; MIM#184460)
(Table 2).59 Noggin mutant cells from ankylosis patients out-
performed healthy cohorts in osteogenic differentiation capacity
due to enhanced BMP activity.255 Noggin prevents cranial suture
closure by inhibiting BMP signaling during cranial bone develop-
ment. Therefore, Noggin downregulation also contributes to
syndromic craniosynostoses.256

Gremlin-1 and Gremlin-2 (Grem1 and Grem2) are DAN family
proteins and extracellular antagonists of BMPs. The structure of
the Grem2–GDF5 complex reveals that two Grem dimers bind
perpendicularly to each ligand monomer as a stable aggregate-
like structure, which is not observed in Noggin and FS.257

Suppression of Grem promotes osteogenesis in vivo and in vitro
due to sensitization of BMP signaling.258 Consistently, the
osteoblast-specific Grem1 CKO mice are osteosclerotic, and
osteoblast-specific Grem1-overexpressing mice are osteope-
nic.258,259 Grem1 expression also defines a population of skeletal
stem cells in the bone marrow required for both bone remodeling
and fracture repair, as reported by Worthley et al. 260 Grem1+ stem
cells can self-renew and differentiate into osteoblasts, chondro-
cytes, and reticular marrow stromal cells while lacking the capacity
to develop into adipocytes.260

FS binds and neutralizes several different members in the TGF-β
superfamily, including BMPs, Activin A, GDF11, and myostatin/
GDF8. Among them, BMP promotes osteogenesis, myostatin and
Activin A are negative regulators of bone mass, and the role of
GDF11 in bone homeostasis is controversial.6,261,262 So far, FS was
mostly reported to play anti-osteogenic roles.262,263 FS restricts
BMP2 action in osteoblastogenesis in vitro, and mice over-
expressing FS exhibited spontaneous bone fractures.262,263

Chordin is another well-established BMP antagonist and has a
role in early embryonic neural development. Very few studies
characterized the role of chordin in bone, showing that the
expression of chordin is inversely related to osteoblast and
chondrocyte differentiation.264,265

Co-receptors
β-glycan, also regarded as the TGF-β type III receptor, acts as a
membrane-anchored proteoglycan to enhance TGF-β association
with the TGFBR2–TGFBR1 complex, but its soluble form may also
associate with TGF-βs, activins, or BMPs to inhibit signal
transduction. β-glycan is expressed in osteoblasts and promotes
osteogenesis in vivo and in vitro.266,267 β-glycan-knockout
embryos displayed reduced vascular and osteoblast
differentiation.267

Neuropilins (Nrps) interact with TGFBR1 to promote down-
stream signaling. Nrp2 is expressed in both osteoblasts and
osteoclasts, and Nrp2-knockout mice had increased osteoclast
number, decreased osteoblast number, and low bone mass.268

While Nrps also bind and transduce signals downstream of
semaphorins, how much its role in bone homeostasis is attributed
to TGF-β signaling is still unclear.
ENG may bind to BMP ligands or BMPR2 receptors to facilitate

signal transduction while associating with TGF-β1 or TGF-β3 for
signaling through ALK3. ENG enhances BMP2-induced osteogen-
esis of periodontal ligament (PDL) cells in osteoblasts.269 ENG also
acts as a co-receptor for BMP9 and BMP10 to induce osteogenesis
in conjunction with ALK1.15,270 ENG is also expressed in human
chondrocytes, and its expression increases in the chondrocytes of
OA patients.271,272 Yet its function in chondrocytes remains
controversial.271–273 ENG enhances Smad1/5 signaling and inhibits
Smad2/3 activation to promote cartilage matrix protein

production.271 However, knockdown of ENG also impaired
cartilaginous tissue formation.274

Neogenin binds to BMP receptors.275 Neogenin-null mice have
impaired limb development and endochondral ossification due to
decreased BMP-SMAD signaling and Runx2 expression.276

Regulation machinery in the cytoplasm
I-SMADs Smad6 and Smad7. In the cytoplasm, the signaling is
mainly negatively regulated by I-Smads (Smad6 and Smad7).
I-SMADs inhibit the receptor-mediated activation of R-Smads
through several mechanisms including interfering with type I
receptor–R-Smad interaction, recruiting ubiquitin ligases to induce
type I receptor or R-SMAD protein degradation, and interfering
with the formation of R-SMAD–Co-SMAD complex.277 Therefore,
the inhibitory functions of I-SMADs largely depend on their direct
interactions with the type I receptors or R-SMADs. I-SMADs bind
R-SMADs or receptors through their C-terminal MH2 domains,
which show high similarity between SMAD6 and SMAD7.
However, their N-terminal Leu-rich motifs (LRMs) have a low
similarity rate of 36.7%, laying down the structural basis for their
functional differences. SMAD6 prefers to inhibit BMP signaling,
whereas SMAD7 inhibits TGF-β and BMP signaling.277 Like Noggin,
SMAD6 mutations in humans also cause craniosynostosis due to
the augmentation of BMP signaling.278 Smad6 transgene blocked
BMP activation and led to osteopenia and dwarfism in mice.279

Smad6-null mice exhibited axial and appendicular skeletal
development defects, with an expanded hypertrophic zone
attributed to increased BMP responsiveness.280 Smad6 also
recruits Smurf1 to ubiquitinate and degrade Runx2 to inhibit
osteoblast differentiation.281 In contrast, SMAD7 might be
anabolic for bone. Partial loss of Smad7 decreased bone formation
and increased bone resorption.282 Smad7 overexpression impacts
both early and late stages of chondrocyte differentiation due to
downregulation of both BMP and TGF-β signalings.283

E3 ubiquitin ligases. I-SMAD recruits ubiquitin ligases to degrade
target proteins, mainly the neural precursor cell expressed
developmentally downregulated 4 (NEDD4) subfamily of HECT
(homologous to the E6-accessory protein) E3 ubiquitin ligases,
such as Smurf1, Smurf2, and Nedd4.
Smurf1, together with Smad6, catalyzes the poly-ubiquitination

and degradation of multiple targets with an osteogenic function,
such as SMAD-1, -5 and -8, MEKK2, and Runx2.281,284–287 Therefore,
Smurf1 has an anti-osteogenic function. Double overexpression of
Smad6 and Smurf1 delayed ossification more severely than Smad6
overexpression alone.279 The Smurf1 transgenic mice also had
significantly reduced bone formation, while Smurf1-null mice had
increased bone mass.279,285,286 A chalcone derivative inhibiting
Smurf1 activity promotes local spinal fusion and systematic bone
formation in mice, indicating that targeting Smurf1 is a potential
treatment for bone healing.288

Pleckstrin homology domain-containing family O member 1
(PLEKHO1) associates with Smurf1 to promote the ubiquitination
of Smad1/5 to inhibit BMP signaling and bone formation.289

Furthermore, the expression of PLEKHO1 increased during aging,
indicating its involvement in aging-related bone loss.289

Smurf2 is a negative regulator of BMP and TGF-β signaling.
Smurf2 is detrimental to cartilage homeostasis by antagonizing
TGF-β signaling. Smurf2 overexpression promotes chondrocyte
maturation, causing spontaneous OA and accelerated age-related
IVD degeneration.290–292 Smurf2 deficiency protects both young
and aged mice from surgically-induced OA.293 Smurf2 negatively
regulates BMP signaling to inhibit osteogenesis.294 Smurf2 was
proposed to induce degradation of the TGF-β receptors, Smad2,
and Smad3. However, neither of those proteins increased in
Smurf2-null mice.295 Instead, mono-ubiquitination of SMAD3 was
reduced to favor SMAD complex formation in the absence of
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Smurf2, which mediates the interaction between SMAD3 and
vitamin D receptor to modulate RANKL production and osteoclast
formation.295,296

Nedd4 regulates the degradation of Smad1 to antagonize BMP
signaling and inhibit bone formation.297,298 Nedd4 overexpression
in osteoblasts increases bone mass, and Nedd4 deletion in
osteoblasts reduces bone formation.298

Deubiquitination. Deubiquitylating enzyme USP15 stabilizes
ALK3 to enhance BMP activation and osteoblast differentiation.299

USP15 also inhibits OA progression by deubiquitinating ERK2 and
enhancing ERK2-induced TGF-β/SMAD2 signaling.300

Osteogenic LIM mineralization protein (LMP-1) antagonizes
SMAD ubiquitination to promote TGF-β and BMP activation. LMP-1
interacts with Smurf1 to prevent Smad-1 and -5 ubiquitination,
and interacts with Jab1 to prevent Smad7-induced Smad-4 and -5
ubiquitination.301

Valosin-containing protein (VCP)/p97, together with its adaptor
nuclear protein localization 4 (NPL4), interacts explicitly with
Smurf1 and delivers the ubiquitinated Smurf1 for degradation.
Mutation of VCP/p97 causes rare forms of Paget’s disease of bone
(PDB)-like syndromes by increasing BMP activity.302

COP9 signalosome is a protein complex with isopeptidase
activity responsible for the deneddylation of RING ubiquitin
ligases (CRL) by catalyzing the hydrolysis of NEDD protein CRL.
Jab1, also known as Csn5/Cops5, is a crucial subunit of the
COP9 signalosome. Jab1 deletion in preosteoblast reduced the
response to TGF-β and BMP signaling, impairing osteoblast
differentiation and reducing the trabecular bone number.303

Phosphatases and kinases. TGF-β and BMP receptor activity is
also regulated by phosphorylation and dephosphorylation.
Endosome-associated FYVE-domain protein (endofin), previously
implicated in regulating membrane trafficking, also recruits
protein phosphatase 1 catalytic subunit (PP1c) to exert a negative
regulative effect on BMP signaling by dephosphorylating the BMP
type I receptor.304 A single point mutation of endofin (F872A)
disrupts endofin–PP1c interaction and sensitizes BMP signaling to
increase osteogenesis in vitro and in vivo.304 Casein kinase II (CK2)
phosphorylates the ALK3 receptor to block its activity, reducing
BMP2’s osteogenic effects on osteoblasts in patients with
osteoporosis.305

Regulation in the nucleus
Nuclear envelope proteins. Transport of the SMAD complex into
the nucleus is controlled by the nuclear pore complex (NPC),
comprising multiple copies of ~30 different proteins located on the
nuclear envelope. As the boundary between the cell nucleus and
cytoplasm, the nuclear envelope comprises a double-membrane
sheet, the inner nuclear membrane (INM) and the outer nuclear
membrane (ONM). LEM domain containing 3 (LEMD3), an INM
protein and transmembrane protein 53 (TMEM53) have been
reported to regulate bone BMP and TGF-β signaling. Loss of
function of LEMD3 results in unique sclerosing bone disease
spectrums, osteopoikilosis (MIM #166700), melorheostosis (MIM
#155950) and Buschke-Ollendorff syndrome (BOS; MIM #166700)
(Table 2).306,307 LEMD3 has been shown to antagonize BMP and
TGF-β by interacting with SMAD-1, -2, -5, and -9. TMEM53 inhibits
BMP signaling in osteoblast lineage cells by blocking cytoplasm-
nucleus translocation of SMAD1/5/8 specifically.308 In humans,
TMEM53 was identified as a susceptibility gene for osteoporosis in
several studies,309,310 and was recently associated with a previously
unknown type of sclerosing bone disease (Table 2).308

Transcription repressors. Ski is a nuclear proto-oncogene protein
homolog of the avian sarcoma viral (v-ski) oncogene and is a
repressor of TGF-β and BMP signaling by inhibiting the transcrip-
tion activity of SMAD complex.311 It also recruits histone

deacetylases HDAC4 and HDAC5 as co-repressors.312 SKI muta-
tions in humans cause Shprintzen-Goldberg syndrome (GOSHS;
MIM #182212),313 which share multiple skeletal anomalies with
Marfan syndrome caused by mutations of FBN-1 (Table 2). Both
diseases are associated with enhanced TGF-β and BMP signaling.
SnoN, a Ski proto-oncogene homolog, also interacts with the

SMAD complex. A negative feedback mechanism, regulated by
SnoN, can be evoked by TGF-β to oppose BMP signaling in
chondrocytes and osteoblasts.314,315 SnoN and Ski might have
different functions since they are differently recruited by Smad2
and Smad3.89

Nkx3.2 is a transcriptional repressor expressed in the sclerotome
and developing cartilage, where it activates the chondrocyte
differentiation program via a BMP-dependent manner. Mechan-
istically, Nkx3.2 forms a complex with histone deacetylase 1
(HDAC1) and Smad-1 and -4 in a BMP-dependent manner through
its homeodomain and NK domain to repress gene expression
cooperatively.316

Tob is a member of the emerging family of anti-proliferative
proteins and negatively regulates BMP signaling in osteoblasts by
directly interacting with Smad-1, -5, and -8 in the nucleus. Tob-null
mice have a greater bone mass due to an increased number of
osteoblasts.317

FOXC1 could repress the transcriptional activity of SMAD-1 and
-5 to modulate the expression of BMP-responsive genes to
prevent osteoblast differentiation.318

Transcription co-factors. Runx2 is a critical transcription factor in
promoting osteoblast differentiation and chondrocyte hypertro-
phy. Runx2 is physically and functionally associated with Smad
proteins in osteoblasts and chondrocytes.319,320 Javed et al. 320

reported that BMP-induced osteogenesis is blunted in Runx2-null
cells, and Runx2 with mutations in Smad-interacting domain (HTY
(426–428)) is only marginally functional in promoting osteoblast
differentiation at early stages.
TCF4 and β-catenin are the transcription factors activated by

canonical WNT signaling and are anabolic for osteogenesis. They
form a complex with Smad proteins on the promoter of
osteoblastic genes and recruit co-activators such as CBP or
p300, cooperatively regulating the expression of early osteoblast
genes such as Dlx5, Msx2, Runx2, and osterix.139

Sox9 is the key chondrogenic transcription factor. Sox9 interacts
with Smad2/3 on the Col2 enhancer region in a TGF-β-dependent
manner and recruits co-activators such as CBP or p300 to promote
transcription.321

c-Fos, a key osteoclastic transcription factor, interacts directly
with SMAD-2 and -3 to promote osteoclast diffrentiation.38

Lysine demethylase 4B (KDM4B), a histone demethylase whose
expression is induced by TGF-β, potentiates TGF-β-mediated
chondrogenesis of human MSCs in a positive feedback loop.322

Mechanistically, KDM4B removes the silencing H3K9me3 marks on
the SOX9 promoter to facilitate SMAD3 binding and
transcription.322

CONCLUSION AND PERSPECTIVES
BMP and TGF-β signaling is essential in embryonic skeleton
development and postnatal bone and cartilage homeostasis.
Dysregulated TGF-β and BMP signaling causes numerous heredi-
tary skeletal diseases in humans. For example, excessive TGF-β
signaling in humans due to TGFB1, SMAD3, or MAP2K1 gene
mutations leads to a spectrum of sclerosis symptoms. Excessive
TGF-β activation is also associated with OI. NOGGIN, SMAD6, or
ALK2 mutations augment BMP signaling to cause craniosynostosis
or HO. Mutations of FBN-1/2 or SKI enhance both TGF-β and BMP
signalings to cause similar skeletal anomalies in humans.
Mutations of ADAMTS block TGF-β and BMP activation and lead
to short stature anomalies. Moreover, genome-wide association
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studies have identified several genes in TGF-β and BMP signaling
associated with bone density. Most phenotypes were recapitu-
lated in genetic mouse models carrying those disease-associated
mutations, which provide disease models for pathomechanism
studies and drug screening. Targeting TGF-β and BMP signaling
effectively cures their associated skeletal disorders in diseased
mouse models and clinical trials, such as OI and HO.
TGF-βs and BMPs belong to the same family, share structural

similarities, and transduce signals through both SMAD-dependent
and -independent pathways. However, they recruit different
receptors to activate independent sets of SMAD proteins, laying
down the molecular basis for their diverse functions. For example,
BMPs, but not TGF-βs, are essential for limb bud outgrowth. In
chondrocytes, BMPs promote differentiation at all stages; in
contrast, TGF-β promotes chondrocyte early development but
antagonizes its hypertrophy. BMPs promote osteoblast and
osteoclast differentiation and are applied to improve fracture
healing. Meanwhile, TGF-β signaling plays dual roles in osteoblast
and osteoclast formation. Moreover, BMP and TGF-β also play
opposite roles in articular cartilage homeostasis.
Genetics and molecular biology studies have advanced our

understanding of the function and dynamic regulations of BMP
and TGF-β signaling in the skeleton. However, more precise
knowledge is still in demand and might promote the develop-
ment of effective therapeutic strategies to treat related skeletal
disorders. Future directions may lie in answering the following
questions:

1. Why do BMP and TGF-β signalings have dynamic functions?
As reviewed here, this question could be partially answered
by the diversity of ligand–receptor combinations and the
complex intracellular regulatory network that causes the
dynamic readout of the TGF-β and BMP signaling. In
particular, the BMP signaling pathway comprises multiple
ligands and receptors that interact promiscuously with one
another. A series of works from Dr. Michael B. Elowitz’s
group demonstrated that the promiscuous ligand–receptor
interaction systems of BMP signaling are critical for its
dynamic regulations.323–325 Their work elucidated how the
BMP pathway processes multi-ligand inputs using a
repertoire of computational mechanisms, including ratio-
metric sensing, balance detection, and imbalance detection.
Since cells have different expression patterns of receptors
and ligands, the promiscuous interaction system allows a
small number of ligands, acting in combinations, to address
the issue of a larger number of individual cell types.

2. What transcriptional mechanism operates to bring about
the diversity of transcriptional outcomes that arise in
different cell types in response to the same ligand?
Answering this question would require using state-of-the-
art techniques such as ChIP-seq, co-IP/MS, ATAC-seq, and
CUT&Tag-seq. DNA and histone modification status varies in
different cell types and might alter the affinity of SMAD
complex binding with the chromosomes. Therefore, analyz-
ing the epigenetic marks on the transcription factor binding
sequences would help answer this question. Characteriza-
tion of the receptor–ligand interaction mode and chromatin
status in specific cell contexts might also explain why TGF-β
signaling has stage-dependent functions in most
skeletal cells.

3. How to circumvent the side effects of BMPs and TGF-βs
when applying them in clinical settings? Excessive BMP and
TGF-β signaling is associated with multiple anomalies in
bone tissues. Thus, further study and intervention are
needed to prevent those side effects when applying BMPs
and TGF-βs in clinical settings. Although TGF-β signaling
maintains cartilage degeneration, hyperactivated TGF-β
signaling aggravates OA. Despite its dual functions, TGF-β

signaling is still proposed as a potential treatment to
alleviate OA, although it needs more study to design the
proper timing and dose for the treatment.

4. How to safely and effectively modulate BMP and TGF-β
signaling in skeletal disorders caused by their dysfunctions?
Targeting BMP and TGF-β signaling is proposed as the
therapeutic strategy to treat OI, HO, or osteosclerosis
disorders while effective treatment is still under
development.
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