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Key Points

• Administration of
tagraxofusp,
azacitidine, and
venetoclax is feasible
without evidence of
increased capillary leak
syndrome or infection.

• TAG-AZA-VEN has
encouraging activity in
older patients with
previously untreated,
adverse-risk AML,
including with somatic
TP53 mutations.
CD123, a subunit of the interleukin-3 receptor, is expressed on ~80% of acute myeloid

leukemias (AMLs). Tagraxofusp (TAG), recombinant interleukin-3 fused to a truncated

diphtheria toxin payload, is a first-in-class drug targeting CD123 approved for treatment of

blastic plasmacytoid dendritic cell neoplasm. We previously found that AMLs with acquired

resistance to TAG were re-sensitized by the DNA hypomethylating agent azacitidine (AZA) and

that TAG-exposed cells became more dependent on the antiapoptotic molecule BCL-2. Here, we

report a phase 1b study in 56 adults with CD123-positive AML or high-risk myelodysplastic

syndrome (MDS), first combining TAG with AZA in AML/MDS, and subsequently TAG, AZA, and

the BCL-2 inhibitor venetoclax (VEN) in AML. Adverse events with 3-day TAG dosing were as

expected, without indication of increased toxicity of TAG or AZA+/−VEN in combination. The

recommended phase 2 dose of TAGwas 12 μg/kg/day for 3 days, with 7-day AZA +/− 21-day VEN.

In an expansion cohort of 26 patients (median age 71) with previously untreated European

LeukemiaNet adverse-risk AML (50% TP53mutated), triplet TAG-AZA-VEN induced response in

69% (n=18/26; 39% complete remission [CR], 19% complete remission with incomplete count

recovery [CRi], 12% morphologic leukemia-free state [MLFS]). Among 13 patients with TP53

mutations, 7/13 (54%) achieved CR/CRi/MLFS (CR = 4, CRi = 2, MLFS = 1). Twelve of 17 (71%)

tested responders had no flow measurable residual disease. Median overall survival and

progression-free survival were 14 months (95% CI, 9.5-NA) and 8.5 months (95% CI, 5.1-NA),

respectively. In summary, TAG-AZA-VEN shows encouraging safety and activity in high-risk

AML, including TP53-mutated disease, supporting further clinical development of TAG

combinations. The study was registered on ClinicalTrials.gov as #NCT03113643.
Introduction

CD123 is the alpha subunit of the interleukin 3 (IL-3) receptor and is expressed on the surface of
myeloblasts in ~80% of cases of acute myeloid leukemia (AML) and myelodysplastic syndrome
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(MDS).1-4 CD123 expression is often higher on leukemia cells than
on normal stem and progenitor cells and may be enriched in
residual AML cells surviving chemotherapy.5 CD123 is also a
marker of the rare subpopulation of leukemia initiating cells or
leukemia stem cells (LSCs) that have the capacity to repopulate
disease in model systems.6 Uniformly high CD123 expression is
characteristic of blastic plasmacytoid dendritic cell neoplasm
(BPDCN), a rare aggressive acute leukemia derived from cells of
the plasmacytoid dendritic cell lineage.7 For these reasons, CD123
is an attractive therapeutic target in multiple hematologic
malignancies.

Tagraxofusp (TAG, SL-401) is a recombinant protein drug con-
sisting of IL-3, the ligand for the IL-3 receptor/CD123, fused to a
truncated diphtheria toxin (DT) payload.8 TAG targets cells by
binding to CD123 on the cell surface, followed by internalization
and endosomal escape of the DT component. DT inhibits protein
synthesis by catalyzing ADP ribosylation of a modified histidine
residue on eukaryotic elongation factor 2, called diphthamide,
which leads to caspase-dependent apoptosis.9,10 Approved for the
treatment of patients with BPDCN, single agent TAG leads to high
remission rates and long-term disease-free survival, particularly
when followed by stem cell transplantation.11,12 In addition, single
agent TAG was effective in a small proportion of patients with
relapsed/refractory (R/R) AML,13 which prompted us to study
mechanisms of resistance and potential combination strategies.

We previously reported that CD123 cell surface expression is
preserved on resistant cells after TAG treatment, including from
patients, suggesting alternative mechanisms of escape.14 TAG
resistance in AML and BPDCN cells is instead mediated by DNA
methylation and downregulation of diphthamide genes (eg, DPH1),
which eliminates the diphthamide target for DT. TAG resistance is
reversed by treatment with the hypomethylating agent azacitidine
(AZA), which increases DPH1 expression and restores the DT
target, and TAG plus AZA improved survival compared to either
agent alone in xenograft models.14 Furthermore, we found that
cells escaping TAG therapy had an altered mitochondrial apoptosis
threshold and increased propensity to undergo cell death in the
setting of BCL-2 inhibition by venetoclax (VEN).14 Given this
mechanistic rationale for synergy, we performed a phase 1b trial of
TAG with AZA in AML or MDS, and subsequently TAG with AZA-
VEN in AML.
Methods

Study design and patients

This study was registered on ClinicalTrials.gov (NCT03113643).
All research was approved by each institution’s review board and
all human participants provided written informed consent. Eligibility
for cohorts testing doublet TAG-AZA and triplet TAG-AZA-VEN
included patients aged 18 or higher with newly diagnosed AML,
excluding acute promyelocytic leukemia, who declined or were
ineligible for intensive induction chemotherapy due to age ≥75 or
comorbidity, or had investigator perceived futility of standard
chemotherapy, or had R/R AML. Eligibility for doublet TAG-AZA
also included higher-risk MDS, defined as 10% or higher blasts
in the bone marrow (MDS-EB2). Myeloblasts were required to
demonstrate CD123 expression in marrow or blood by flow
cytometry or immunohistochemistry, without specified minimum
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values for staining intensity or percentage-positive cells, as deter-
mined per each site’s local hematopathology standard. Other
eligibility included Eastern Cooperative Oncology Group perfor-
mance status ≤2, and adequate organ function, including albumin
≥3.2 g/dL, creatinine ≤1.5× the upper limit of normal (ULN),
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) <2.5× ULN, total bilirubin <1.5× ULN, and left ventricular
ejection fraction greater than or equal to institutional normal.
Patients receiving VEN needed to have white blood cell count of
≤20 x103/μL on day 1 of treatment (pretreatment hydroxyurea was
permitted) and avoid strong CYP3A inducers. Prophylactic antibi-
otics were allowed per institutional standards. Certain strong and
moderate CYP3A inhibitors were allowed, with modifications to the
VEN dose, following VEN prescribing information.

The study followed a 3+3 dose escalation plus expansion cohorts
with 28-day cycles of TAG and fixed doses of AZA or AZA-VEN
(Figure 1). Patients were hospitalized during cycle 1, at least
through 1 day after the last TAG dose, to monitor and mitigate risks
of capillary leak syndrome (CLS). CLS monitoring included daily
weight and examination, and laboratory monitoring of serum albu-
min, liver enzymes, and renal function. Management of findings
potentially consistent with CLS (eg, hypoalbuminemia, edema,
hemodynamic instability) were managed per the TAG prescribing
information and included holding TAG doses (which could be
made up before day 10), intravenous albumin supplementation,
diuresis or volume repletion based on examination and laboratories,
and corticosteroids. Bone marrow examination was required at the
end of cycles 1, 2, 4, and 6, and later at investigator discretion. In
patients receiving TAG-AZA-VEN, a bone marrow examination was
performed on day 21 of cycle 1 to determine if cycle 2 would be
delayed for count recovery in the absence of morphologic leukemia
(<5% blasts). There was no limit on the number of cycles received;
patients could remain on the study provided they did not have
unacceptable toxicity or overt disease progression. Patients were
allowed to proceed to stem cell transplantation at any time per their
provider’s recommendation and were followed for disease pro-
gression and survival after transplant.

Adverse events were defined as in the revised NCI Common
Terminology Criteria for Adverse Events version 4.0. Dose-limiting
toxicities (DLTs) were predefined as grade 3 or higher non-
hematologic toxicity (excluding fatigue) considered at least possibly
related to study treatment that did not resolve to grade 1 or lower
by day 28 of cycle 1. Hematologic DLTs were defined as neu-
tropenia with absolute neutrophil count <500/μL or thrombocyto-
penia with platelet count <50 x103/μL present at day 28 and
lasting 42 days or more from the start of cycle 1, in the setting of a
bone marrow biopsy showing less than 5% blasts. Patients expe-
riencing neutropenia with absolute neutrophil count <500/μL or
thrombocytopenia with platelet count <50 x103/μL entering the
study were unevaluable for a hematologic-related DLT. All partici-
pants who received at least 1 dose of study treatment were
evaluable for toxicity.

Endpoints and assessments

The primary objective was to determine the maximum tolerated or
recommended phase 2 dose (RP2D) of TAG in combination with
AZA or AZA-VEN and evaluate the safety of these regimens.
Secondary objectives were to estimate the response rate, duration
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of response, and progression-free and overall survival (OS) with
these regimens. Responses were based on European Leukemia-
Net (ELN) AML and International Working Group MDS criteria.15,16

Exploratory objectives included characterization of CD123
expression on leukemia cells and evaluation of association with
treatment effect. All analyses were intention-to-treat.

Correlative laboratory studies

Next-generation sequencing was performed locally, at variant allele
frequency sensitivity thresholds of 1%-5% depending on gene and
assay.17 Measurable residual disease (MRD) testing was not
mandated in the protocol; each site measured flow MRD per their
local standard-of-care, and here we report MRD positivity using
0.1% of CD45-expressing cells as a threshold.18 Central laboratory
quantitation of CD123 on the surface of leukemia blasts was per-
formed as an exploratory analysis retrospectively on cryopreserved
samples from the time of screening using the Quantibrite PE kit (BD
Biosciences, number 340495) per the manufacturer’s instructions.
Blasts were gated by CD45+/SSClow and the amount of CD123
staining by flow cytometry on blasts was normalized to the standards
provided. In each run, CAL1 BPDCN (high CD123) and U937 AML
(low CD123) cell lines were used as positive and negative controls
for batch standardization. Pharmacokinetics (PK) samples were
collected during cycles 1 and 2 on the days of first and last TAG
administration at: predose, immediately after the end of infusion, 15,
30, 45, 60, 90, 120, 180, and 240 minutes post-end of infusion.
Plasma concentrations of free TAG were quantified using a validated
noncompetitive sandwich immunoassay by the drug manufacturer.
PK data analysis was conducted using classic noncompartmental
methods for intravenous infusion administration using Phoenix
WinNonLin (version 8.3.5) and plotted with R (version 4.2.2) using
geom_boxplot() from the ggplot2 library.
TAG-AZA

TAG-AZA-VEN

Days

AZA
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Figure 1. Treatment schema with dose levels and

schedules tested. Diagram of the study design and

participants. (Top) TAG and AZA were first tested as a

doublet combination at 5 different doses/schedules of TAG

with 7-day dosing of AZA. The RP2D of TAG was

determined to be 12 μg/kg daily for 3 days (d1, 2, 3; in

magenta) in combination with AZA. Patients with AML or

MDS were eligible in Cohorts A1-A4. While cohort A4 was

being enrolled, AZA-VEN was approved for AML. Therefore,

the study was amended and cohort A5 was limited to MDS.

(Bottom) 3 doses of TAG were tested with AZA-VEN as a

triplet in patients with AML. In the first cycle, VEN was given

as 100 mg on day 1, 200 mg on day 2, and 400 mg on day 3,

followed by 400 mg on days 4 to 21. In subsequent cycles,

VEN was given as 400 mg on days 1 to 21. The RP2D of

TAG was determined to be 12 μg/kg daily for 3 days (d4, 5,

6; in magenta) in combination with AZA-VEN. Patients with

1L or R/R AML were eligible in dose escalation, and then

separate expansion cohorts in 1L and R/R AML were

enrolled.
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Statistical methods

OS was estimated using the method of Kaplan and Meier calcu-
lated from the first treatment day to death or last known follow-up.
Progression-free survival (PFS) was similarly estimated from the
first treatment day to first progression or death from any cause and
were censored at the last response assessment date. The
response duration was estimated from the date of first response
(CR/CRi/MLFS) to the date of progression or death using the
method of Kaplan and Meier. No censoring was performed at the
time of transplant.

Results

Patients and treatment cohorts

First, we tested escalating doses of TAG as a doublet with AZA
(75 mg/m2 days 1-7) in newly diagnosed AML (1L AML), R/R AML,
or MDS with ≥10% blasts (MDS-EB2) (Figure 1). In the initial
cohort of 3 patients receiving TAG 7 μg/kg for 5 days, 2 patients
had grade 2 CLS and 1 patient had a DLT of prolonged hyper-
bilirubinemia. There were no DLTs in cohorts of 5 μg/kg daily for
5 days or 7, 9, or 12 μg/kg for 3 days. TAG 12 μg/kg daily for
3 days was selected as the RP2D for the TAG-AZA doublet.

Next, we tested 3 doses of TAG (7, 9, or 12 μg/kg per day for
3 days on days 4-6) with AZA (75 mg/m2 days 1-7) and VEN
(400 mg days 1-21; ramp up 100 mg, 200 mg, 400 mg on days 1-
3 in cycle 1) in 1L or R/R AML. TAG was started on day 4 to avoid
overlap with VEN ramp up in cycle 1 and because we previously
found that AZA pretreatment sensitizes AML cells to TAG.14 There
were no DLTs observed at any dose level. TAG at 12 μg/kg daily for
3 days was selected as the expansion dose/RP2D for the TAG-
AZA-VEN triplet. Expansion cohorts were then enrolled to a
1 2 3 4 5 6 21 287 ...

cycles repeat
every 28 days

...

75 mg/m2 d1-7

400 mg d1-21

...

TAG dose Patients (n = 19)

7 µg/kg d1-5 1L AML (n = 3)

5 µg/kg d1-5

7 µg/kg d1-3

12 µg/kg d1-3

9 µg/kg d1-3

1L AML (n = 1), R/R AML (n = 2), 1L MDS (n = 1)

R/R AML (n = 3)

1L AML (n = 1), R/R AML (n = 4), 1L MDS (n = 1)

1L MDS (n = 3)

7 µg/kg d4-6

12 µg/kg d4-6

9 µg/kg d4-6

1L AML (n = 2), R/R AML (n = 1)

1L AML (n = 1), R/R AML (n = 2)

1L AML (n = 3)

TAG dose Patients (n = 37)

12 µg/kg d4-6 1L AML (n = 20), R/R AML (n = 8)

75 mg/m2 d1-7
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combined total of 26 patients with 1L AML and 11 patients with R/
R AML receiving TAG-AZA-VEN. Demographics of all 56 patients
in the study are shown in Table 1, comprising 19 patients who
received TAG-AZA and 37 patients who received TAG-AZA-VEN.
This included a subcohort of 26 patients with 1L AML who
received TAG-AZA-VEN as their initial treatment (n = 23 at
12 μg/kg, 1 at 9 μg/kg, and 2 at 7 μg/kg).
Table 1. Demographics and clinical characteristics

Doublet TAG-AZA

Cohort A (n = 19)

Tr

Cohort B, all pa

Age (median, range) 62 (40-77)

Diagnosis

1L AML 5

R/R AML 9

MDS 5

n (%)

Gender

Female 7 (36.8)

Male 12 (63.2)

Race

White 13 (68.4)

Other 4 (21.1)

Asian 1 (5.3)

More than 1 1 (5.3)

Ethnicity

Non-Hispanic 14 (73.7)

Hispanic or Latino 3 (15.8)

Not known 2 (10.5)

ECOG PS

2 3 (15.8)

1 11 (57.9)

0 5 (26.3)

Additional characteristics of the triplet TAG-AZA-VEN cohort B, 1L AML (n=26)

ELN 2022 adverse ri

Any TP53 mutation

Multi-hit TP53

One TP53 mutation with 17p

Two TP53 mutation

Complex karyotype

Secondary AML

Therapy-related AML

pDC-AML

Baseline bone marrow blasts (m

Known extramedullary disease a

1L AML, previously untreated AML; ECOG PS, Eastern Cooperative Oncology Group Perform
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To assess whether TAG plasma exposure was altered by combi-
nation treatment, we compared PK data for TAG-AZA-VEN in this
study with data from single agent TAG in the pivotal STML-401-
0114 trial, which led to approval for BPDCN and also included
patients with AML.11,19 We saw no evidence that TAG exposure
(Cmax and AUClast) was different when administered in combi-
nation or as a single agent (supplemental Figure 1).
iplet TAG-AZA-VEN

tients (1L and R/R AML) (n = 37)

Triplet TAG-AZA-VEN

Cohort B, 1L AML only (n = 26)

70 (39-81) 71 (60-81)

26 26

11

n (%) n (%)

15 (40.5) 10 (38.5)

22 (59.5) 16 (61.5)

32 (86.5) 24 (92.3)

3 (8.1) 2 (7.7)

2 (5.4) 0 (0)

0 (0) 0 (0)

33 (89.2) 24 (92.3)

3 (8.1) 2 (7.7)

1 (2.7) 0 (0)

7 (18.9) 2 (7.7)

24 (64.9) 19 (73.1)

6 (16.2) 5 (19.2)

n (%)

sk 26 (100)

13 (50)

9/13

deletion 7/13

s 2/13

8 (30.7)

8 (30.7)

5 (19.2)

2 (7.7)

edian, range) 58% (20-91)

t screening 0

ance Status; pDC, plasmacytoid dendritic cell.
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Safety

Adverse events were largely similar as for single agent TAG and for
AZA or AZA-VEN, as reported previously in similar patient pop-
ulations.11,20 The most frequent grade 3 or higher adverse events
in each cohort were related to cytopenias and febrile neutropenia
(Table 2). Toxicities related to TAG were also as expected,
including elevated ALT/AST of grade 2 or higher in 52.7%/16.8%
and 10.8%/10.8% with TAG-AZA or TAG-AZA-VEN, respectively.
In the 1L AML TAG-AZA-VEN cohort, grade 3 or higher adverse
events were similar to the combined 1L and R/R triplet group, and
included thrombocytopenia in 53.9%, febrile neutropenia in 34.6%,
ALT elevation in 11.5%, and AST elevation in 7.6%. In the 1L AML
TAG-AZA-VEN cohort, 3 of 26 patients had VEN dose reductions
(to 14 days of treatment) for cytopenias in prior cycles. There were
no TAG or AZA dose modifications for cytopenias. We also
Table 2. Adverse events by treatment regimen

Doublet TAG-AZA (n = 19) n (%)

Event term Grade 2 Grade 3

ALT increased 6 (31.6) 4 (21.1)

CLS 7 (36.8) 2 (10.5)

Febrile neutropenia 7 (36.8)

Neutrophil count decreased 1 (5.3)

Platelet count decreased 1 (5.3) 2 (10.5)

White blood cell decreased 1 (5.3) 2 (10.5)

Hypotension 4 (21.1) 2 (10.5)

Blood bilirubin increased 4 (21.1)

Lung infection 1 (5.3)

Anemia 1 (5.3) 2 (10.5)

Hypophosphatemia 1 (5.3) 2 (10.5)

Back pain 1 (5.3) 2 (10.5)

Infections and infestations - other 2 (10.5)

Lymphocyte count decreased 2 (10.5)

Hypocalcemia 2 (10.5)

Hypoxia 2 (10.5)

Triplet TAG-AZA-VEN (n = 37)

Event term Grade 2 Grade 3

Platelet count decreased 2 (5.4) 2 (5.4)

White blood cell decreased 1 (2.7)

Neutrophil count decreased

Anemia 1 (2.7) 10 (27)

Febrile neutropenia 1 (2.7) 9 (24.3)

Infections and infestations - other 2 (5.4) 6 (16.2)

CLS 5 (13.5) 1 (2.7)

Lymphocyte count decreased

Tumor lysis syndrome 1 (2.7) 4 (10.8)

Sepsis 1 (2.7)

Displayed are any terms that occurred as grade 3 or higher in 10% or more of patients in either t
Additionally, all CLS events are shown. CTCAE v4.0 does not define any CLS as grade 1; the lowe
or not treatment-related. Grade 5 events of disease progression are not included.
CTCAE, Common Terminology Criteria for Adverse Events.
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analyzed time from cycle 1 to cycle 2 as a surrogate for recovery
from possible regimen-related toxicities, including cytopenias.
Median number of days from start of cycle 1 to start of cycle 2 was
28.5 for TAG-AZA and 34 for TAG-AZA-VEN. Among patients
receiving TAG-AZA-VEN for at least 2 cycles, the median time from
start of cycle 1 to start of cycle 2 was 30 days at 7 μg/kg per day
TAG (n = 3), 29 days at 9 μg/kg per day TAG (n = 3), and 37 days
at 12 μg/kg per day TAG (n = 23).

CLS occurred in 9 of 19 patients who received TAG-AZA (47%; 7
grade 2, 2 grade 3) and in 7 of 37 patients who received TAG-
AZA-VEN (18.9%; 5 grade 2, 1 grade 3, 1 grade 4). Nearly all
CLS occurred in cycle 1 and included hypoalbuminemia in all
cases, accompanied by 1 or more of weight gain, edema, or
hypotension. A 2-sided Fisher exact test comparing CLS incidence
with TAG-AZA and TAG-AZA-VEN suggested a lower rate with the
Grade 4 Grade 5 Total, grade 2+

10 (52.6)

9 (47.3)

7 (36.8)

5 (26.3) 6 (31.6)

3 (15.8) 6 (31.6)

3 (15.8) 6 (31.6)

6 (31.6)

4 (21.1)

2 (10.5) 3 (15.8)

3 (15.8)

3 (15.8)

3 (15.8)

2 (10.5)

2 (10.5)

2 (10.5)

2 (10.5)

Grade 4 Grade 5 Total, grade 2+

17 (45.9) 21 (56.8)

17 (45.9) 18 (48.6)

14 (37.8) 14 (37.8)

1 (2.7) 12 (32.4)

1 (2.7) 11 (29.7)

8 (21.7)

1 (2.7) 7 (18.9)

5 (13.5) 5 (13.5)

5 (13.5)

1 (2.7) 2 (5.4) 4 (10.8)

he doublet or triplet regimens, with the incidence of grade 2 to 5 events shown for each term.
st possible is grade 2. AEs in this table are listed regardless of attribution as treatment-related
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triplet (P = .059). In the 1L AML TAG-AZA-VEN cohort, 5 of 26
patients experienced CLS (19.2%; 3 grade 2, 1 grade 3, 1 grade
4), which was similar to that reported with single agent 5-day
dosing of TAG.11,12 All 5 patients with CLS received intravenous
albumin, as did an additional 6 patients who had hypoalbuminemia
without CLS, all occurring in cycle 1. Three of 5 with CLS remained
on study and received treatment in cycle 2. There were no deaths
attributed solely to CLS. One patient with AML who received TAG-
AZA-VEN experienced a complicated series of potentially
treatment-related events in the first cycle that included early tumor
lysis syndrome, then later CLS and non-ST elevation myocardial
infarction, with eventual death attributed to multiorgan system
failure.

Among patients who received TAG-AZA (n = 19), the 30-day all-
cause mortality rate was 10.5% (95% CI, 0-23.3). The cause of
death in each of these 2 cases was AML disease progression.
Among patients who received TAG-AZA-VEN (n = 37), the 30-day
all-cause mortality rate was 10.8% (95% CI, 0.2-20.3). The causes
of death within 30 days were sepsis (n = 2), multiorgan system
failure (n = 1), and AML disease progression (n = 1).

Efficacy and outcomes

First, we present outcomes in the 26 patients with 1L AML that
received triplet TAG-AZA-VEN, given that this is the largest patient
group in the study and provides the most robust analyses. The
median age for this cohort was 71 (range 60-81). All patients were
categorized as adverse risk based on the ELN 2022 classification
(Table 1).21 All cases had either an MDS-related gene mutation or
a mutation in TP53 (supplemental Table 1). Thirteen of 26 (50%)
AMLs harbored a mutation in TP53 and 9/13 had “multi-hit” TP53
loss, with either 2 mutations in TP53 or concurrent deletion of
chromosome 17p.22 Eight patients had secondary AML, occurring
after MDS (n = 4), myelofibrosis (n = 3), or chronic myelomono-
cytic leukemia (n = 1). Five had therapy-related AML, occurring
after treatment for Hodgkin lymphoma (n = 2), B-cell acute
lymphoblastic leukemia, breast cancer, and lung cancer. Two had
“pDC-AML” an AML subset with high CD123 expression, marked
expansion of mature plasmacytoid dendritic cells, enrichment of
RUNX1 mutations, and response to TAG in laboratory models.23

Eighteen of 26 patients (69%) achieved a best response of CR
(10; 39%), CRi (5; 19%), or MLFS (3; 12%). Median time to best
response among these 18 patients was 55 days. Of the 13
patients with a TP53 mutation, 7 (54%) achieved CR (n=4), CRi
(n=2), or MLFS (n=1). Bone marrow blast percentage at the time
of best response was decreased in all evaluated patients, including
in those who did not achieve protocol-defined CR/CRi/MLFS
(Figure 2A). In a post hoc exploratory analysis, we centrally
analyzed CD123 on AML blasts. There was no association
observed between baseline CD123 level and achieving CR/CRi/
MLFS in the 1L AML cohort (P = .6 by Wilcoxon rank-sum test)
(supplemental Figure 2).

Seventeen patients achieving CR/CRi/MLFS had MRD testing by
multiparameter flow cytometry. MRD assessment was negative in
12/17 (71%). The median time to achieve MRD negativity was
cycle 2 (range 1-4). Four of 7 (57%) patients with TP53 mutation
who achieved CR/CRi/MLFS were MRD negative. Thirteen of 26
patients (50%) proceeded directly from this study to allogeneic
stem cell transplantation; 6 of 13 patients who had undergone
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transplantation had TP53 mutation (Figure 2B). The median num-
ber of cycles received among all patients in the cohort was 3
(range 1-15). Patients who went to transplant received a median of
3 cycles (range 2-4) and those who did not received 2 cycles
(range, 1-15). Among the 18 patients achieving CR/CRi/MLFS,
median duration of response was 12.4 months (95% CI, 6.1-NA),
including patients who underwent transplantation.

Median OS for the total 1L AML cohort receiving TAG-AZA-VEN
was 14 months (95% CI, 9.5-NA) with median follow-up of
10.7 months (Figure 3A). Median PFS was 8.5 months (95% CI,
5.1-NA) (Figure 3B). In the 13 patients with TP53 mutation, median
OS and PFS were 9.5 months (95% CI, 1.8-NA) and 5.1 months
(95% CI, 1.8-NA), respectively (Figure 4A-B). In contrast, median
OS for the patients without TP53 mutation was not yet reached
and PFS was 13.3 months (95% CI, 8.6-NA) (Figure 4A-B).

Median OS among the patients who were MRD negative was not
reached at the time of analysis. Median OS in the patients who
achieved CR/CRi/MLFS but were MRD positive was 9.5 months
(95% CI, 5.9-NA) (Figure 4C). PFS for the CR/CRi/MLFS patients
who were MRD negative was not reached; PFS for the MRD-
positive patients was 6.8 months (95% CI, 5.1-NA) (Figure 4D).
Among patients who achieved CR/CRi/MLFS and had follow-up
DNA sequencing performed at the time of best response, most
had clearance or significant decreases in mutation variant allele
fraction compared with baseline, including in TP53 (supplemental
Figure 3).

Median OS for the 13 patients with 1L AML receiving TAG-AZA-
VEN who received allogeneic transplant was 18.2 months
(95% CI, 14.0-NA); median OS for patients who did not undergo
transplantation was 11.0 months (95% CI, 1.3-NA) (Figure 4E).
Median PFS for patients who received transplant was 13.3 months
(95% CI, 8.2-NA); median PFS for patients who did not undergo
transplantion was 3.0 months (95% CI, 1.2-NA) (Figure 4F).

Among the other cohorts, the most encouraging activity was
seen in MDS treated with TAG-AZA. Of the 5 patients with previ-
ously untreated MDS, 1 received TAG 5 μg/kg daily for 5 days, 1 at
9 μg/kg daily for 3 days, and 3 at 12 μg/kg daily for 3 days
(Figure 1). Three of these 5 patients with MDS (60%) achieved a
complete response (CR, n = 2; marrow CR, n = 1) and all 3
harbored a TP53 mutation. Among the 14 patients with 1L or R/R
AML who received TAG-AZA, 1 patient with TP53-mutated 1L
AML had best response of CRi. Among the 11 patients with R/R
AML who received TAG-AZA-VEN, 1 achieved an MLFS.
Response and survival data for patients in these cohorts (AML and
MDS receiving TAG-AZA, and R/R AML receiving TAG-AZA-VEN)
are summarized in supplemental Figure 4.

Discussion

We found that it is safe and feasible to add 3-day dosing of TAG to
AZA (tested in AML and higher-risk MDS) or to AZA and VEN
(tested in AML). The approved regimens of AZA alone for MDS and
AZA with VEN for AML are effective in some cases. However, there
are a substantial proportion of patients who do not respond initially
or relapse shortly after achieving a response, which suggests that
adding an additional agent with a nonoverlapping mechanism of
action is 1 strategy to improve outcomes. CD123 is expressed in
most AML/MDS and is enriched in cells surviving initial therapy as
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Figure 3. Survival outcomes in the previously untreated AML cohort that received TAG-AZA-VEN. (A) OS probability by intention-to-treat analysis using the method of

Kaplan-Meier for the 26 patients in the 1L AML TAG-AZA-VEN cohort. (B) PFS probability for the same cohort, calculated as in panel A.
well as LSCs. TAG is an established CD123-targeted therapy and
has an added benefit of not causing the myelosuppression seen
with conventional chemotherapy or AZA-VEN. Furthermore, given
that TAG resistance is caused by reversible DNA methylation-
mediated loss of the DT target and that TAG-exposed cells are
more sensitive to VEN,14 the biological rationale to combine TAG
with AZA-VEN in AML is strong.

This is the first study to report treatment of AML using TAG in
combination with other chemotherapies. We did not observe any
signal of increased toxicity, including cytopenias, using 3-day
dosing of TAG in TAG-AZA or TAG-AZA-VEN combinations. The
most notable expected toxicities of TAG are transient liver enzyme
elevations and CLS, whereas AZA-VEN causes myelosuppression
and raises infection risk. The rates of those adverse events in this
study were similar to those seen in patients receiving TAG
(approved as a 5-day schedule for BPDCN) or AZA-VEN
alone.11,20 As in prior studies of TAG, CLS occurred almost
exclusively in cycle 1 and was manageable with albumin supple-
mentation and diuresis. Notably, there was no apparent increase in
infections.

The observed rate of CLS was lower in patients receiving TAG-
AZA-VEN compared to TAG-AZA. This could be due to modula-
tion of CLS risk by the addition of VEN or may be associated with
differences between the groups related to disease burden,
schedule of TAG, or increased recognition and intervention for
early CLS over time during the study. CLS is linked to cytokine
Figure 2. Overview of bone marrow response and patient outcomes in the previo

plot showing the best bone marrow blast response at any cycle as percentage change fro

assessment and 1 patient with secondary AML after myelofibrosis whose bone marrow was

received 9 μg/kg (dose level B), and the remaining 23 received 12 μg/kg (dose level C). Be

an “M.” (B) Swimmer plot showing events and outcome for each patient over time from trea

indicate the time of first achieving CR, CRi, or MLFS, as indicated; cross is the time of alloge

is the time of death. Annotation at the end of the bar is the status at end of study treatment.

TP53 mutant status is annotated with an “M” and the number of cycles of treatment rece
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induced vascular permeability in the setting of inflammatory
pathway activation24,25 and VEN is reported to inhibit cytokine
production by targeting specific immune cell populations.26-28 An
intriguing alternative possibility requiring further investigation is that
the immunomodulatory properties of VEN might dampen CLS
severity. Or the additional reduction in tumor burden with TAG-
AZA-VEN might attenuate inflammatory pathway activation by leu-
kemia cells themselves.

Although eligibility for this study was not restricted to high-risk
AML, all patients in the frontline cohort receiving triplet TAG-
AZA-VEN had ELN 2022 adverse-risk disease, including half with
a mutation in TP53. Effective therapy for AML with mutations in
TP53 is lacking, as even fit patients respond poorly to intensive
induction chemotherapy.29 Leukemia cells with TP53 mutations
also have reduced sensitivity to BCL-2 inhibition,30 and TP53-
mutated AMLs have poor outcomes with AZA and VEN.31 One
hypothesis to explain the encouraging activity seen here with the
addition of TAG in AML/MDS with mutated TP53 is that DT can
induce potent cell death in certain contexts independent of
TP53.32,33 This possible mechanism provides a direction for future
laboratory investigation and additional rationale for exploring TAG
combinations in myeloid malignancies with mutated TP53.

The outcomes observed with TAG-AZA-VEN here compare favor-
ably to analyses of high-risk AMLs treated with hypomethylating
agents (HMA) and VEN, albeit with some differences between
populations. For example, OS was 12 months in patients with ELN
usly untreated AML cohort (n = 26) that received TAG-AZA-VEN. (A) Waterfall

m baseline. Not shown are 3 patients who left the study prior to bone marrow

fibrotic and acellular at baseline. Two patients received 7 μg/kg TAG (dose level A), 1

st response is annotated by color, as indicated. TP53 mutant status is annotated with

tment start. Best response is annotated by the color of each bar, as in panel A. Circles

neic stem cell transplantation; triangle is the time of progressive disease (PD); square

Patients without PD or death noted remained in remission at the last known follow-up.

ived is indicated.
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adverse-risk AML receiving HMA plus VEN in the Beat AML
study,34 compared with 14 months here with TAG-AZA-VEN. And,
in combined analysis of patients with TP53 mutation and poor risk
cytogenetics who received AZA and VEN in VIALE-A and its pre-
ceding phase 1b trial, OS was 5.2 months,31 compared to
9.5 months with TAG-AZA-VEN although not all patients had poor
risk cytogenetics. Direct comparison is also complicated by clinical
differences between the cohorts. For example, the median age was
77 in the high-risk VIALE-A subset and almost none went to allo-
geneic transplant, compared with median age 71 in the TAG-AZA-
VEN cohort and half of them underwent transplantation. Our study
also had albumin, bilirubin, and cardiac ejection fraction eligibility
requirements that may have selected a fitter population. Ultimately,
head-to-head randomized data comparing TAG-AZA-VEN to AZA-
VEN are needed to confirm these results. Nonetheless, these data
are encouraging and suggest that the additional targeting of
CD123 with TAG may improve survival outcomes in patients with
high-risk AML when given in combination with existing therapies.

We did not observe an association between the level of CD123 on
AML blasts and response to TAG-AZA-VEN, which is consistent
with other studies evaluating CD123-targeted agents in AML.35

This could be due to the lack of standardized CD123 measure-
ments, or to other biologic factors like the contribution of CD123
on LSCs or CD123+ nonblast cells in the microenvironment.
Moreover, in this study the number of samples tested for CD123
was small and all nonresponding AMLs available for assessment
had a TP53 mutation. Uniformly assessed cell surface CD123
levels should be measured in larger treatment cohorts in future
studies of TAG to better understand their relationship with efficacy.
Additional biomarkers of sensitivity and resistance to TAG-AZA-
VEN should also be the subject of future laboratory investigation.

We conclude that the safety and encouraging efficacy of TAG-
AZA-VEN support continued development of this regimen in AML
in the frontline setting. Despite several drug approvals in recent
years, AML patients with high-risk genetic aberrations, including
TP53 mutations, secondary-type genetics, and adverse chromo-
somal alterations still have inferior outcomes and represent an
unmet clinical need.21 The addition of targeted agents with
nonoverlapping toxicities and distinct mechanisms of action, such
as TAG, to standard therapies may synergize to reduce overall
disease burden and contribute to elimination of therapy-resistant
leukemia cells.
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