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Artificial intelligence-driven virtual rehabilitation for people
living in the community: A scoping review
Ali Abedi 1✉, Tracey J. F. Colella1, Maureen Pakosh2 and Shehroz S. Khan 1,3

Virtual Rehabilitation (VRehab) is a promising approach to improving the physical and mental functioning of patients living in the
community. The use of VRehab technology results in the generation of multi-modal datasets collected through various devices. This
presents opportunities for the development of Artificial Intelligence (AI) techniques in VRehab, namely the measurement, detection,
and prediction of various patients’ health outcomes. The objective of this scoping review was to explore the applications and
effectiveness of incorporating AI into home-based VRehab programs. PubMed/MEDLINE, Embase, IEEE Xplore, Web of Science
databases, and Google Scholar were searched from inception until June 2023 for studies that applied AI for the delivery of VRehab
programs to the homes of adult patients. After screening 2172 unique titles and abstracts and 51 full-text studies, 13 studies were
included in the review. A variety of AI algorithms were applied to analyze data collected from various sensors and make inferences
about patients’ health outcomes, most involving evaluating patients’ exercise quality and providing feedback to patients. The AI
algorithms used in the studies were mostly fuzzy rule-based methods, template matching, and deep neural networks. Despite the
growing body of literature on the use of AI in VRehab, very few studies have examined its use in patients’ homes. Current research
suggests that integrating AI with home-based VRehab can lead to improved rehabilitation outcomes for patients. However, further
research is required to fully assess the effectiveness of various forms of AI-driven home-based VRehab, taking into account its
unique challenges and using standardized metrics.
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INTRODUCTION
Rehabilitation aims at providing interventions to patients to
improve recovery, reduce disability, and optimize functioning and
health outcomes1. Rehabilitation generally involves prescribed
exercises, education, and counseling sessions, as well as in-person
interactions with a clinician. There can be several impediments to
traditional in-person rehabilitation, including transportation
needs, appointment scheduling conflicts2, financial constraints3,
and staff shortages in the healthcare sector4,5. Up to 50% of
women tend to drop out of their rehabilitation program in many
patient populations, due to these issues and other social and
cultural factors6. During the COVID-19 pandemic, most rehabilita-
tion centers either ceased to operate or worked at a limited
capacity, thus severely impacting millions of patients worldwide7.
As a result, traditional in-person rehabilitation is being stretched
to its limits, and many people (especially older adults) may not be
able to access these services to improve their physical and mental
well-being.
With the increasing adoption of internet services in major urban

areas, virtual rehabilitation (VRehab) or synonymously Telereh-
abilitation is becoming more prevalent and mainstream8–11.
Previous research has demonstrated that home-based VRehab
provides similar health outcomes to in-person rehabilitation and is
better than no rehabilitation12–17. VRehab focuses on improving
patients’ physical and mental health and quality of life through
home-based virtual exercise and therapy sessions. During VRehab
sessions, clinicians and researchers often utilize technologies that
generate complex and large single- or multi-modal datasets,
which require new analysis methods to support patients’ recovery.
The use of technology creates opportunities for Artificial
Intelligence (AI) to be utilized in the VRehab setting8,18–20 to

address research questions involving assessment21, recogni-
tion22,23, and prediction24,25 of various patient health outcomes.
Applications of AI in VRehab include but are not limited to
patient’s movement and physical activity analysis, physical
exercise assessment21, pain detection and measurement26,27,
affective state analysis23, and compliance prediction24.

Why home-based VRehab?
In traditional rehabilitation programs involving in-person hospital/
clinic visits, the presence of clinicians is required at different
stages of the program, necessitating that patients commute to
and from the hospital or clinicians travel to patients’ homes or
long-term care homes. This imposes several barriers to the
successful completion of the program among patients,2,3,5,7,28,29

including: (i) Transportation constraints pose difficulties for
patients with disabilities and older adults; (ii) Patients residing in
remote regions may lack access to nearby rehabilitation centers,
requiring them to undertake long-distance travel to participate in
rehabilitation programs; (iii) The rehabilitation sector experiences
a shortage of staff, leading to scheduling limitations and conflicts
resulting in further delays in recovery; (iv) In-person participation
becomes particularly challenging during pandemic situations that
enforce social distancing measures. Consequently, patient enrol-
ment rates may be lower and dropout rates may be high; thus
preventing patients from successfully integrating into their
community and living independently6,30–32.
On the other hand, VRehab aims to deliver rehabilitation

programs virtually to patients’ homes and has the potential to
overcome many barriers to program attendance and comple-
tion28,29. Integrating AI into VRehab to automate different stages
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of rehabilitation holds significant potential for complementing
clinicians and improving the quality of care they provide to
patients in their homes. AI-driven VRehab platforms offer
promising solutions for addressing the shortage of rehabilitation
staff and optimizing operational efficiencies. By delivering
rehabilitation services virtually to patients’ homes, VRehab
expands access to healthcare for diverse populations, including
those who are underrepresented and reside in remote commu-
nities without access to rehabilitation centers2,3,5,7. However, for
VRehab to be effective, patients need access to computers or
smart devices, sensors, and an internet connection at home.
Additionally, patients should be digitally literate and familiar with
technological infrastructures. A detailed discussion of these
limitations can be found in the discussion section.

What role can AI play in VRehab?
Figure 1 illustrates various stages of a general AI-driven VRehab
program. VRehab programs typically include a clinical assessment
and clinician meetings with patients virtually or in person, and
then the prescription of individualized VRehab programs. Usually,
these programs include regular educational sessions8–10 and
aerobic and resistance training exercises21 targeting improvement
of function and mobility as well as avoiding sedentary life-
styles33,34. A variety of sensing devices may be used to conduct
the initial clinical assessment virtually at home, and subsequently
collect physiological, ambient, and contextual data from patients
at home during VRehab sessions8. For instance, a webcam/camera
on a personal computer or smartphone can be used to capture
videos of patients while performing rehabilitation exercises which
could provide important information on their functional recovery.
A smartwatch with a built-in accelerometer can provide vital data
on mobility parameters, including the number of steps taken and
sedentary lifestyle35,36. These single or multi-modal data can be
used to build AI algorithms for measuring patients’ overall
improvements in their rehabilitation program and providing
feedback, resources, and encouraging notifications to patients to
complete their programs successfully.
AI algorithms using sensor data to make inferences about

various patient health outcomes can be classified into three main
approaches: end-to-end, feature-based, and hybrid10. End-to-end
approaches involve employing deep learning-based artificial
neural networks to make inferences using raw sensor data. On
the other hand, feature-based approaches involve extracting
features from raw sensor data, which are then utilized by machine
learning or deep learning models to make inferences. In feature-

based approaches, clinical domain knowledge may be utilized to
extract or select the most suitable features for specific inference
tasks21. Hybrid approaches combine the two approaches
described above. As an example, raw video data of patients19

during VRehab sessions can be analyzed by deep-learning models
(in an end-to-end approach) or the eye gaze direction, head
movements, and range of motions as features extracted from the
raw video data37 can be analyzed by machine-learning or deep-
learning models (in a feature-based approach) to make inferences
about patients’ emotions and behaviors38.
Prior to deploying AI algorithms on VRehab platforms for making

inferences about patients’ health outcomes, it is essential to train
them using relevant data. To illustrate, in assessing exercise quality,
annotated data of previous patients performing both correct and
incorrect exercises21 can be used to train the AI algorithms10,39.
Once the algorithms are trained, they can be deployed on VRehab
platforms to automatically assess exercise quality for new
patients10,38,39. Inferences made by trained AI algorithms can be
utilized in a variety of ways8–10. For example, the results of the
measurement of the correctness of exercises can be input to a
virtual coach (avatar) on a computer screen to provide real-time
feedback and guidance for patients to correct their technique and
movements in order to complete the exercises correctly40–42. The
number of steps taken each day can be reported to the patient/
clinician through the VRehab platform43. In the case of a low step
count and a sedentary lifestyle, the patient would then receive
customized notifications on the VRehab platform and/or specific
instructions from the VRehab clinician.

Related reviews
Several recent reviews have been conducted on the applications
of AI in the rehabilitation of different populations8,10,18,19,44–46 as
well as VRehab or telerehabilitation9,47–50. None of the published
literature has addressed the combined role of AI and VRehab to
support patient recovery in various rehabilitation populations. AI
in VRehab is an emerging field; this scoping review is timely to
understand and analyze the existing results, challenges, and future
directions to help improve the health outcomes of rehabilitation
patients living in the community.
AI plays a primary role in VRehab by analyzing patient data

collected by various sensing devices at patients’ homes remotely
and making inferences regarding their recovery and health
outcomes. It facilitates the automation of rehabilitation programs
and permits the delivery of these programs to patients in their
homes. In this paper, a scoping review was conducted to

Fig. 1 A conceptual diagram depicting various stages of AI-driven VRehab platforms. This scoping review focuses on AI algorithms, which
is highlighted in blue.
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methodologically map the current research on the applications of
AI in VRehab, and to identify existing gaps in knowledge and
associated challenges. In order to gain a comprehensive under-
standing of the field, all adult (>age 18) patient populations and
different types of rehabilitation were considered. The following
research questions guided this scoping review: (1) How was AI
applied in the delivery of home-based VRehab programs to
patients living in the community? (2) How effective was the
application of AI in the delivery of home-based VRehab programs
for patients living in the community?

METHODS
Design
This study used a scoping review methodology due to the broad
nature of the research questions, the heterogeneity of the studies
and the populations, as well as the lack of comprehensive reviews
conducted previously51,52. The scoping review was conducted
using the framework proposed by Arksey and O’Malley51 and
reported in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping
Reviews (PRISMA-ScR) Checklist52.

Eligibility criteria
Inclusion criteria. Peer-reviewed journal and conference articles
written in English which conducted quantitative, qualitative, and
mixed-method studies were included. For inclusion in the review,
studies had to present the development of a new research or
commercial AI-driven platform or use a previously developed AI-
driven platform for the delivery of rehabilitation services to
patients at home. In order to be considered for inclusion in the
review, the platform must meet all three criteria listed below: (i)
The platform had to be AI-driven, i.e., machine-learning and or
deep-learning algorithms had to be incorporated into the platform
for the purposes of making inferences about patient health
outcomes. (ii) The platform had to be evaluated on adult patients
aged 18 or older undergoing any type of rehabilitation program.
(iii) The platform had to be evaluated on patients in their homes in
a fully home-based or hybrid (home- and hospital-based)
rehabilitation program. Therefore, in the SPICE framework53,
setting, population, intervention, comparison, and evaluation were
patients’ homes, adult patients, any rehabilitation program,
technology/AI algorithms, and effectiveness, respectively.

Exclusion criteria. Non-peer-reviewed and non-English publica-
tions or resources were excluded. Studies were excluded if they (i)
did not incorporate AI into their rehabilitation platform, (ii) did not
evaluate their platform on patients, or (iii) did not evaluate their
platform in patients’ homes. If one or more of the above criteria
were met, studies were excluded. It is to be noted that some AI and
VRehab solutions may be delivered in a hospital or clinic setting.
While these are useful to many patients, these approaches may still
suffer from the barriers of in-person attendance and constant
clinical supervision (as discussed in the introduction section). A
large number of the studies reviewed developed AI-driven VRehab
platforms, however, they only tested them on healthy participants,
clinicians, students, or research team members. Those studies were
deemed out of scope for our review as we emphasize on
improving health outcomes for patients living in the community
using AI-driven VRehab solutions. Studies in which video games,
virtual reality, or augmented reality were used to deliver VRehab
without the application of AI methods were also excluded.

Information sources and search strategy
In order to identify relevant studies, a comprehensive literature
search was developed in collaboration with a Library Sciences

Expert (M.P.) and subsequently refined through team discussion.
A.A. and T.J.F.C. provided M.P. with an initial list of keywords along
with a list of 25 representative relevant papers that must be
retrieved from databases. Subsequently, M.P., A.A., and T.J.F.C.
refined the keyword list and formulated a search strategy for
individual databases. An extensive search was conducted in
several bibliographic electronic databases, including PubMed/
MEDLINE, Embase, IEEE Xplore, and Web of Science, from
inception to June 2022. Furthermore, a grey literature search
was conducted on Google Scholar in order to identify and include
studies published between June 2022 and June 2023. Box 1
presents the unique search keywords used to search the
databases. The exact search strategy and the keywords associated
with the search in all the databases are available in Supplementary
Table 1. The search results were exported as multiple XML files,
merged, imported into the Covidence web application for
systematic review54, and duplicates were removed. The reference
lists of included studies were searched to identify any additional
relevant studies.

Selection of sources of evidence
A group of three independent reviewers, namely A.P., H.P., and
Z.K., was involved in conducting the title and abstract screening
using the Covidence web application. Each study underwent
review by at least two of these reviewers. Subsequently, the
relevant studies were subjected to a full-text review and data
charting, which were carried out by at least two reviewers chosen
from a group including A.A., A.P., H.P., and Z.K. Any conflicts that
arose during the title and abstract screening phase were resolved
by at least one independent reviewer, chosen from A.A. and S.S.K.,
and during the full-text review phase were resolved by S.S.K.

Data charting process and data items
In order to address the research questions for this scoping review,
a data charting form was developed to extract relevant informa-
tion from the screened studies. The data charting form comprised
of four sections: (i) study characteristics, participants, and settings,
(ii) study aims, methodologies, and key findings, (iii) characteristics
of VRehab programs, and (iv) AI algorithms and their applications.

Synthesis of results
To address the research questions, a descriptive analysis was
conducted followed by a summary of relevant study character-
istics in narrative form using tables. Studies were sorted by year
and analyzed based on the data characteristics described above.
Due to heterogeneity in patient populations, rehabilitation types,
outcome measurement tools, and measurement times, a meta-
analysis was not conducted55.

Box 1Unique keywords used to search the databases

rehabilitation, cardiac rehabilitation, stroke rehabilitation, occupational therapy,
physical therapy, exercise therapy, telerehabilitation, rehab, tele-rehab, virtual
rehab, e-rehab, therapy, physiotherapy, kinesiotherapy, remote consultation,
home care services, home, virtual, in-home, at-home, web-based, internet, tele-
consult, teleconsult, remote, environment, monitoring, artificial intelligence,
machine learning, algorithms, pattern recognition, automated, signal processing,
computer-assisted, affective, computational, ambient intelligence, deep learning,
algorithm, sensing system, wearable, physiology sensor, computer vision,
artificial neural network, motion data, recognition, locomotive, gesture,
automatic, pain, engagement, pattern, active, technology, sensor, device,
monitor, Kinect, video, camera, action, technology solution, physical action,
feedback, data motion stride, motion capture, tracking.

A. Abedi et al.

3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2024)    25 



RESULTS
Selection of sources of evidence
Figure 2 illustrates the PRISMA flow diagram, which describes the
study selection process. Upon removing duplicates, a total of
2172 studies were identified through comprehensive literature
searches of electronic databases and grey literature. Following title
and abstract screening, 2121 studies were excluded, and 51 full-
text studies were retrieved for full-text review. Among these
51 studies, 38 were excluded due to the absence of any one or
more of the following three inclusion criteria: (i) using AI in the
VRehab platform; (ii) evaluating the platform within a patient
population; and (iii) evaluating the platform at home. This resulted
in the inclusion of 13 studies.

Characteristics of sources of evidence
Figure 3 and Tables 1–3 outline the characteristics of the studies
included in this scoping review. An “NA" in the tables indicates
that the corresponding item was not addressed or discussed in
the paper.

Characteristics of studies. The included studies (n = 13) were
published between 2011 and 2022 with the majority of the studies,
10 (76.9%), having been published between 2020-202225,27,56–63

which shows the shift in the use of VRehab and AI solutions across
many populations to support rehabilitation of people living in the
community. Among the included studies, 5 (38.5%) were
conducted in the United States25,57,62–64, 2 (15.4%) in China59,65,
2 (15.4%) in Spain56,58, one (7.7%) in Greece66, one (7.7%) in Italy61,
one (7.7%) in Tunisia27, and one (7.7%) in Ukraine60. Of the
included studies, 12 (92.3%) were journal articles and 1 (7.7%) was
a peer-reviewed conference publication. These studies were
published in multidisciplinary digital health or biomedical, or
single-disciplinary engineering journals or conferences.

Characteristics of participants. The inclusion criteria specified the
use of AI-driven VRehab platforms for patients or mixed (patients
and healthy) populations; however, none of the included studies
incorporated healthy individuals (along with patients). Six (46.2%)
of the studies were stroke rehabilitation for acute and chronic
stroke patients25,57–59,64,65, 5 (38.5%) of the studies were physical
therapy rehabilitation for post-hip and knee-replacement sur-
geries62,63, wrist fracture27, polytrauma lower extremities60, and
musculoskeletal injuries patients56, one (7.7%) of the studies were
motor and cognitive rehabilitation for Rett syndrome patients61,
and one (7.7%) focused on exercise-based cardiac rehabilitation
for cardiovascular disease patients66. The age of participants in
most of the studies was around 60 years old, involving late
middle age and late adulthood, with only one study on Rett
syndrome patients61 and one on musculoskeletal injuries
patients56 involving early adulthood. Except for two single-sex
studies27,61, all other studies recruited both sexes, with n = 139
(50.4%) females and n = 137 (49.6%) males across all the included
studies.

Characteristics of rehabilitation programs. In 8 (61.5%) of the 13
included studies25,27,56–58,62,63,65, the same setting of home-
based VRehab program was provided to all study participants.
However, in 5 (38.5%) of the included studies59–61,64,66,
participants were divided into two groups and received two
different rehabilitation programs. Triantafyllidis et al.66 evalu-
ated their VRehab platform in an in-person simulation setting
with 10 (76.9%) patients and in patients’ homes in a real-world
setting with 3 (23.1%) patients. Tsvyakh et al.,60 Fang et al.59, and
Zhang et al.64 randomly recruited patients to participate in
home-based or in-person rehabilitation. Fabio et al.61 used
VRehab with no AI, including regular video calls between
patients and clinicians, for 10 (50.0%) and AI-driven VRehab for
the other 10 (50.0%) patients.

Records identified from:
All Databases (n = 3458)

Embase (n = 826)
IEEE Xplore (n = 153)
Medline (n = 751)
Web of Science (n = 1715)
Google Scholar, June 2022–
March 2023 (n = 13)

Records removed before screening:
Duplicate records removed (n = 
1286)

Records screened by title and 
abstract
(n = 2172)

Records excluded
(n = 2121)

Studies reviewed by full-text
(n = 51)

Studies excluded:
No AI (n = 10)
No patient participants (n = 26)
No home rehabilitation (n = 22)

Studies included in the review
(n = 13)

Identification of studies via databases and registers
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Fig. 2 PRISMA flow diagram for the scoping review. Of the 2172 unique titles and abstracts initially screened, 51 full-text studies were
further evaluated, resulting in 13 studies being included in the scoping review.
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Synthesis of results
Research Question 1: How was AI applied in the delivery of home-
based VRehab programs to patients living in the community? This
subsection describes various sensing modalities used for data
collection and providing input to AI algorithms, characteristics of
AI algorithms, the outcome of AI algorithms, and the usage of the
outcome of AI algorithms in VRehab programs.
Sensors and input data to AI algorithms: In the majority of

the included studies, different sensors were used to collect data
on patients’ movement during rehabilitation exercises. This data
collection was in line with the study’s goal of providing guidance
and feedback to patients during their exercise routines.25,27,56–66.
To monitor other health indicators of patients during exercises,
two studies were also equipped with physiological sensors60,66

along with sensors for capturing body movements. Due to the
availability and ubiquity of regular RGB cameras available on

smart devices available at home (PC, laptop, smartphone, and
tablet), it is the most common sensing device for data acquisition
(n = 4)27,61–63. RGB cameras may suffer from capturing improper
body movement data in the wild (at home) because of issues with
their sensitivity to light, brightness, camera angle, and privacy. As
an alternative, n = 4 studies used the Kinect depth cam-
era27,56,58,66, which can overcome some of the challenges
imposed by RGB cameras; however it is an external piece of
hardware with an additional cost. Other types of sensors to
capture body movement data included smartphones’ built-in
Inertial Measurement Units (IMU)s (n = 1)25 or standalone sensors
such as accelerometers (n = 1)65, flex (n = 1)65, and leap motion
sensors (n = 1)57.
The sensors for collecting physiological data included wrist-

band sensors, such as heart rate or standalone blood pressure
monitors66. Some studies also utilized sophisticated sensors to

Fig. 3 Study characteristics, participants, and settings in the included studies. The figure outlines the characteristics of the studies included
in this scoping review.
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Table 1. The aim, methodology, and key findings of the included studies.

Authors Aim Methodology Key findings

Gupta and
Kohli63

To evaluate the effectiveness of VRehab
on hospital readmission rate.

Using AI and computer vision, the
TheraNow smartphone application
provided exercise-based rehabilitation
plans for patients and assessed the
quality of their exercises.

Using AI-driven VRehab resulted in lower
hospital readmission rates.

Kohli and
Gupta62

To evaluate patients' level of
satisfaction and likelihood of
recommending the VRehab platform to
others.

Using AI and computer vision, the
TheraNow smartphone application
provided exercise-based rehabilitation
plans for patients and assessed the
quality of their exercises.

Patients reported high levels of satisfaction
with the VRehab platform.

Fabio et al.61 To compare the performance of
patients in non-AI-driven VRehab and
AI-driven VRehab.

While non-AI-driven VRehab was simple
video communication between patients
and clinicians, AI-driven VRehab was
equipped with eye gaze and body
skeleton acquisition. The eye gaze and
skeleton data were observed by the
clinician to understand patients'
interaction, attention, and movements.

AI-driven VRehab resulted in improvements
in a few neuropsychological measurements.

Bo et al.25 To establish a progressive framework
for predicting rehabilitation outcomes.

Patients' motion data was collected using
the built-in sensors in their smartphones.
AI algorithms were used to analyze
patients' motion data and demographic
information to predict rehabilitation
outcomes.

Combining clinical and demographic data
with movement data significantly improved
the performance of predictive AI algorithms.

Bouteraa et al.26 To develop predictive models to
estimate pain using features extracted
from various sensors and use the
estimated pain in the control loop for
generating safe robot actions.

By using a computer vision system, the
physiotherapist’s gestures were translated
into commands for the robot. As a
measure of safety, if the pain level
exceeded a certain threshold, the robot
would stop the action, even if the desired
angle had not yet been reached.

The developed human-robot interface was
able to provide a control and monitoring
interface for home-based VRehab.

Tsvyakh et al.60 To implement an AI-driven VRehab
platform and compare it with
traditional rehabilitation.

Different sensors were used to collect
data from patients, including exercise
time, local temperature, and the
biomechanics of active movements of the
injured limb. The collected data was
accessible to clinician surgeons to
monitor patients.

Compared to traditional rehabilitation,
VRehab reduced the time that surgeons
spent consulting with their patients and
resulted in higher levels of patient
satisfaction.

Fang et al.59 To longitudinally examine the efficacy
of VRehab.

Wearable sensors collected accelerometer
data from patients while they performed
rehabilitation exercises, which was
transferred to and analyzed in the cloud.
Using the results of the analysis, clinicians
were able to monitor the progress of their
patients remotely.

Compared to in-person (and phone-based)
rehabilitation, VRehab resulted in a steady
increase in Mobility Index and at least one
stage improvement in Brunnstrom Stage.

Ghorbel et al.58 To examine the impact of color-based
3D skeletal feedback to guide patients
in completing rehabilitation exercises.

In a desktop application, color-based 3D
skeletal feedback was superimposed on
the videos of patients to guide them in
completing exercises. Additionally, the
movements of the patients were
automatically analyzed and reported to
clinicians.

The visual feedback improved the posture of
the patients and enhanced the motion in
the case of simple exercises. The VRehab
platform was reliable, simple to use, and
positively impacted patients' psychology
measures. Clinicians and patients both
found the measurement and feedback to be
accurate, reliable, and safe.

Qiu et al.57 To evaluate the feasibility of VRehab
platform to prepare for a future efficacy
study.

Patients controlled the rehabilitation
game with the Leap Motion controller on
their hand, and the difficulty of the game
was determined adaptively according to
the movements of patients. The
movement data was transferred to the
cloud, where clinicians could view it.

Patients were able to use the VRehab
platform resulting in improvements in
Upper Extremity Fugl-Meyer and hand
kinematics.

Sobrino et al.56 To evaluate the perceived usefulness
and ease of use of VRehab platform.

The movements of patients were
analyzed, and accordingly, on-screen
textual and visual feedback was provided
to patients regarding the quality of their
exercises. Movement analysis results were
also reported to clinicians.

The collected questionnaire data regarding
the perceived usefulness and ease of use of
the platform indicated a positive view of
patients.
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collect data from patients at home, such as wearable robots64 or
IMU body sensor networks59.
Characteristics of AI algorithms: The data collected from

patients at home through the aforementioned sensors served as
input for AI algorithms, enabling the derivation of valuable
inferences about patients. Sensors collecting data and AI
algorithms making inferences using the collected data acted as
a proxy for clinicians who were not physically present in VRehab
programs.
Bo et al.25 developed a feature-based machine-learning

approach for predicting the percentage difference of Wolf motor
function test in stroke survivors at different timestamps of their
rehabilitation program. Various features in four categories of
movement phenotyping, compliance, clinical, and demographic
were collected from patients in VRehab. Movement phenotyping
features were collected by smartphone built-in sensors, contain-
ing information regarding the number of days patients com-
pleted their prescribed exercise, the number of repetitions of
exercises in a day, the duration of exercise sessions, and many
others. Compliance features were calculated based on the
number of days and number of sessions for a specific time
duration. Clinical features were the clinical assessment informa-
tion, such as the Fugl-Meyer assessment score and the total
months the patients had a stroke. Demographic features were
age and sex. Various combinations of the above features were
examined to build predictive machine-learning models for the
percentage difference in the Wolf motor function test in different
periods of the VRehab program. Combining all the features in the
above four categories was found to significantly improve the
performance of the predictive models. The machine-learning
models were multiple linear regression and random forest, with
the latter resulting in lower root mean square error.
Bouteraa et al.27 developed a feature-based decision support

system based on cascading fuzzy logic algorithms to measure
the degree of pain in wrist fracture patients in exercise sessions
of VRehab and control an exercise rehabilitation robot accord-
ingly. In addition to visual movement data collected through
RGB and depth cameras, various time-domain and frequency-
domain features were extracted from current and electromyo-
graphy sensors on the robot. The extracted features were input
to cascades of fuzzy logic algorithms to output the degree
of pain.
Fang et al.59 developed a feature-based approach for

Brunnstrom Stage and Mobility Index classification. Acceleration
signals containing movement information of patients while
doing rehabilitation exercises were collected using an IMU-
based body sensor network. The signals were segmented into
individual exercise repetitions through peak detection. Dimen-
sionality reduction was applied to the signals using principal
component analysis and input to an adaptive neuro-fuzzy
inference system for Brunnstrom stage classification.

Ghorbel et al.58 evaluated the quality of rehabilitation
exercises completed by patients by comparing and calculating
the distance between Kinect body joint data of patients’
exercises with Kinect body joint data of reference correct
exercises. Thresholding the calculated distance resulted in a
decision regarding the correctness of patients’ exercises.
According to the decision, on-screen visual feedback was
provided to patients.
Qiu et al.57 used a cloud-based AI algorithm for measuring

and tracking key press rate working on a leap motion controller.
The measured rate was used to adaptively determine the
difficulty of hand exercises for stroke patients.
Sobrino et al.56 evaluated the quality of patients’ rehabilita-

tion exercises by comparing and calculating their distance with
therapist’s exercises as references. The distance was a measure
of exercise quality and was used to provide real-time textual
feedback to patients.
Triantafyllidis et al.66 developed a feature-based approach for

exercise quality assessment. Different features were collected
from various sensors, including a Kinect depth camera, wrist-
band for heart rate measurement, and blood pressure monitor,
and classified by a rule-based algorithm to output exercise
quality. Accordingly, visual feedback in the form of an animated
avatar was provided to patients.
Yu et al.65 developed a feature-based method for the Fugl-Meyer

assessment as a regression problem. Various features, including
amplitude, mean value of sensor data, root mean square value,
root mean square value of the derivative, and approximate entropy
were extracted from accelerometer and flex sensor signals. These
features were input to an extreme learning machine regression
model to perform the Fugl-Meyer assessment.
Some of the reviewed studies did not mention the details of

their AI algorithms, such as eye gaze and body joints skeleton
extraction from video61, the algorithm for tracking key press
rating57, or motion detection64. Two studies identified the name of
an AI-powered smartphone application with no details of the AI
algorithms used in the application62,63.
AI algorithms’ outcomes and their usage: The outcomes of AI

algorithms were found to be primarily related to patients’
movements and exercises, including the correctness of rehabilita-
tion exercises58, the distance between the exercise performed by
the patient and the exercise performed by the clinician56, the
percentage difference of Wolf motor function test25, Brunnstrom
Stage59, Mobility Index59, Fugl-Meyer assessment25,57,64,65, and the
degree of pain during exercises27. Only three studies followed
reporting standards and explained the details and the training and
evaluation phases and performance metrics of their AI algorithms,
including root mean square error25,65, distance58, coefficient of
determination65, and training time65. Two studies that used
commercial products did not provide details of the AI algorithms
in their product62,63.

Table 1 continued

Authors Aim Methodology Key findings

Triantafyllidis
et al.66

To evaluate the feasibility of VRehab
platform.

In response to the real-time sensor data
collected, a virtual coach was animated to
provide patients with safe and
personalized exercise feedback within
their beneficial heart rate zones.

With the assistance of the virtual coach,
patients were able to exercise within or
above their beneficial heart rate zones for
the majority of the exercise duration.

Yu et al.65 To develop a remote quantitative Fugl-
Meyer assessment framework,

The collected data from a wearable
sensor network was used to automatically
measure the Fugl-Meyer score.

The proposed quantitative models could
precisely predict the Fugl-Meyer assessment
based on wearable sensor data.

Zhang et al.64 To develop and evaluate a wearable
exoskeleton rehabilitation robot for
clinic and home-based rehabilitation.

A wearable exoskeleton rehabilitation
robot, along with a 3D animation, was
used to perform task-based repetitive
therapy.

Significant improvements in both the Wolf
Motor Function Test and Fugl–Meyer
Assessment scores were reported for some
patients in both clinical and home settings.
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The outcomes of AI algorithms were used in a variety of ways,
primarily for prescribing individualized rehabilitation exercises to
patients27,62–64, providing visualizations and feedback to patients
in completing their exercises27,56–58,62,63,66, and providing reports
to clinicians about the progress of patients in their rehabilitation
program25,27,56–65. Other uses of the outcomes of AI algorithms
included attentiveness assessment of patients based on face and
eye features61 and pain assessment27. The mediums to deliver
feedback and visualizations to patients included desktop applica-
tion27,57,58,61,64–66, smartphone application25,60,62,63, web applica-
tion56,59,61, and wearable robot27,64.

Research Question 2: How effective was the application of AI in the
delivery of home-based VRehab programs for patients living in the
community?. This subsection describes how the effectiveness of
AI-driven VRehab platforms in the delivery of rehabilitation to
patients’ homes was evaluated and how effective they were
found to be.
Metrics for effectiveness: A wide variety of metrics were used

to evaluate the effectiveness of AI-driven VRehab platforms,
including hospital readmission rate63, patient satisfaction60,62,
perceived usefulness56, perceived ease-of-use56,59, reduction in
clinician consultation time60, and various disease-specific assess-
ment metrics, e.g., stroke-specific assessments, including Wolf
Motor Function Test25,64, and the Fugl-Meyer Assessment25,57,64,65.
Evaluation of effectiveness: As described above, none of the

reviewed studies included healthy populations in their cohort
along with rehabilitation patients. The patient population used the
same or different settings of rehabilitation programs. In the
studies with the same rehabilitation setting, there was no
comparison between virtual/in-home and in-person/in-hospital
rehabilitation. The majority of the included studies provided all
patients with the same rehabilitation program, AI-driven VRehab
at home25,26,56–58,62,63,65. Few of these studies investigated the
comparison of their outcomes with those reported in the
literature62,63. As an example, the Net Promoter Score (NPS) is a
metric for patient satisfaction and recommendation to others62; it
was much higher than the average NPS score for the healthcare
industry. Therefore, it was concluded that the VRehab platform
was pleasing to patients62. The hospital readmission rate in
30 days of total hip and knee replacement post-surgical follow-up
was compared with the reported hospital readmission rate in the
previous literature and based on its lower values, the effectiveness
of the AI-driven VRehab platform was concluded63. Qiu et al.57

reported 100% rehabilitation program completion and improve-
ments in upper extremity Fugl-Meyer assessment for all the
patients in their study.
In other studies with the same VRehab settings for all

patients25,27,65, the VRehab platform’s effectiveness in delivering
rehabilitation was not reported. However, the performance of the
AI algorithms in predicting an outcome variable was reported.
Ghorbel et al.58 investigated the correctness of exercises of the
same patients with and without visual feedback on the computer
and reported lower distances between correct exercises and
patients’ exercises when visual feedback was provided to patients.
Qualitative measures were also reported from patients’ perspec-
tives regarding the visual feedback provided to patients which
included: Posture correction as a strength of the system,
usefulness of the feedback, relevance of measurement performed
by the VRehab platform, reliability and simplicity of the system,
safety of the platform, interestingness and not being tiring of the
exercise58.
Fabio et al.61 reported improvements in neuropsychological

assessments for Rett syndrome patients when using AI-driven
VRehab compared to non-AI-driven VRehab. Triantafyllidis et al.66

evaluated their VRehab platform in an in-person simulation setting
and patients’ homes in a real-world setting. The patients were able
to perform most of the cardiac rehabilitation exercises within orTa
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above their beneficial heart rate zones. Tsvyakh et al.60, Fang
et al.59, and Zhang et al.64 randomly recruited patients to
participate in home-based or in-person rehabilitation. Tsvyakh
et al.60 reported much less clinician-patient visit time and much
higher patient satisfaction in VRehab compared to in-person
rehabilitation. Ghorbel et al.58 reported a steady increase in the
Mobility Index and at least one stage improvement in Brunnstrom
Stage VRehab compared to in-person (and phone-based) rehabi-
litation. Zhang et al.64 reported significant improvements in the
Wolf Motor Function Test and Fugl-Meyer Assessment scores for
some patients in both in-person and virtual in-home settings.

DISCUSSION
In this scoping review, thirteen studies were identified that
reported the application of AI-driven VRehab platforms in the
delivery of rehabilitation services to patients in their homes. The
studies made use of a variety of sensors to collect data about
patients in different modalities. The collected data were used by AI
algorithms to provide guidance and feedback to patients or report
patients’ performance to clinicians. A variety of effectiveness
evaluation metrics revealed that AI-driven home-based VRehab
was effective in improving patients’ health outcomes compared to
non-AI-driven home-based VRehab (n = 1) and in-person
rehabilitation (n = 4). There was a clear indication that patients
were satisfied using these platforms in terms of high levels of
reported satisfaction and corresponding improvements in disease-
specific assessment metrics. Our fidings also indicated a paucity of
research focused specifically on the evaluation of the effectiveness
of integrating AI with VRehab for patients in their homes.

Challenges, limitations, and recommendations
Reporting VRehab characteristics. Most of the reviewed studies
reported baseline demographic information of patients67,68, such
as age, sex, medical condition or diagnosis, comorbidity, marital
status, employment status, income, socioeconomic status, and
health insurance coverage. However, barriers influencing patient
adherence to both in-person and VRehab programs were not
reported including2,69: transportation issues, family obligations,
lack of motivation and energy, and finding rehabilitation exercises
tiring and painful. The fact that these variables are associated with
adherence to rehabilitation programs necessitates the incorpora-
tion of these variables into studies that examine the effectiveness
of AI-driven platforms for rehabilitation delivery2. More impor-
tantly, home-based- and virtual-specific information or barriers to
adherence to and completion of VRehab programs need to be
collected and reported. These potential barriers include sensor
and smart device installation and maintenance costs, internet
connection stability70, minimum system requirements of compu-
ters and smartphones for VRehab applications, type of residence
(e.g., house, townhouse, apartment, community housing, or
basement), digital literacy or computer skills of patients57, and
hearing or vision impairments. Among the reviewed home-based
VRehab studies, only Qui et al.57 reported some of the barriers
noted above, including residence type and computer skills.

Infrastructure barriers. A major roadblock to the adoption of
VRehab is that all patients may not have access to the digital
devices and internet connectivity required to participate in these
programs71,72. This is particularly relevant in low-income commu-
nities, rural areas, and among certain patient populations such as
ethnocultural minorities. Policymakers and developers of VRehab
programs need to ensure inclusivity in their strategic planning to
facilitate VRehab programs that are accessible and improve health
outreach among diverse patient populations. Policymakers are
encouraged to implement equitable digital health solutions, such
as subsidizing required digital devices and internet connectivity

for those who are unable to afford these services. This could
involve partnerships with local governments, non-profits, and
other organizations to provide low-cost or free devices and
connectivity to patients in need. Engineers can develop less
sophisticated products at lower costs. For example, instead of
using depth cameras for the extraction of body joints of patients
while exercising at home27,56,58,66, a regular built-in RGB camera in
laptops and smartphones, can be used along with advanced deep-
learning methods for body joint extraction from RGB video37.

Co-design. A significant aspect not considered in the reviewed
studies was co-design or patient-centric participatory design. Co-
design involves the inclusion of patient partners and clinicians
from the outset in the design of various modules of VRehab
platforms, including the user interfaces and functionality of
applications, wearables, and other devices required to deliver
VRehab at home73,74. In a general co-design framework, there is
ongoing feedback and iterative discussion between patients,
clinicians, and researchers with the aim of improving the
development, design, and usability of VRehab platforms and
incorporating patients’ views during the process. By utilizing a co-
design framework, the VRehab platform will be more usable,
effective, motivational, engaging, and customized to meet the
specific needs of clinicians and patients75. Furthermore, a co-
design approach is essential since VRehab platforms are intended
for use by patients at home without the presence or supervision of
clinicians. It is noteworthy that co-design should take place during
initial development and prior to the deployment of VRehab
solutions. Due to the aforementioned challenges, including
infrastructure and digital literacy limitations of patients in
independently engaging with VRehab platforms at home, co-
design sessions are predominantly conducted on-site or within a
controlled laboratory setting. This arrangement enables research-
ers and developers to closely interact with patients and
stakeholders, facilitating active participation, feedback, and
iterative refinement of the VRehab platform76,77.

Usability, acceptability, and safety. There is no validated scale
available to measure the usability, acceptability, and safety of
VRehab platforms. Commonly used scales to measure people’s
perceived usability of digital systems, such as the System Usability
Scale78,79 are not tailored to VRehab platforms or patient
populations and were designed for general use. Consequently,
researchers have developed a variety of evaluation scales specific
to their platforms56,57,60,62,63. For instance, Sobrino et al.56 devel-
oped their own questionnaires to evaluate the “perceived
usefulness" and “perceived ease-of-use" of their VRehab platform.
This incoherence warrants more research to develop validated
usability scales tailored specifically for VRehab platforms. More-
over, the safety of VRehab platforms is a critical aspect that
requires rigorous evaluation. Presently, there are limited studies
assessing the potential risks and safety protocols specific to
VRehab settings80,81. This gap indicates a need for comprehensive
safety guidelines and standardization in VRehab platforms to
ensure patient well-being and trust in these emerging technol-
ogies. Furthermore, exploring user feedback and incident reports
can provide valuable insights into the safety challenges and areas
for improvement in VRehab platforms.

Privacy and personalization. Preserving patients’ privacy and the
personalization of AI models for individual patients82,83 are
critically important aspects that were not addressed or discussed
in the included studies. In contrast to traditional on-site
rehabilitation, VRehab collects data from patients at their homes.
The collected data must be transferred to a central location/cloud
via the Internet in order to be used for the development of AI
models. However, sharing patient data over the Internet raises
concerns about privacy and potential information leaks84. In the
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case that patients’ collected data is transferred to a central
location/cloud or collected in a centralized manner (e.g., data
collection from patients in hospitals) and used for AI model
development, trained AI models should be personalized for
individual patients at home using their personal data82. Privacy-
preserving machine learning techniques such as federated
learning83 and split learning84,85 can be employed. These
techniques facilitate AI model training and AI model personaliza-
tion in a decentralized manner without the need to share raw data
from patients over the Internet. However, it is important to note
that implementing these privacy-preserving techniques requires
computers at patients’ homes with sufficient computational power
for local model training86.

Can VRehab replace clinicians? AI and VRehab have been posited
as potential replacements for clinicians in certain healthcare
settings, which has sparked debate in the field5,87. Some studies
suggest that AI-driven VRehab platforms can automate repetitive
tasks and identify patterns, reducing physical contact between
clinicians and patients8,10,18–20,44,45,87,88. However, critics argue
that AI and VRehab technologies cannot replace the expertise of
trained clinicians in complex assessments and decision-making, as
well as providing emotional support to patients89. Furthermore,
these technologies may introduce bias and errors that could
threaten patient safety8,10,18–20,44,45,88. Therefore, it is suggested
that AI and VRehab should supplement rather than replace
clinicians, in order to enhance the care they provide. AI-driven
VRehab platforms have the potential to address the shortage of
rehabilitation staff and improve operational efficiencies, thus
increasing access to rehabilitation care for a larger patient
demographic3,5,7,90. However, the reviewed studies lack an
analysis of how much VRehab platforms can reduce clinician
intervention or on-site patient visits5. In only one study60,
clinicians were reported to spend less time visiting patients in
VRehab as compared to in-person rehabilitation.
The majority of the reviewed studies used traditional machine-

learning approaches to make inferences regarding patients’ health
outcomes in VRehab programs. Recent advances in computer
vision and signal processing have demonstrated that deep
learning can outperform traditional machine learning techniques.
Therefore, it is recommended that future studies examine the use
of deep learning algorithms to improve existing state-of-the-art
methods. For deep learning algorithms to build meaningful
predictive models, large amounts of data are usually required91,
and in many cases, a sufficient population might not be readily
available. In addition, deep learning algorithms require expensive
hardware to run, and the models may be uploaded to the cloud,
which would incur additional costs and privacy concerns.
This review benefits from the use of a systematic, reproducible

process guided by an established scoping review framework51. In
order to ensure a thorough and comprehensive examination of
relevant literature, the search strategy used in this review was
developed in consultation with a Library Sciences Expert. In
addition, this review spans studies from the inception of this
technology to the present, ensuring that all pertinent literature
was included. Although a thorough and comprehensive search
was completed, additional articles and resources may have been
missed due to the exclusion of non-English language articles.
Another limitation of this review is the heterogeneity in outcome
measurement tools, outcome assessment times, patient popula-
tions, and randomization methods among the studies examined,
which precluded meta-analysis.

CONCLUSION
Personalized and ambulatory rehabilitation services can be
delivered to patients at home by integrating AI into VRehab
platforms. AI algorithms are able to make individualized and

real-time inferences about patients’ rehabilitation progress
based on data collected from various sensors. Since improving
functional and mobility outcomes is the central focus of
rehabilitation programs for different patient populations, the
majority of the studies reviewed targeted facilitating prescribed
exercise completion at home in the absence of clinicians. In
almost all of the reviewed studies that assigned participants to
different rehabilitation settings, AI-driven home-based VRehab
was found to be more effective than in-person rehabilitation
and non-AI-driven home-based VRehab. The feasibility, safety,
and privacy implications of AI-driven VRehab platforms still
warrant further investigation. Researchers in this field must also
be cognizant of the potential ethical and legal implications
associated with the application of AI in VRehab. In order to
address the current limitations and fully realize the potential of
AI-driven VRehab, it is crucial that interdisciplinary collaboration
is fostered.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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