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Alzheimer’s disease (AD) is the most common cause of dementia. A

genome-wide association study has shown that several AD risk genes are

involved in lipid metabolism. Additionally, epidemiological studies have

indicated that the levels of several lipid species are altered in the AD brain.

Therefore, lipid metabolism is likely changed in the AD brain, and these

alterations might be associated with an exacerbation of AD pathology. Oli-

godendrocytes are glial cells that produce the myelin sheath, which is a

lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to

white matter abnormalities observed in the AD brain. Here, we review the

lipid composition and metabolism in the brain and myelin and the associa-

tion between lipidic alterations and AD pathology. We also present the

abnormalities in oligodendrocyte lineage cells and white matter observed in

AD. Additionally, we discuss metabolic disorders, including obesity, as AD

risk factors and the effects of obesity and dietary intake of lipids on the

brain.

Alzheimer’s disease (AD) is the most common cause

of dementia. Depositions of amyloid b peptide (Ab)
and hyperphosphorylated tau protein form senile

plaques and neurofibrillary tangles (NFTs), respec-

tively, and induce neurodegeneration in the AD brain.

Many risk factors for AD have been identified by
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genome-wide association studies (GWAS). Several AD

risk genes have a role in lipid metabolism. Addition-

ally, epidemiological studies have shown that the levels

of some lipid species are altered in the AD brain, sug-

gesting that altered lipid metabolism exacerbates AD

pathology. Thus, several studies have recently focused

on lipid metabolism in the brain of patients with AD.

Glial cells, such as microglia, astrocytes, and oligo-

dendrocytes, play important roles in the pathological

mechanisms underlying neurodegenerative diseases,

including AD. Although the number of glial cells is

ten times greater than that of neuronal cells, glial cells

have been regarded as supporting cells for neurons for

a long time. Microglia are among the most studied

glial cells, and their neuroinflammatory functions have

been widely assessed in various neurodegenerative dis-

eases. On the contrary, the role of oligodendrocytes in

those diseases has not been fully clarified. Oligoden-

drocytes produce the myelin sheath, a lipid-rich insula-

tor of neuronal axons, and are the main constituents

of white matter. Dysfunctions of myelin are related to

white matter abnormalities, which have been observed

in the brain of patients with AD.

In the present review, we summarize the current

knowledge on lipid composition and metabolism in the

brain and the myelin. We also review the association

between lipid alterations and AD pathology. Addition-

ally, we present the abnormalities in oligodendrocyte

lineage cells and white matter found in the AD brain.

Because metabolic disorders, including obesity, are

known risk factors for AD, we discuss the effects of

obesity and dietary intake of lipids on the brain.

Lipids and these abbreviations mainly described in this

review are summarized in the table (Tables 1–4).

Lipid composition of the brain

The brain is the second most lipid-rich organ after adi-

pose tissue, and at least 50% of the brain dry weight

composition is lipids [1]. Lipids in the brain comprise

50% phospholipids, below 40% glycolipids, 10% cho-

lesterol, cholesterol ester (CE), and traces of triacylgly-

cerol [2] (Fig. 1A).

Fatty acids

The synthesis of phospholipids and glycolipids needs

fatty acids (FAs) (Table 1). The brain produces

mostly saturated FAs (SFAs), but it also synthesizes

low amounts of polyunsaturated FAs (PUFAs).

Thus, most PUFAs in the brain are supplied from

peripheral blood by passive diffusion or by mecha-

nisms mediated by adenosine triphosphate-dependent

transporter proteins [1,3,4]. However, the transcrip-

tional machinery for PUFA biosynthesis and long-

chain PUFA (LCPUFA)-containing phospholipid

Table 1. Fatty acids (FAs) and these abbreviations described in this review.

Long-chain FAs (LCFAs): C11–20 Very long-chain FAs (VLCFAs): C > 20

Saturated FAs (SFAs)

Palmitic acid (C16:0)

Stearic acid (C18:0)

Monounsaturated FAs (MUFAs)

Palmitoleic acid (C16:1)

Oleic acid (C18:1)

Polyunsaturated FAs (PUFAs)

ω-6 PUFAs

Linoleic acid (C18:2)

Arachidonic acid (AA) (C20:4)

ω-3 PUFAs

α-linolenic acid (C18:3) Docosahexaenoic acid (DHA) (C22:6)

Eicosapentaenoic acid (EPA) (C20:5)
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remodeling is present in the cerebral cortex and is

stimulated by dietary intake (low supply of precur-

sors) or hormones (high external demands during

pregnancy) [5]. LCPUFAs are the source of eicosa-

noids and docosanoids, which mediate neuroprotec-

tive and anti-inflammatory functions [6]. PUFAs,

including docosahexaenoic acid (DHA), modulate

synaptic plasticity and neurotransmission [1,7]. More-

over, FAs have important roles as energy substrates

and bioactive molecules. FA oxidation (b-oxidation)
accounts for approximately 20% of the total energy

requirements in the brain [8].

Table 3. Sphingolipids and these abbreviations described in this review.

Sphingosine

↑

Sphingomyelin (SM) ← Ceramide → Glucosylceramide →Gangliosides

↓ Globosides

Galactosylceramide

↓

Sulfatides

Table 2. Glycerophospholipids and these abbreviations described in this review.

Table 4. Sterols and glycerolipids and these abbreviations described in this review.

Sterols

Cholesterol

Cholesterol esters (CEs)

Oxysterols 24-S-hydroxycholesterol (24-OHC)

25-hydroxycholesterol (25-OHC)

27-hydroxycholesterol (27-OHC)

Glycerolipids

Triacylglycerols (TAGs)

Diacylglycerols (DAGs)

Monoacylglycerols (MAGs)
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Glycerophospholipids

Glycerophospholipids are the main species of phos-

pholipids (Table 2). As in other tissues, phosphatidyl-

cholines (PCs) and phosphatidylethanolamines (PEs)

are the main components of cellular membranes, and

anchor membrane proteins in the brain [1,9,10]. PCs

and PEs participate in determining the stability, per-

meability, and fluidity of neural membranes, and alter-

ations of PC and PE compositions lead to neurological

diseases [11]. Additionally, the degradation of glycero-

phospholipids produces second messengers such as

LCPUFAs [11,12].

Sphingolipids

Sphingolipids (sphingophospholipid and sphingoglyco-

lipid) are also components of cellular membranes, and

are involved in neurogenesis and synaptogenesis

[13,14] (Table 3). Sphingolipids in synaptic membranes

regulate the activity of neurotransmitter receptors [15].

Sphingomyelin (SM), galactosylceramides, and sulfa-

tides are important components of myelin (mentioned

in a later chapter). Gangliosides exist in the central

nervous system (CNS) at high levels and are associated

with cell signaling and neuroprotection [14].

Cholesterol

The brain also contains high levels of cholesterol com-

pared with those in other tissues, and 25% of the

whole-body cholesterol is in the brain [10,16] (Table 4).

Most sterols in peripheral blood cannot cross the

blood–brain barrier (BBB); therefore, they are synthe-

sized in the CNS. The rate of sterol exchange between

the brain and peripheral tissues per day is estimated to

be lower than 1% [1,4]. Cholesterol is synthesized pre-

dominantly in astrocytes and transferred to neurons

through lipoproteins containing apolipoprotein E

(APOE). In the brain, cholesterol mainly exists in

Fig. 1. Lipid composition of the brain and alterations in lipid levels in the AD brain. (A) Lipid composition of the brain. The brain is a lipid-rich

organ, and at least 50% of the brain dry weight is lipids. In the brain, lipids comprise 50% phospholipids, below 40% glycolipids, 10% cho-

lesterol and CEs, and traces of triacylglycerol. The figure was created based on reference [2]. (B) Levels of several lipid species are altered

in the brain of patients with AD.
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myelin sheaths, and most of the cholesterol is in an

unesterified form, whereas CE accounts for only 1%

of the cholesterol stored in lipid droplets (LDs) [17].

Cholesterol is converted into the oxysterol 24-S-

hydroxycholesterol (24-OHC), the main free choles-

terol species in the brain, by cytochrome P450 family

46 subfamily A member 1 (CYP46A1). CYP46A1 is

highly expressed in neurons including pyramidal cells

of the cerebral cortex and Purkinje cells of the cerebel-

lum [18–20]. Around 80% of the whole-body 24-OHC

is distributed and produced in the brain [21,22]. 24-

OHC can cross the BBB and is released into the

bloodstream, thus preserving cholesterol homeostasis

in the CNS [16]. Cholesterol in the brain also

converted into 27-OHC by CYP27A1, and then into

7a-hydroxy-3-oxo-4-cholestenoic acid by CYP7B1.

CYP27A1 is ubiquitously expressed, but is expressed

in neurons, astrocytes, and oligodendrocytes at the low

level [19–21,23]. 27-OHC is a major cholesterol metab-

olite in periphery. Therefore, 24-OHC is exported from

the brain into the periphery, while 27-OHC enters into

the brain [24]. The 27-OHC:24-OHC ratio is 1 : 8 in

the frontal cortex, 1 : 5 in the occipital cortex, and

1 : 10 in the basal ganglia [25]. 25-OHC, another oxy-

sterol produced by cholesterol-25 hydroxylase

(CH25H) [26], is enriched in macrophages, dendritic

cells, and microglia [27–29]. The expression of CH25H

is induced by inflammatory response [28,30].

Alterations of lipid levels in the brain
of patients with AD

In the brain of patients with AD, the levels of lipid

species are altered. Most of these changes were

observed at early disease stages and/or in brain regions

initially affected by AD pathology [9] (Fig. 1B).

Fatty acids

The levels of LCPUFAs, particularly in lipid rafts,

were decreased in the brain of patients with AD and

mouse models of AD, which leading to abnormalities

in nerve cell membranes and pro-amyloidogenic pro-

cessing. Such reduction in LCPUFAs is also caused by

aging, but is exacerbated in AD pathology [1,31].

Levels of unsaturated FAs, including those of x-3
PUFAs and monounsaturated FAs (MUFAs; primar-

ily oleic acid), are decreased in the brain of patients

with AD [32,33]. The composition in FAs of lipid rafts

is characterized by low levels of x-3 PUFAs and

MUFAs in the cerebral cortex of patients with AD

[9,34] and in the entorhinal and frontal cortices of

patients with early-stage AD [35]. DHA, a x-3 PUFA,

is the most abundant PUFA in the brain. The levels of

DHA are lower in the AD brain, particularly in vul-

nerable regions such as the hippocampus [36–38].
Moreover, DHA content in the cerebrospinal fluid

(CSF) has been positively correlated with cognitive

performance [39]. The level of arachidonic acid (AA),

a x-6 PUFA, in phospholipids is decreased in the hip-

pocampus of patients with AD [36].

Glycerophospholipids

Levels of glycerophospholipids including PCs [40,41],

phosphatidylinositols (PIs) [42,43], and PEs [40,41], are

decreased in the brain of patients with mild cognitive

impairment (MCI) and AD, particularly in vulnerable

regions such as the hippocampus and cerebral cortex.

The levels of plasmalogen PEs are lower in the white

and gray matters of the AD brain [44].

Sphingolipids

Ceramide is a key molecule for the synthesis, recy-

cling, and degradation of other sphingolipids. Cer-

amide levels are increased in early-stage AD brains,

particularly in the frontal and temporal cortices [45–
47]. SM, galactosylceramides, and sulfatides are

important components of myelin (mentioned in a

later chapter). SM levels are lower in the AD brain,

but this decrease has been observed at a specific dis-

ease stage and in a specific brain region [48–50].
Galactosylceramide levels are also decreased in the

hippocampus at early AD stages, before the appari-

tion of tau pathology [51]. Sulfatides are also derived

from ceramide. Sulfatide levels are lower in both gray

and white matters of the cerebral cortex at the pro-

dromal and early AD stages [47,52]. These decreases

in sphingolipid levels have been involved in myelin

degeneration and loss of white matter integrity in the

AD brain.

Cholesterol

Most studies have suggested that cholesterol levels are

increased in the brain and blood of patients with AD

[25,45,53,54]. Brain cholesterol levels have been posi-

tively correlated with the severity of AD [45], and

higher cholesterol levels were observed in the cores of

senile plaques in the human brain [55]. Moreover, the

levels of total CE are increased by more than 1.8-fold

in the entorhinal cortex of patients with AD and in

AD mouse models [56,57]. However, some studies

reported no change in cholesterol levels in the human

AD brain [58,59]. It was also reported that the levels
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of 24-OHC or 24-OHC/cholesterol were decreased in

the AD brain [20,25,58,60]. In addition, one of these

studies showed an increase in 27-OHC in the AD

brain [25]. On the contrary, the level of 24-OHC was

increased in the postmortem brain of patients with

MCI [58]. The gene expression of CH25H, an enzyme

producing 25-OHC, was increased in the brains of

patients with AD [61] and AD mouse models [62–64].

Triacylglycerols, diacylglycerols, and

monoacylglycerols

The levels of triacylglycerols (TAGs), diacylglycerols

(DAGs), and monoacylglycerols (MAGs) in the brain

of patients with AD have also been investigated

(Table 4). Although TAG levels are not altered in AD

brains, MAG and DAG levels are increased in the

frontal cortex of patients with MCI and AD

[56,65,66].

Lipidome analysis in Alzheimer’s disease mouse

models

Recently, lipidome analyses have been conducted using

human and mouse brains. Lipidome analyses can com-

prehensively identify the alterations in the levels of

tens of thousands of lipids. Several lipidome analyses

revealed that levels of some lipid species are altered in

the brain of AD mouse models. However, these alter-

ations are inconsistent among models and/or disease

stages. In lipidome studies using amyloid precursor

protein (APP)/presenilin-1 (PS1) [67,68], Tg2576 x

JNPL3 [57], and AppNL-G-F mice [69], levels of some

FAs, eicosanoids, glycerophospholipids, sphingolipids,

DAGs, and TAGs were altered in the brain. In the

future, and despite their complexity, the results of

these lipidome analyses will provide important infor-

mation to identify new lipid-linked pathological mech-

anisms involved in AD.

Association between lipid metabolism
in the brain and Alzheimer’s disease
pathology

Alzheimer’s disease risk factors mediating lipid

metabolism

Alzheimer’s disease risk genes have been identified by

GWAS, and some of these genes are involved in lipid

metabolism. The genetic variant of APOE encoded by

the APOE e4 allele is a well-known risk factor for AD

and is associated with changes in cholesterol and

sphingolipid metabolisms [70,71]. APOE is the main

cholesterol carrier and binds to Ab peptides in the

brain to promote Ab clearance [72]. In Apoe knockout

mice, cholesterol biosynthesis is reduced, leading to

low levels of brain cholesterol [73]. Moreover, aging

results in impaired cognitive functions of Apoe knock-

out mice [74]. Triggering receptor expressed on mye-

loid cells 2 (TREM2), apolipoprotein J (APOJ)

(CLU), phosphatidylinositol-binding clathrin assembly

protein (PICALM), ATP-binding cassette subfamily A

member 1 (ABCA1), and ABCA7 are risk genes for

sporadic AD [9]. APOJ (CLU), PICALM, ABCA1,

and ABCA7 mediate lipid transport. TREM2 is

expressed on the surface of microglia and can bind to

Ab, lipids, and lipoproteins. TREM2 has been associ-

ated with the clearance of myelin debris and remyeli-

nation by regulating cholesterol esterification and

metabolism of LDs in microglia [75,76]. Sterol regula-

tory element-binding transcription factor 2 (SREBF2)

is also considered a genetic risk factor for AD [9] and

encodes sterol regulatory element-binding protein 2

(SREBP2), a key regulator of cholesterol metabolism.

Overexpression of SREBP2 in APP/PS1 mice stimu-

lates cholesterol synthesis and induces oxidative dam-

age, amyloid accumulation, neuroinflammation,

cognitive decline, tau hyperphosphorylation, and NFT

formation [77]. Conversely, the genetic ablation of

SREBP2 in astrocytes reduces Ab and tau pathologies

[78].

Fatty acid metabolism in Alzheimer’s disease

brain

Fatty acid metabolism is also altered in the AD brain.

The levels of palmitic acid (C16) are increased and FA

synthase (FAS) protein expression is upregulated in

the brain of APP/PS1 mice [79]. FAS protein levels are

also increased in the cerebral cortex of patients with

AD, especially in regions surrounding amyloid plaques

[79,80]. Additionally, acetyl CoA carboxylase, another

key enzyme of FA synthesis, is activated in the brain

of mouse models of familial AD [81]. Peroxisome

proliferator-activated receptor a (PPARa) is a nuclear

receptor positively related to b-oxidation. The mRNA

levels of PPARa are significantly lower in AD brains

[82]. Although b-oxidation occurs primarily in mito-

chondria, it also takes place in the peroxisomes, specif-

ically for very long-chain fatty acids (VLCFAs, ≧ C20)

[83]. In the brain of patients with advanced AD,

VLCFAs accumulate and the volume of peroxisomes

in the soma of neurons is increased, and a loss of per-

oxisomes in neuronal processes occurs with tau hyper-

phosphorylation [84]. In 3 x Tg mice, LD

accumulation has been observed in ependymal cells in
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the subventricular region, and the proliferation of neu-

ral stem cells is suppressed [85]. Several lipid-sensitive

nuclear receptors such as liver X receptors/retinoid X

receptors (LXR/RXR), PPARc, and PPARa have

been associated with AD pathology and are potential

therapeutic targets [9].

Lipids and amyloid pathology

Several types of lipids have been involved in the for-

mation of Ab depositions. Phospholipid transfer pro-

tein (PLTP) is associated with lipid and lipoprotein

metabolism. PLTP deficiency results in lower levels of

PEs and phosphatidylserines (PSs) in the brain,

increased intracellular accumulation of Ab, and mem-

ory dysfunction in AD [86]. Phospholipase C (PLC) is

an enzyme associated with phospholipid metabolism,

especially hydrolysis of phosphatidylinositol-4,5-

bisphosphate. PLC inhibition decreases the turnover of

phosphatidylinositol-4, 5-bisphosphate, thus reducing

the secretion of Ab42 [87]. Sphingolipid metabolism

has also been associated with the formation of Ab42
oligomers. Accumulation of SM inhibits c-secretase
activity and, consequently, a reduction in Ab secretion

[88,89]. Glycosphingolipids have been linked with the

formation of amyloid fibrils [90]. Glycolipid

monosialo-tetrahexosyl-ganglioside (GM1) binds to

released Ab to form a GM1–Ab complex in the brain

of patients with AD, and the level of GM1–Ab com-

plexes in the CSF is correlated with the levels of Ab
oligomers [91]. Additionally, cholesterol in lipid rafts

contributes to reducing the distance between APP and

beta-secretase 1 (BACE1) before rapid endocytosis

[92,93]. It has also been reported that cholesterol is

involved in the activation of BACE1 and c-secretase
[94]. In addition, brain cholesterol affects tau pathol-

ogy. The increase in tau phosphorylation and aggrega-

tion has been linked with high cholesterol levels in the

brain and with a high dietary intake of cholesterol

[95,96]. 24-OHC is also related to Ab pathology, but

both positive and negative effects were reported. 24-

OHC promotes or suppresses Ab production, which

was presumably dependent on its concentration in the

cells [20]. 27-OHC increases the Ab deposition in the

brain by regulating the production, transportation,

and elimination of Ab [97].

Lipid composition and metabolism of
myelin and oligodendrocytes

Oligodendrocytes are kind of glial cells in the CNS

and play an important role in producing the myelin

sheath. Although most biological membranes contain

the same amounts of proteins and lipids, myelin

sheaths contain high levels of lipids (70–85%) and low

protein levels of proteins (15–30%). The lipid composi-

tion in myeline sheaths is 40% cholesterol, 40% phos-

pholipids, and 20% glycolipids (Fig. 2A). In contrast,

most biological membranes comprise 25% cholesterol,

65% phospholipids, and 10% glycolipids. Cholesterol,

galactosylceramides, and plasmalogens are the major

lipid components of myelin and represent 65% of the

total lipids in myelin [98–101] (Fig. 2B).

Cholesterol

Cholesterol in myelin would be mainly provided by

oligodendrocytes and astrocytes [102–105]. Cholesterol
in membrane bilayers increases myelin viscosity and

stabilizes lipids and proteins [98,106]. Moreover, cho-

lesterol is needed for synthesizing myelin during matu-

ration of the CNS, and its availability is a limiting

factor for the growth of myelin membranes [105].

Galactosylceramide

Galactosylceramides and sulfatides, which are sulfated

forms of galactosylceramides, represent 20% of total

myelin lipids in oligodendrocytes [107]. Galactosylcera-

mides exist preferentially in compact myelin, whereas

sulfatides are mainly found in noncompact myelin

[108]. In myelin membranes, galactosylceramides and

highly hydrophobic proteins form hydrophobic forces,

which are important for myelin formation and stability

[109,110]. However, galactosylceramides are not essen-

tial for myelin formation, and other glycolipids, such

as glucosylceramides, can be produced as partial sub-

stitution [109,111].

Plasmalogen

Ethanolamine plasmalogens are the main phospho-

lipids in myelin [98]. Although their functions have not

been clarified, plasmalogens have been associated with

the compact and stable formation of myelin through

the strengthening of lipid bonds [44,109]. Moreover, it

has also been suggested that plasmalogens protect

myelin against oxidative stress associated with aging

[112].

Fatty acids and myelin

Fatty acids are among the lipids, which, besides choles-

terol, are abundantly required to assemble and maintain

the formation of myelin. Thus, myelinating cells are vul-

nerable to the depletion and dysregulation of FAs and

200 FEBS Open Bio 14 (2024) 194–216 � 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Brain lipid metabolism in Alzheimer’s disease N. Kawade and K. Yamanaka



lipids [113,114]. The most abundant FAs in myelin are

saturated VLCFAs. Myelin comprises a higher percent-

age of VLCFAs than that in other plasma membranes

[113,115]. VLCFAs have over 20 carbons and are syn-

thesized in the endoplasmic reticulum from long-chain

FAs, which have over 16 carbons [115]. Saturated

VLCFAs contribute to insulating axons by decreasing

myelin fluidity and providing a thick permeability bar-

rier for ions. Saturated VLCFAs interact with each

other through their tails (straight structure with no dou-

ble bonds), thus leading to the rigidity of membranes

[113]. It has been reported that a reduction in the levels

of ceramide species with VLCFA residues induces mye-

lin defects in mice [116]. Additionally, the accumulation

of VLCFAs decreases myelin stability and/or synthesis

of plasmalogens, which can also cause demyelination

[117–119]. Another study has shown that the accumula-

tion of VLCFAs in oligodendrocytes contributes to the

loss of peroxisome function, causing demyelination,

axonal degeneration, neuroinflammation, and neurode-

generative phenotypes in mice [118].

Fatty acid synthesis

De novo FA synthesis is important for the formation

and growth of myelin [102,120]. SREBP1 and SREBP

cleavage activating protein (SCAP) regulate the expres-

sion of genes related to FA synthesis. SREBP1 is acti-

vated by the depletion of intracellular cholesterol;

therefore, FA synthesis is associated with cholesterol

synthesis [121]. The expression of FAS, induced by

SREBP1, correlates with myelination in peripheral

nerves during development [122]. It has also been

reported that deficiency of SCAP in Schwann cells

decreases the levels of saturated VLCFAs in mice

[123].

Fig. 2. Lipid composition and functions of myelin and alterations in oligodendrocytes and myelin in the AD brain. (A) Lipid composition of

myelin. The myelin sheath contains high levels of lipids (70–85%) and low protein levels (15–30%). Lipids in the myeline sheath comprise

40% cholesterol, 40% phospholipids, and 20% glycolipids. In contrast, most biological membranes contain the same levels of proteins and

lipids, and the lipid composition is 25% cholesterol, 65% phospholipids, and 10% glycolipids. The figure was created based on reference

[98]. (B) Functions of the main lipid species of myelin. (C) Oligodendrocyte lineage cells and myelin are negatively affected in patients with

AD.
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Fatty acid transport

Fatty acids in myelinating cells are provided by endo-

thelial cells and astrocytes by passive diffusion or by

active transport through FA translocase (CD36) and

FA transport proteins (FATPs) [98,124,125]. However,

the roles of CD36 and FATPs in oligodendrocyte line-

age cells and myelin have not been clarified. FATP1 is

a predominant isoform expressed in the CNS, and

FATP4 is also highly expressed in the brain [126]. FA-

binding proteins (FABPs) are molecular chaperones

for FAs and are involved in FA transport. FABP7

and FABP5 are expressed in oligodendrocytes at dif-

ferent developmental stages. In mice, FABP7 has been

related to the proliferation in oligodendrocytes and

differentiation of immature oligodendrocytes, whereas

FABP5 has been linked to differentiation of oligoden-

drocytes into mature myelinating oligodendrocytes.

However, neither FABP7 nor FABP5 plays important

roles in myelin formation [127].

Fatty acid oxidation

For a long time, it was considered that FA oxidation

for energy requirement does not occur in oligodendro-

cytes because of their high demand in FAs for myeli-

nation but that it is conducted exclusively in astrocytes

[128,129]. However, some reports have suggested that

the energetic profiles of myelinating cells and astro-

cytes are similar [98,130,131]. Although FA oxidation

might occur in oligodendrocyte lineage cells, further

analyses are needed to clarify this hypothesis.

Abnormalities in oligodendrocytes
and myelin in Alzheimer’s disease
brain

Patients with Alzheimer’s disease

Several studies have suggested that abnormalities of

oligodendrocyte lineage cells or myelin occur in the

brain of patients with AD (Fig. 2C). It has been

reported that levels of several proteins linked to the

oligodendrocyte lineage [myelin basic protein (MBP),

myelin proteolipid protein, and cyclic nucleotide

phosphohydrolase (CNPase)] are significantly lower

in the white matter of postmortem AD brains. In

the same study, total protein and cholesterol levels

were also significantly decreased, and the composi-

tion in FAs was altered in the white matter of post-

mortem AD brains. These results indicate that a loss

of myelin occurs in the white matter of the AD

brain [132]. Olig2 is an oligodendrocyte lineage

marker, and the number of Olig2-positive cells is

decreased in the brain of patients with AD [133].

Our group reported that the expression of oligoden-

drocyte lineage genes [MBP, myelin-associated glyco-

protein (MAG), claudin 11 (CLDN11), myelin

oligodendrocyte glycoprotein (MOG), CNP] is

decreased in the precuneus of postmortem AD

brains [134]. In addition, it has been reported that

the nuclear diameter of oligodendrocytes is shorter,

whereas that of neurons is unchanged in the para-

hippocampal white matter of patients with AD [135].

A recent study using single-cell transcriptomic analy-

sis showed that myelination processes were recur-

rently perturbed in oligodendrocytes, oligodendrocyte

precursor cells (OPCs), and other cell types in the

prefrontal cortex of patients with AD [136].

Alzheimer’s disease animal models

Anomalies in oligodendrocyte lineage cells have also

been reported in AD animal models. Mutations of

PS1, a subunit of c-secretase, lead to a vulnerability

of oligodendrocytes against toxicities induced by glu-

tamate and Ab peptides and are accompanied by a

deficit in calcium regulation [137]. A report indicated

that MBP levels and the number of myelinating oli-

godendrocytes are decreased in 3 x Tg AD mice.

Additionally, the number of mature nonmyelinating

cells was increased, whereas the number of immature

oligodendrocytes remained unchanged [138]. It has

also been reported that the number of OPCs was

increased in APP/PS1 mice [133]. Another report

showed that the proliferative rate of OPCs is

increased in APP/PS1 mice. These OPCs differentiate

into mature oligodendrocytes and form myelin

sheaths, despite of decrease in the level of whole mye-

lination [139,140].

A recent study showed that myelin dysfunction in

AD mice caused the accumulation of Ab-producing
machinery within axonal swellings, and increased

cleavage of APP in the cerebral cortex. Moreover, AD

mice lacked microglia around plaques under the dys-

function of myelin, and similar but distinct disease-

associated microglia (DAM) signatures were induced

concomitantly with myelin damage and amyloid pla-

ques. DAM were apparently distracted by adjacent

myelin damage, despite that DAM usually clear amy-

loid plaques [141].

These studies from patients with AD or animal

models of AD suggest that, although detailed

responses to AD pathology remain unclear, oligoden-

drocyte lineage cells and myelin are negatively affected

in AD.
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Disease-associated oligodendrocytes in

Alzheimer’s disease

Disease-associated oligodendrocytes (DAOs) have been

described in neurodegenerative diseases including AD.

In 5xFAD mice, oligodendrocytes increased with brain

pathology were termed DAOs, and expressed SER-

PIN3A/SERPINA3 in the diseased cortical regions

and near Ab plaques. Moreover, SERPIN3A/SER-

PINA3 was also expressed in the human AD brain,

and this level was correlated with cognitive decline

[142]. Another study indicated that three distinct

DAOs were identified in mouse models of AD from

single-cell RNA sequencing: DA1 (associated with

immunogenic genes), DA2 (associated with genes

influencing survival), and IFN (associated with inter-

feron response genes). DA1 and DA2 are established

in the regions outside the demyelinating lesion, and

DA1 repopulated in the regions with remyelination.

However, the signature of oligodendrocyte activation

observed in patients with AD was distinct from those

observed in AD mice [143]. In AppNL-G-F mice, the

activation of DAOs (Mbp+Cd74+ oligodendrocytes)

was associated with the abnormality of Erk1/2 signal-

ing. Inhibition of Erk1/2 signaling in DAOs rescued

impairment of axonal myelination, and decreased Ab
pathologies and cognitive decline [144].

Brain atrophy and white matter
abnormalities in Alzheimer’s disease:
Human studies

Hippocampal atrophy

Hippocampal atrophy is one of the best-known bio-

markers used in clinics for magnetic resonance imag-

ing (MRI). Several MRI studies have indicated that

hippocampal volume is reduced by 10–15% in

patients with an amnestic variant of MCI and by

20–25% in the patients at the clinical AD stage

[145]. Progressive rates of hippocampal atrophy are

4.66% per year for patients with AD and 1.41% per

year for healthy controls [146]. A reduction in hip-

pocampal volume for a long time correlates with

cognitive decline [147,148]. Moreover, the reduction

in hippocampal volume is correlated with the sever-

ity of cognitive impairments and episodic memory

deficits in patients with MCI and AD [149]. On the

contrary, hippocampal atrophy is also observed in

patients with vascular dementia [150,151], semantic

dementia [152], Parkinson’s disease dementia

[151,153], and frontotemporal lobar degeneration

[154]. Moreover, hippocampal volume correlates with

Braak staging and the remaining number of neurons

in dementia and aging [153,155–157].

White matter abnormalities

White matter abnormalities are observed in cerebro-

vascular diseases. However, recently, it has been con-

sidered a hallmark of AD. White matter

hyperintensities (WMH) are signal anomalies visual-

ized by T2-weighted MRI. WMH are especially

observed in deep periventricular white matter, where

the blood perfusion rate is low. The blood flow in the

white matter is reduced by aging and AD, resulting in

hypoxic and ischemic damage and lower vessel densi-

ties [158,159]. Nasrabady and colleagues reported that

WMH predicted the incidence of AD [160–162] and

the degree of cognitive impairment in patients with

AD [163]. They also indicated that WMH were associ-

ated with the APOE4 risk genes in late-onset AD

[164]. Recently, a study from Dominantly Inherited

Alzheimer’s Network (DIAN) showed that WMH vol-

ume is increased in patients with autosomal dominant

and fully penetrant AD mutations, as early as 20 years

before the expected onset of symptoms. In these pre-

clinical patients, WMH severity correlates with Ab1–
42 levels in CSF [165]. Notably, the association

between WMH severity and amyloid levels in CSF was

independent of vascular risk factors [166]. Addition-

ally, an increase in tau levels in CSF is predicted by

WMH severity in patients with MCI [167,168]. On the

contrary, vascular and BBB impairments, small hemor-

rhagic lesions, and iron accumulation have been

observed in the brain of patients with preclinical AD

[169]. However, neuroimaging studies have shown that

white matter networks are already defective at the pre-

clinical AD stage in the absence of neurodegenerative

changes, cortical atrophy, or cortical glucose reduction

[170]. Studies in AD animal models also suggest that

white matter defects are observed before the appear-

ance of cortical amyloid plaques and tangles [138,171].

McAleese and colleagues evaluated the effect of neuro-

degeneration on white matter abnormalities in the

parietal and frontal cortex of AD brains. In the parie-

tal cortex, WMH pathogenesis associated with AD

was linked to Wallerian-like degeneration caused by

AD pathology, whereas WMH occurring without AD

were related to vasculopathy and ischemia. In contrast,

in the frontal cortex, WMH pathogenesis associated

with AD was related to both degenerative and vasculo-

pathy mechanisms [172,173]. It has been speculated

that neurodegeneration in AD induces white matter

abnormalities in specific regions of the brain.
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White matter abnormalities and myelin

Myeline sheaths are abundant in the white matter.

WMH have been histopathologically associated with

myelin pallor, loss of myelin, and loss of myelinated

axons, which are accompanied by changes in the arterial

adventitia in deep white matter [174–176]. A loss of mye-

lin was observed in the AD brains, particularly in the

forebrain, entorhinal cortex, hippocampus, and amyg-

dala (regions myelinated later during normal develop-

ment of the CNS). The loss of myelin in these regions

was significantly greater than that in the spinal cord and

brain stem (regions myelinated earlier during normal

development of the CNS) [177–181]. It is suggested that

a loss of myelin participates in white matter abnormali-

ties, which may exacerbate brain atrophy in AD.

Association between obesity and
Alzheimer’s disease

Obesity is a known risk factor for AD. Several epidemi-

ological studies have indicated that the risk of develop-

ing dementia is increased by obesity in midlife (age in

50s and 60s). Some of these reports showed an increased

risk of AD in obese humans, particularly in women

[182–186]. A study focusing on the alteration of lipid

compositions in the brain of obese APP23 mice fed a

high-fat diet (HFD) was conducted using lipidome anal-

ysis. Although the total amount of phospholipids was

not changed, the levels of 24 lipid species were signifi-

cantly altered by the HFD. Particularly, the analysis of

network visualization of correlated lipids revealed that

HFD induced an overall imbalance, with the most

remarkable effect being on cardiolipin molecular sub-

species [187]. On the contrary, epidemiological studies

indicated that obesity in late life (≧ 60 years old) was

not associated with a higher risk for earlier onset of AD

[182,188]. In addition, obese humans often have other

metabolic disorders, such as type 2 diabetes, hypercho-

lesterolemia, and hypertension, which can induce car-

diovascular diseases and have been associated with

dementia and AD [9].

Impacts of obesity on brain functions in rodents

fed a high-fat diet

The impacts of obesity on brain functions are widely

studied using rodents fed an HFD [189]. In mice,

HFD increases the levels of Ab in the hippocampus

and induces amyloid depositions in the brain [190,191].

Furthermore, several studies using mice and rats

showed that neuroinflammation was induced by HFD.

HFD increases the expression levels of nuclear

factor-jB, interleukin-1b, and toll-like receptor 4, and

densities of astrocytes and microglia in the brain [191–
193]. Neuroinflammation induced by HFD has been

related to BBB leakage [189,194,195]. In addition, sev-

eral studies have indicated that rodents fed HFD

exhibited impaired working [196], spatial [197], sus-

tained recognition [193], long-term [198], and episodic

[199] memories. These memory impairments induced

by HFD have been associated with synaptic dysfunc-

tions and neuronal death, synaptic degeneration in the

hippocampus and cerebral cortex [200], an increase in

apoptotic signals in the hippocampus [191], and a

decrease in acetylcholinesterase activity in various

regions including the prefrontal cortex [201]. On the

contrary, in APP23-ob/ob mice, the AD mouse model

crossed with the obese mice by overeating of a normal

diet, Ab burden was not increased, and the expression

of microglial markers were down-regulated in the

brain. However, learning and memory deficit were

exacerbated in these mice [202,203]. Further analyses

are needed to clarify the association between obesity

and the AD pathologies.

Obesity and brain atrophy in humans

Obesity has been associated with brain atrophy [204].

Studies using diffusion-weighted imaging (diffusion

MRI) have indicated that obesity measures are nega-

tively correlated with fiber connectivity [205–210].
White matter structure in the corpus callosum (genu,

trunk, and splenium), cerebellar peduncle, corona

radiata [209,210], fornix [210], and uncinate fasciculus

[206] is altered in obese older adults. White matter vol-

ume in obese humans has also been related to a

greater degree of atrophy, which is maximal in middle

age (approximately 40 years old) and corresponds to

an estimated increase in brain age by 10 years [211].

On the contrary, other studies have not found any

association between obesity and white matter integrity

or positive interaction between body mass index and

white matter integrity and volume [212–214]. In addi-

tion, the reduction in lean body mass in patients with

early-stage AD has been related to brain atrophy and

lower cognitive performance, when controlling for age

and sex [215]. Thus, although obesity seems to be asso-

ciated with brain atrophy and white matter integrity,

more analyses are required.

Effects of dietary intake of specific
lipid species on Alzheimer’s disease

Regardless of obesity, dietary intake of several lipid

species and internal lipid conditions may affect AD
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pathology. Epidemiological studies have indicated that

AD risk is decreased by high dietary intake of x-3
PUFAs [especially DHA and eicosapentaenoic acid

(EPA)] and is increased by low intake of these x-3
PUFAs [216,217]. Omega-3 PUFAs are involved in

inflammation response against Ab [218] and activate

RXR and PPARs, which directly affect Ab metabo-

lism [219–221]. DHA and EPA contribute to reducing

Ab levels by lowering the activity of b- and c-
secretases and by stimulating insulin-degrading

enzyme, which degrades Ab [222,223]. On the con-

trary, randomized clinical trials showed that dietary

supplementation with DHA did not delay cognitive

decline in patients with mild-to-moderate AD. Sub-

group analysis in these trials showed a positive effect

of DHA in ApoE4 noncarrier patients with very mild

AD [224]. The effect of a ketogenic diet (comprising

high levels of saturated fats and low amounts of car-

bohydrates) has also been assessed in patients with

AD and animal models of AD. Ketogenic diet reduces

Ab pathology and improves metabolic and cognitive

functions in both aging and AD animal models

[225,226]. Although ketogenic interventions were effec-

tive in early-phase clinical trials, further studies show-

ing long-term effects on AD are required [9,227–230].

Diets with specific FA composition have been linked

to the development or maintenance of myelin. Diets

excluding essential FAs lead to alterations in FA com-

position of myelin and cause myelin splitting, but do

not significantly affect myelination [231]. A ketogenic

diet has been reported to reduce axonal degeneration

and improve motor functions in a mouse model of

Pelizaeus–Merzbacher disease [232].

Conclusions and perspectives

The lipid composition of the brain is altered in AD,

and several lipid species may affect the functions of

oligodendrocytes and myelin. Therefore, lipid

metabolism is likely altered in the AD brain, partic-

ularly in myelin or oligodendrocyte lineage cells,

which are vulnerable to lipidic changes. In addition,

several studies have shown white matter abnormali-

ties and oligodendrocyte dysfunctions in AD brains.

Further analyses are required to define the associa-

tion between the alteration of brain lipid metabo-

lism and dysfunction of oligodendrocytes and white

matter abnormalities in the AD brain. Moreover,

obesity is a risk factor for AD, and several studies

have shown a link between obesity and brain

Fig. 3. Hypothetical mechanism showing that alterations in lipid metabolism in the brain exacerbate AD pathology by inducing

oligodendrocyte abnormalities. Lipid metabolism may be altered in the AD brain, particularly in myelin or oligodendrocyte lineage cells,

which may cause white matter abnormalities and/or atrophy leading to cognitive impairment. Moreover, obesity and diets containing specific

lipids might exacerbate or improve AD pathology.
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atrophy. Dietary intake of specific lipids may

improve AD pathology. In the future, the contribu-

tion of peripheral dietary intake to AD pathology

needs to be clarified (Fig. 3).
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