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Torpor or heterothermy is an energy-saving mechanism used by endo-

therms to overcome harsh environmental conditions. During winter, the

garden dormouse (Eliomys quercinus) hibernates with multiday torpor

bouts and body temperatures of a few degrees Celsius, interrupted by brief

euthermic phases. This study investigates gene expression within the hypo-

thalamus, the key brain area controlling energy balance, adding informa-

tion on differential gene expression potentially relevant to orchestrate

torpor. A de novo assembled transcriptome of the hypothalamus was gener-

ated from garden dormice hibernating under constant darkness without

food and water at 5 °C. Samples were collected during early torpor, late

torpor, and interbout arousal. During early torpor, 765 genes were differ-

entially expressed as compared with interbout arousal. Twenty-seven path-

ways were over-represented, including pathways related to hemostasis,

extracellular matrix organization, and signaling of small molecules. Only

82 genes were found to be differentially expressed between early and late

torpor, and no pathways were over-represented. During late torpor, 924

genes were differentially expressed relative to interbout arousal. Despite the

high number of differentially expressed genes, only 10 pathways were over-

represented. Of these, eight were also observed to be over-represented when

comparing early torpor and interbout arousal. Our results are largely con-

sistent with previous findings in other heterotherms. The addition of a

transcriptome of a novel species may help to identify species-specific and

overarching torpor mechanisms through future species comparisons.

Torpor is the overarching term for metabolic down-

state that can be used by endotherms to overcome

energetic bottlenecks during harsh environmental con-

ditions [1–3]. Different forms of torpor exist, ranging

from obligate deep hibernation with drastic reduction

of metabolic rate, down to 5% of basal, and core body

temperature (Tb), reaching single-digit values for sev-

eral days or weeks, to more flexible strategies such as

spontaneous daily torpor with less severe reductions of

metabolic rate and Tb for only a few hours [1]. Hetero-

therms adapt physiology, morphology, and behavior,

such as body fat mass, development of a more insulat-

ing winter fur, nest building, and reproduction prior to

the torpor season [4–10].
During torpor, metabolism and hence all vital func-

tions, such as breathing and heart rate, are drastically

Abbreviations

DEG, differentially expressed genes; ET, early torpor; IBA, interbout arousal; log2(FC), logarithm of fold change to the base 2; LT, late torpor;

Padj, adjusted P-value; Tb, core body temperature.
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reduced [11,12]. As a consequence, Tb can drop close

to ambient temperature, while some species even hiber-

nate with Tb values below zero [2,13]. In rhythmic

intervals of days and weeks, hibernating rodents

express a so-called interbout arousal, during which

eumetabolism and euthermic values around 37 °C are

reached and maintained for a few hours, until the next

multiday torpor bout is initiated [14,15]. Most hiberna-

tors such as marmots or dormice exclusively survive

the hibernation period on fat reserves, hence overcome

a period of long-term fasting [4], whereas others, such

as European hamsters (Cricetus cricetus), store food in

their hibernaculum [16].

The garden dormouse (Eliomys quercinus, Gliridae,

Linnaeus 1766) of the European woodlands is a seasonal

hibernator that can use torpor when ambient temperature

and food availability are low [17,18]. In preparation for

winter, the animals increase their fat stores, remodel their

membranes notably in terms of fatty acid composition,

group themselves to save energy, and prepare their hiber-

nacula for entering prolonged hibernating bouts during

the winter [4,19,20]. In autumn, they retreat to their hiber-

nacula until the next spring. During the hibernation

period, they show torpor episodes of up to 14 days with

Tb close to ambient temperature that are interrupted by

brief interbout arousals of eumetabolism which is main-

tained and reversed within few hours [16,21]. The hiberna-

tion period can expand up to 6 months, the frequency of

interbout arousals is highest in early and late winter,

hence, longest torpor bouts are expressed in mid-winter

[17,22]. In an interplay with this circannual variation with

seasons, the ambient temperature fluctuations, age, size,

food availability as well as dietary lipid composition influ-

ence hibernating patterns [17,19,21–24]. Torpor behavior
of the garden dormouse is maintained when the animals

are transferred to the laboratory in fall and kept at con-

stant darkness without food and water at 4 °C ambient

temperature. At the beginning of a torpor episode, meta-

bolic rate is decreased. In consequence, Tb drops until it

reaches its lowest values of 5 °C. The relationship

between oxygen consumption and Tb has been described

in detail [14], so that Tb can be used to determine meta-

bolic state [25].

The hypothalamus, a central area within the brain, is

key in orchestrating metabolic and physiological changes

occurring during torpor. This brain part of the diencepha-

lon controls homeostasis of vital functions such as food

intake and metabolism, Tb, blood pressure and reproduc-

tion during both, in the short-term as well as in the long-

term hence, over seasons [26]. There is evidence that both,

systemic prerequisites to express a metabolic downstate as

well as orchestration of metabolic downstate itself are pri-

marily controlled by the hypothalamus [27].

Gene expression profiling studies including the

hypothalamus have been done to unravel mechanisms

of torpor prerequisites and acute torpor control in dif-

ferent species, including the Djungarian hamster

(Phodopus sungorus), the European hamster (C. cricetus),

the 13 lined ground squirrel (Ictidomys tridecemlinea-

tus), the golden-mantled ground squirrel (Spermophilus

lateralis), and the South American marsupial (Dromi-

ciops gliroides) [28–34]. However, high-throughput

sequencing of the hypothalamus to unravel regulatory

mechanisms of metabolic downstates has so far only

been done in two species, one obligate hibernator

(I. tridecemlineatus) and one daily heterotherm

(P. sungorus) [28,29,31]. It is unclear whether different

torpor forms are based on similar, species overarching

mechanisms and are regulated by similar genes [3,35–
37]. Next-generation sequencing data have the poten-

tial to further clarify this question once a sufficient

number of transcriptome data are available from dif-

ferent species.

In this first comparative transcriptomic study in the

garden dormouse, we aimed to characterize differential

gene expression within the hypothalamus driven by

metabolic state and time spent in torpor. We provide

transcriptome data of a novel species to the available

data pool, contributing to the puzzle of processes

involved in torpor control and providing a valuable

source for future comparative approaches, that will be

necessary to unravel universal from species specific tor-

por mechanisms.

Materials and methods

Breeding and housing

The garden dormice were issued in 2013 from the outdoors

breeding colony at the Research Institute of Wildlife Ecol-

ogy (University of Veterinary Medicine, Vienna, Austria;

latitude 48°150N, longitude 16°220E). Offspring were kept

in same-sex groups in large outdoor enclosures with natural

ambient temperature and natural photoperiod. Dormice of

this experiment were single-housed indoors at the age

of 1.5–2.5 years, during fall at 20 °C ambient temperature

in natural photoperiod with food and water ad libitum

in 60 9 40 9 40 cm cages equipped with bedding and nest-

ing material and branches with leaves, and during winter at

5 °C Ta in constant darkness without food and water in

36 9 20 9 14 cm cages with a customized nest.

Ethics statement

All procedures regarding dormice experiments were

approved by the Ethics and Animal Welfare Committee of
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the University of Veterinary Medicine, Vienna, in accor-

dance with the University’s guidelines for Good Scientific

Practice and authorized by the Austrian Federal Ministry

of Education, Science and Research (ref BMWF – 68.205/

0137-WF/V/3b/2014) in accordance with current legislation.

Radiotelemetry

The current metabolic state of each dormouse was assessed

with the Tb provided in real-time by a radiotelemetry system

(DSI – Data Sciences International, Harvard Bioscience

Inc., St. Paul, MN, USA). As software, DATAQUEST
TM

LABPRO

(Data Sciences International, Harvard Bioscience Inc.) was

used to monitor Tb in a resolution of 5 min. A receiver

board (RPC-1) was positioned under every individual home

cage. The transmitter model was TA-10TA-F10, with a vol-

ume of 1.1 cc, a weight of 1.6 g and an accuracy of 0.15 °C,
silicone-coated and manually calibrated from 0 to 40 °C in a

water bath. A transmitter was implanted intraperitoneally

under anesthesia and analgesia. Anesthesia was induced by

subcutaneous injection of 50 mg�kg�1 ketamine (Ketamidor

10%; Richter Pharma, Wels, Austria) and 5 mg�kg�1 xyla-

zine (Rompun 2%; Bayer, Leverkusen, Germany), and

maintained with 1.5% isoflurane via an oxygen stream

through a facemask. The implantation of a transmitter into

the peritoneal cavity was performed routinely in garden dor-

mice [17,19,38] as previously described [39]. For

postoperative analgesia, 5 mg�kg�1 ketoprofen (Romefen

10% Merial S.A.S., Toulouse, France) was administered

subcutaneously. The dormice were implanted during the pre-

hibernation phase.

Sampling scheme

Hibernation was induced by removing food and water and

housing animals at 5 °C in cooling units. Sacrifices

occurred after several weeks of hibernation in mid-winter

when torpor bout duration is maximal. The points of sacri-

fice are shown in Fig. 1. Twelve dormice (six females, six

males; 89.8 � 10.8 g body mass) were sacrificed in 2015 in

their second or third winter by immediate decapitation

in early torpor (ET, Tb = 5 °C for 36 h, n = 4, one female,

three males), late torpor (LT, Tb = 5 °C for 230 h, n = 4,

two females, two males) and, after loss of consciousness

when exposed to carbon dioxide followed by immediate

decapitation, in interbout arousal (IBA, Tb = 37 °C for

4 h, n = 4, three females, one male). Implanted transmitters

revealed a Tb of 4.9 � 0.5 °C in torpid (n = 7) and

36.8 � 0.4 °C in euthermic animals (n = 4) at an ambient

temperature of 5 °C. Bioinformatic scripts are openly avail-

able in the Open Access Repositorium of Ulm University

OPARU [40]. Table S1 contains background information

for each animal. The animals of this study were included in

a large project with the aim to characterize adaptations of

Fig. 1. Sampling scheme. Core body temperature (Tb) of one dormouse over the course of 2 weeks during hibernation in constant darkness

without food or water at 5 °C ambient temperature. Animals were sacrificed in early torpor (ET, 1 or 2 days in torpor, n = 4), late torpor (LT,

9 or 10 days in torpor, n = 3), or interbout arousal (IBA, 2 of 4 h in interbout arousal, n = 4). Radiotelemetry data were used previously

[19,39]. Transcriptome data of sampling groups were compared pairwise (arrows; ET vs LT, ET vs IBA, LT vs IBA).
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the immune system during hibernation [39]. Immediately

after decapitation of the animals, brains were removed

carefully and directly flash-frozen and then stored at

�80 °C until further analyses.

Lab work

Hypothalamic blocks were cut from frozen brains at

�20 °C. Brains were placed on the dorsal side and the

hypothalamus was dissected between the optic chiasm as

rostral, mammillary bodies as caudal and hypothalamic

sulci as lateral borders. The anterior commissure was used

as dorsal border. Hypothalamic blocks were stored again at

�80, before being processed together for sequencing. Sam-

ples were homogenized in 3 mL TriFast by using a micro-

pestle. Total RNA was isolated using peqGOLD TrifastTM

(Peqlab, Erlangen, Germany) and purified using the Crystal

RNA MiniKit (Biolabproducts, Bebensee, Germany)

including an on-column digestion with RNase-free DNase

(Qiagen, Hilden, Germany). RNA purity was assessed by

the 260/280 nm ratio on a NanoDrop 1000 spectrophotom-

eter. RNA integrity was proven by formaldehyde agarose

gel electrophoresis. The quantity was between 1.0 and

1.4 lg (1.2 � 0.1 lg) and the concentration was between

210 and 667 ng�lL�1 (446 � 143 ng�lL�1). The RIN var-

ied between 6.2 and 7.3 (6.6 � 0.4). mRNA-Seq was con-

ducted in 2017 on an Illumina NextSeq 500 (paired end, 4

lanes) by StarSEQ GmbH, Mainz, Germany. The raw Illu-

mina data that support the findings of this study are openly

available in NCBI’s Sequence Read Archive SRA and are

accessible through https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE207494, GEO Series accession number

GSE207494 [41].

Data processing

The bioinformatics pipeline used in this study is based on

the pipeline developed in Haugg et al. [29]. Bioinformatic

analyses were performed on the bwForCluster NEMO of

the Baden-W€urttemberg High Performance Computing

(bwHPC) project. The quality of raw RNA-Seq data was

evaluated using FASTQC 0.11.9f (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and no QC issues were

detected. All reads have a sequence length of 151 base

pairs. The GC content was 48–49% for all sequencing runs.

The number of read pairs per sample ranged from 26 Mio.

to 38 Mio. with a mean of 33 Mio. Table S2 contains the

number of read pairs per sample [40]. TRIM-GALORE 0.6.6

(https://github.com/FelixKrueger/TrimGalore) was used to

trim remaining adapter sequences from the raw data. A

de novo transcriptome assembly was prepared using TRINITY

2.8.5 [42,43] using data from all 12 dormice (395 143 505

read pairs in total). BLASTX 2.5.0+ (https://www.ncbi.nlm.

nih.gov/books/NBK279688/) with an e-value cut-off < 1E-5

was used to map the transcripts against the reference prote-

ome of Mus musculus (GRCm39, Annotation Release 109)

[44–46]. Using “extract_hits_from_fasta.rb”, a reduced

assembly containing only transcripts with a hit against a

mouse protein was generated. Using “hits_to_genemap.rb”,

a transcript-to-GeneID dictionary was generated based on

the best hit to the mouse proteome. Both ruby-scripts are

publicly available in SourceForge at https://sourceforge.net/

projects/prepare-transcript-to-gene-map/. BOWTIE 1.3.0 was

used to map back the reads from each sample to the

reduced assembly [47]. RSEM 1.3.1 was used to calculate

non-normalized differential gene expression per sample

[48]. Both the original and the processed de novo assembly

as well as the non-normalized gene expression tables are

openly available in NCBI’s Gene Expression Omnibus and

are accessible through https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE207494, GEO Series accession num-

ber GSE207494 [41]. The bioinformatics pipeline from raw

Illumina data to non-normalized results is openly available

as bash commands in (OPARU) [40].

Identification of hypothalamus-specific genes

To verify that the dissections did indeed yield hypothalamic

tissue, normalized mouse expression data were downloaded

from the Human Protein Atlas (https://www.proteinatlas.

org/about/download) for 13 brain regions. From this data,

nine hypothalamus-specific genes that have an expression

> 10 TPM in the mouse hypothalamus and at least four-

fold higher mRNA levels in hypothalamus compared to all

other regions were selected. The expression levels of these

genes were then compared between the mouse hypothala-

mus and the dormouse samples. Scripts are available in

(OPARU) [40].

Differential gene expression analysis

The calculated transcript expression values were aggregated

at gene-level using the mouse GeneIDs that were assigned

using blastx. Each GeneID includes all isoforms, precursors,

and preproproteins of that gene. Only genes with a mean

total read count of at least 10 in at least one of the three

experimental groups were reported. The pairwise compari-

son of the normalized counts per group resulted in the gene’s

fold change, provided as log2(FC), and the significance of

this fold change (adjusted P-value, Padj). Genes with a

Padj < 0.05 were defined as differentially expressed (DEGs).

Fold changes are given for the first named group relative to

the second named group. One animal (LT01, female, termi-

nal Tb: 4.09 °C) was excluded from the analyses because it

had an undetectable RIN (Table S3) [40].

Statistical analyses including the principal component

analyses and the hierarchical clustering were performed

with DESEQ2 [49]. Data were normalized across all samples.
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In this study, three pairwise group comparisons were con-

ducted: ET (n = 4) vs IBA (n = 4), ET (n = 4) vs LT

(n = 3), and LT (n = 3) vs IBA (n = 4). Sex was included

as a covariate in the statistical model for all analyses of dif-

ferential expression. The statistical pipeline comprising nor-

malization of data across all samples, pairwise group

comparison, principal component analysis, and heatmap

with hierarchical clustering is available in (OPARU) [40].

Data were processed using Microsoft Excel. Figures were

generated with Microsoft Excel (Office 365, 2016), except

Fig. 3, hierarchical clustering, which was generated using

RSTUDIO 3.5.2 (https://www.r-project.org/, http://www.

rstudio.com/).

To identify overrepresented reactome pathways (Reac-

tome version 77, released 2021-10-01), GO overrepresenta-

tion analyses (PANTHER Overrepresentation Test,

released 2022-10-13) were performed at http://pantherdb.

org/tools/compareToRefList.jsp with Fisher’s Exact as test

type and False Discovery Rate (FDR) correction [50–52].
For each pairwise group comparison, DEGs that were

increased (Padj < 0.05 and log2(FC) > 1) and decreased

(Padj < 0.05 and log2(FC) < 1) were tested separately. This

approach has previously been shown to increase the statisti-

cal power as compared to using all DEGs in the same

enrichment analyses due to imbalances between increased

and decreased DEGs in particular pathways [53]. All pre-

sent genes (any Padj-value, any log2(FC)-value) served as

background. Hierarchical ranking of overrepresented path-

ways was based on https://reactome.org/ [54].

The data were screened for genes involved in hypotha-

lamic systems with potential roles in torpor control. A list

of 68 previously defined genes referred to as “indicator

genes” was used [29].

Results

De novo assembly of transcriptomes and

mapping

On average, 32 928 625 read pairs per sample were

sequenced. In total, 395 143 505 read pairs from all

samples were pooled to generate a single de novo tran-

scriptome assembly of the garden dormouse hypo-

thalamus comprising 1 382 822 transcripts. Values per

sample are listed in Table S2.

Using a BLASTX search against the mouse proteome,

16 798 distinct protein coding genes were identified in

the assembly corresponding to 73% of the entire gene

repertoire of the mouse (22 177 protein-coding genes).

The mean bit-score was 484.3 with 90% of all tran-

scripts falling in the range of 49.3–1678. In total,

164 435 transcripts (median length 1515 bp) were suc-

cessfully annotated using this approach (the median

length of transcripts without a significant blast hit was

374 bp) (Fig. S1, scripts (OPARU)). Nine genes were

identified to be highly specific for the hypothalamus in

mice. The expression of these genes is similar or signif-

icantly higher in all dormouse samples compared to

the mouse hypothalamus confirming the specificity of

the dissection (Fig. S2, scripts (OPARU)).

Differential gene expression

The principal component analysis shows distinct clus-

tering of the experimental groups. Samples taken dur-

ing early torpor clustered in a tight area. Samples

taken during late torpor clustered nearby, spanning a

wider value range in the second dimension. The cluster

of samples taken during interbout arousal substantially

differed in the first dimension from samples gained in

both early and late torpor, but not in the second

dimension (Fig. 2).

A hierarchical clustering for all 1351 genes that were

differentially expressed in at least one pairwise group

comparison recovered the three sampling groups early

torpor (ET), late torpor (LT), and interbout arousal

(IBA) as distinct clusters irrespective of sex (Fig. 3).

While 392, 24 and 516 genes were exclusively differen-

tially expressed in ET vs IBA, ET vs LT, and LT vs

IBA, respectively, 419 genes showed differential

expression in more than one pairwise group compari-

son (Fig. 4, File S1).

In ET compared to IBA, 5.1% of all present genes

were differentially expressed. Of these 765 DEGs,

expression of 445 genes was increased, and of 320

genes decreased. This accounts for a proportion of

6 : 4 of increased to decreased DEGs. 139 (18.1%)

of the 765 DEGs had a log2(FC) > 1. Comparing ET

to LT, 82 genes (0.6%) were differentially expressed

(20 increased and 62 decreased, proportion 2 : 8). Of

these 82 genes, 12 (14.6%) had a log2(FC) > 1. In LT

compared to IBA, 924 genes (6.2%) were differentially

expressed (527 increased and 397 decreased, propor-

tion 6 : 4) (Fig. 5, File S1). Of the 924 genes, 133

(14.4%) had a |log2(FC)| > 1. ET vs IBA and LT vs

IBA had 362 DEGs in common, which had the same

direction of change; expression of 202 genes increased,

and expression of 160 genes decreased in both pairwise

group comparisons (Fig. 4, File S1).

Pathway analysis

Across the three pairwise group comparisons, 29 reac-

tome pathways were enriched by the overexpressed

genes. In ET vs IBA, 27 pathways were overrepre-

sented, none in ET vs LT, and 10 in LT vs IBA. In

ET vs IBA, the overrepresented pathways belonged to
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the high-ranking pathways hemostasis (4) and extracel-

lular matrix organization (10). Moreover, pathways

associated with signal transduction (4), transport of

small molecules (7), metabolism of proteins (1), and

programmed cell death (1) were overrepresented

(Table 1). In LT vs IBA, 10 pathways were overrepre-

sented, eight of which were also enriched in ET vs

IBA. These shared pathways were associated with

hemostasis (2 of 4), extracellular matrix organization

(4), and transport of small molecules (2). Two path-

ways were exclusively enriched in LT vs IBA, namely

response to elevated platelet cytosolic Ca2+ and platelet

degranulation associated with hemostasis (Table 2).

The comprehensive tables of enriched pathways are

provided in File S2.

Screening for indicator genes

Data were screened for genes involved in hypothalamic

systems with potential roles in torpor control [29]. Of

these 68 tested, previously defined “indicator genes”,

eight were differentially expressed in ET vs IBA (tran-

scription: Jun; circadian clock: Bmal1, Cry1, Per2, Vip;

thyroid system: Dio2, Txnip; growth axis: Sstr2),

one gene was differentially expressed in ET vs. LT (cir-

cadian clock: Per1), and nine were differentially

expressed in LT vs IBA (transcription: Fos; circadian

clock: Bmal1, Cry1, Per1, Per2; thyroid system: Dio2,

Txnip; metabolism: Glut1, Npy1r) (Fig. 6, Table 3,

File S3).

Discussion

De novo assembly of transcriptomes and

mapping

In this first comparative transcriptomic study in the

garden dormouse, we generated a de novo assembly of

a novel species and found distinct gene expression

changes at different stages of a torpor arousal cycle.

All hypothalamic samples taken during early torpor,

late torpor, or interbout arousal during the hiberna-

tion season contributed to the de novo assembly with

395 143 505 read pairs (Fig. 1, Table S2). Using the

mouse genome as reference, 164 435 garden dormouse

transcripts could successfully be annotated. These tran-

scripts were assigned to 16 798 distinct protein coding

genes representing 76% of the entire protein

coding gene repertoire of the mouse (File S1). The

transcripts that could not be annotated this way were

significantly shorter than the annotated transcripts

(median length 1515 bp vs 374 bp) and the majority

likely represent short assembly fragments that did not

contain sufficient sequence information for a confident

match to a different species (Fig. S1). The longer

unannotated transcripts may either come from genes

Fig. 2. Principal component analysis. Distance between samples of this study (dots; ET: black, LT: blue, IBA: orange) by their respective

overall gene expression in the first dimensions (PC1: 27% variance, PC2: 13% variance). Data basis is ET (n = 4), LT (n = 3), and IBA

(n = 4).
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not present in the mouse or from fast evolving

genes that have diverged to a point where sequence

similarity at the amino acid level is insufficient for

identification using blastx [55]. Although our approach

of annotating transcripts using assignment to the pro-

teome of a different species is bound to lose a set of

species-specific transcripts and non-protein coding

genes such as lncRNAs, miRNAs or snoRNAs, the

data provide a first impression of gene expression

changes in the hibernating garden dormouse. The com-

plete de novo assembly of a novel species will be a

valuable resource for the community and future, com-

parative analyses between species [41].

Differential gene expression

Samples clustered according to state in the principal

component analysis and the heatmap with hierarchical

clustering analyses (Figs 2 and 3). The IBA samples

formed a distinct cluster indicating a clear separation

in expression patterns between torpor and interbout

arousal, which has also previously been described in

different brain areas of the 13-lined ground squirrel

(I. tridecemlineatus) [31]. ET and LT clustered closely

together, with LT showing highest variability in the

second dimension. This might reflect the less precise

state definition for LT, since samples were collected at

a defined time point relative to torpor entry without

knowing the exact time of the next arousal phase

which may vary between animals (Fig. 1, Table S1).

Shifts in the expression profile, however, might be

linked to the time of the next arousal.

Our data set comprises samples of animals during

the hibernation seasons at different stages of a torpor

arousal cycle only, without summer animals being

available. We are aware, that many hypothalamic sys-

tems are being remodeled in a seasonal context, which

is likely to be a prerequisite for torpor to occur at all

Fig. 3. Heatmap and hierarchical clustering of genes differentially expressed in at least one pairwise group comparison. Gene expression

(gradient from blue, low, to red, high expression) of 1351 DEGs (y-axis) with Padj < 0.05 in at least one pairwise group comparison is plotted

for each of the 11 samples (x-axis). Genes are listed in File S1.
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[55,56]. Nevertheless, the transcriptional changes

between different stages across the torpor arousal

cycle will reflect the acute regulatory and/or adaptive

changes in the hypothalamus, that have been even less

understood.

As expected, gene expression changes in the garden

dormouse’ hypothalamus were most pronounced

between both torpor states and IBA, and less pro-

nounced within torpor (ET vs LT). Of 16 798 anno-

tated genes, 765 (5.1%), 82 (0.6%), and 924 (6.2%)

Fig. 5. Volcano plots. Differential gene expression for the pairwise group comparisons ET vs IBA (A), ET vs LT (B), and LT vs IBA (C). All

annotated genes (dots) are plotted based on fold change (x-axis) and significance (y-axis). DEGs (Padj < 0.05) are shown above the hori-

zontal solid line (�log10(0.05) = 1.3), while DEGs with a high significance (Padj < 0.001) are shown above the dotted line (�log10(0.001)

= 3.0). Genes with decreased expression log2(FC) < 0 are shown within the yellow area, while those with a decreased expression of

log2(FC) < �1 are shown within the dark yellow area. Genes with increased expression log2(FC) > 0 are shown within the green area,

while those with increased expression of log2(FC) > 1 are shown within the dark green area. The numbers of DEGs per area are indi-

cated, while the number in the right upper corner states the total number of DEGs. Data basis is ET (n = 4), LT (n = 3), and IBA (n = 4).

Genes are listed in File S1.

Fig. 4. State-specific genes. Number of DEGs with Padj < 0.05 and any fold change shared between or specific for the pairwise group com-

parisons ET vs IBA, ET vs LT, and LT vs IBA and their intersections. Genes per intersection are listed in File S1.
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genes were differentially expressed in ET vs IBA, ET

vs LT, and LT vs IBA, respectively. The proportion of

increased to decreased DEGs was 6 : 4 comparing tor-

por with IBA (both ET vs IBA and LT vs IBA) but

3 : 7 within torpor (ET vs LT). In the hypothalamus

of the 13-lined ground squirrel (I. tridecemlineatus),

the proportion of increased to decreased DEGs was

6 : 4 in torpor entry and 7 : 3 in torpor arousal, each

compared with IBA, but 2 : 8 in the within-torpor

comparison (torpor entry vs late torpor) [31]. Similar

ratios of increased and decreased DEGs have been

found in different heterotherms [28,29,31,34,57]. Tran-

scriptional and translational processes are highly tem-

perature sensitive [57–60]. High numbers of genes with

increased expression will mostly result from decreased

translation and therefore accumulation of mRNA and

will strongly be influenced by stabilization processes

[31,61]. This complicates interpretation of next genera-

tion sequencing data alone. However, there is evidence,

that the hypothalamus remains more active than other

brain regions and that at least distinct hypothalamic

nuclei persist the low Tbs and maintain some transcrip-

tional activity [31,62,63].

Pathway analysis

In ET vs IBA, 27 pathways were overrepresented by

the 445 genes with increased expression (Table 1,

File S2). Given the transcriptional-translational tem-

perature sensitivity it remains unclear whether tran-

scripts are translated into proteins during torpor [57–59].
Nevertheless, overrepresentation of distinct transcriptional

Table 1. Overrepresented reactome pathways in ET vs IBA. Pathways overrepresented by the 124 increased differentially expressed genes

with Padj < 0.05 and log2(FC) > 1. All 14 862 mapped genes served as background. Pathways were sorted in blocks according to each

hierarchically highest pathway (bold) with its sub-pathways (each hierarchical level indicated with “-”). Pathways with false discovery rate

(FDR) < 0.05 were taken as significant (color code from white, low value, to red, high value). Pathways indicated as not significant (n.s.,

gray) had an FDR > 0.05 and serve as orientation. Comprehensive results are given in File S2.

FDR Reactome pathway

n.s. R-MMU-109582 Hemostasis

4.65E-02 R-MMU-76002 - Platelet activation, signaling, and aggregation

1.94E-03 R-MMU-76009 - - Platelet Aggregation (Plug Formation)

1.44E-02 R-MMU-430116 - - GP1b-IX-V activation signaling

1.00E-02 R-MMU-75892 - Platelet Adhesion to exposed collagen

4.95E-07 R-MMU-1474244 Extracellular matrix organization

6.01E-08 R-MMU-3000178 - ECM proteoglycans

3.06E-02 R-MMU-3000171 - Non-integrin membrane-ECM interactions

1.38E-05 R-MMU-216083 - Integrin cell surface interactions

1.03E-02 R-MMU-1474290 - Collagen formation

3.69E-03 R-MMU-1650814 - - Collagen biosynthesis and modifying enzymes

5.76E-04 R-MMU-8948216 - - - Collagen chain trimerization

1.80E-03 R-MMU-2022090 - - Assembly of collagen fibrils and other multimeric structures

7.16E-04 R-MMU-1474228 - Degradation of the extracellular matrix

5.91E-04 R-MMU-1442490 - - Collagen degradation

n.s. R-MMU-162582 Signal transduction

4.43E-02 R-MMU-9006934 - Signaling by Receptor Tyrosine Kinases

3.97E-02 R-MMU-6806834 - - Signaling by MET

4.15E-03 R-MMU-8875878 - - - MET promotes cell motility

1.60E-03 R-MMU-8874081 - - - - MET activates PTK2 signaling

3.52E-02 R-MMU-382551 Transport of small molecules

5.60E-04 R-MMU-425407 - SLC-mediated transmembrane transport

5.09E-04 R-MMU-425366 - - Transport of bile salts and organic acids, metal ions and amine compounds

4.60E-02 R-MMU-561048 - - - Organic anion transport

2.51E-02 R-MMU-442660 - - - Na+/Cl� dependent neurotransmitter transporters

1.40E-02 R-MMU-425393 - - Transport of inorganic cations/anions and amino acids/oligopeptides

1.61E-02 R-MMU-352230 - - - Amino acid transport across the plasma membrane

n.s. R-MMU-392499 Metabolism of proteins

6.19E-04 R-MMU-381426 - Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-

like Growth Factor Binding Proteins (IGFBPs)

n.s. R-MMU-5357801 Programmed cell death

1.07E-02 R-MMU-351906 - Apoptotic cleavage of cell adhesion proteins
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pathways may reflect biologically relevant remodeling of

the given process, providing useful starting points for fur-

ther investigations at protein level.

A possible example for accumulation of mRNA

might be the hemostasis sub-pathways that were over-

represented in ET vs IBA. Hemostasis is the physio-

logical process that stops bleeding after vessel injury,

including platelet activation, aggregation, adhesion

to the injured vessel wall, and thrombus formation

[64–66]. Hibernators, however, are able to withstand

periods of low blood flow during torpor and quick

and vigorous reperfusion during arousal without

thrombi formation and ischemia [67–69]. Changes in

platelet count as well as selective decrease in gene

expression and activity of different blood clotting fac-

tors were shown in the lung during torpor, all contrib-

uting to decreased thrombosis risk [70,71]. Our

animals were not perfused with saline prior to

Table 2. Overrepresented reactome pathways in LT vs IBA. Pathways overrepresented by the 106 increased differentially expressed genes

with Padj < 0.05 and log2(FC) > 1. All 14 862 mapped genes served as background. Pathways were sorted in blocks according to each

hierarchically highest pathway (bold) with its sub-pathways (each hierarchical level indicated with “-”). Pathways with false discovery rate

(FDR) < 0.05 were taken as significant (color code from white, low value, to red, high value). Pathways indicated as not significant (n.s.,

gray) had an FDR > 0.05 and serve as orientation. Comprehensive results are given in File S2.

FDR Reactome pathway

n.s. R-MMU-109582 Hemostasis

3.38E-02 R-MMU-76002 - Platelet activation, signaling, and aggregation

2.85E-02 R-MMU-76009 - - Platelet aggregation (plug formation)

3.00E-02 R-MMU-76005 - - Response to elevated platelet cytosolic Ca2+

2.67E-02 R-MMU-114608 - - - Platelet degranulation

2.83E-02 R-MMU-1474244 Extracellular matrix organization

2.73E-03 R-MMU-3000178 - ECM proteoglycans

3.37E-02 R-MMU-1474228 - Degradation of the extracellular matrix

9.19E-03 R-MMU-216083 - Integrin cell surface interactions

n.s. R-MMU-382551 Transport of small molecules

7.29E-03 R-MMU-425366 - Transport of bile salts and organic acids, metal ions and amine compounds

3.30E-02 R-MMU-442660 - - Na+/Cl� dependent neurotransmitter transporters

Fig. 6. Indicator genes differentially expressed in at least one pairwise group comparison. To visualize differences between samples within

a group and differences between groups, the normalized count was plotted for all differentially expressed indicator genes with Padj < 0.05

in at least one pairwise group comparison. Data basis is ET (n = 4), LT (n = 3), and IBA (n = 4). Significant differences between groups are

indicated with brackets. Associated Padj-values are listed in Table 3. Results of all 68 indicator genes screened for are provided in File S3.
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sampling, hence included blood cells within the tissue.

Consequently, it could be speculated, that enrichment

of mRNA related to clot formation either results from

attenuated translational events to prevent ischemic

events during torpor, or from altered ratio of blood to

brain tissue resulting from the low blood flow and vis-

cous blood during torpor.

Genes involved in the extracellular matrix organiza-

tion pathway have previously been described to be dif-

ferentially expressed during torpor in the hypothalamus

of heterotherms, including integrin signaling as well as

collagen modifications. In the brain, the extracellular

matrix constitutes 10–20% of brain volume and plays

major roles in maintenance of the blood–brain barrier,

structuring of cells into distinct regions by providing

anchorage to cells, axonal guiding, and regulating syn-

aptic plasticity [72]. Integrins are membrane proteins

linking the cytoskeleton to the extracellular matrix.

They play an important role in migration, proliferation,

and cell survival, hence neuroplasticity. An increase of

integrin coding gene transcripts has previously been

found in the hibernating 13-lined ground squirrels

(I. tridecemlineatus) and has been discussed to facilitate

structural changes in the brain and their fast initializa-

tion and reversal during arousal [32,73–75]. This is fur-
ther supported by the signaling by receptor kinases

pathway, specifically MET activated PTK2 (FAK1)

signaling, that has closely been associated with integrin-

mediated cell motility [76–79]. Collagens are involved in

brain architecture, including axonal guidance and

synaptogenesis and differential expression of collagen-

related genes has previously been described in brain

transcriptomes of Djungarian hamsters (P. sungorus)

and 13-lined ground squirrels (I. tridecemlineatus)

[28,31,32]. Overrepresentation of both, pathways

involved in collagen formation as well as collagen degra-

dation, suggests a precisely balanced collagen reorgani-

zation during torpor. Taken together, tightly controlled

extracellular matrix reorganization combined with dis-

tinct MET signaling may likely contribute to enhanced

neuroprotection and neuroplasticity during torpor.

Furthermore, transport of small molecules with sub-

pathways were overrepresented in ET vs IBA, including

solute carrier (SLC) transmembrane transport. SLCs

are the largest family of transmembrane transporters

and control transport of multiple substances including

ions, amino acids and nutrients across membranes. In

the brain, they are expressed in the endothelial cells of

the blood–brain barrier, choroid plexus as well as in

neurons and astrocytes. In the blood–brain barrier,

SLCs play roles in protecting the brain from detrimen-

tal, but absorbing essential substances from the blood.

In neurons and astrocytes, they are involved in regulat-

ing neurotransmission and modulation [80].

Table 3. Differentially expressed indicator genes. Data basis is ET (n = 4), LT (n = 3), and IBA (n = 4). Those indicator genes differentially

expressed with Padj < 0.05 out of a previously defined list with 68 genes [29]. The color code indicates decreased genes with log2(FC) < 0

(yellow), increased genes with log2(FC) > 0 (green), and genes differentially expressed in two of the three pairwise comparisons ET vs IBA,

ET vs LT, and LT vs IBA (red). Normalized counts per indicator gene and sample are plotted in Fig. 6. Results of all 68 indicator genes

screened for are provided in File S3.

Indicator Differentially gene expression Gene

System ID Padj �log10(Padj) log2(FC) ID Symbol Product

ET vs IBA Transcription 3 0.028 1.6 0.47 16 476 Jun Transcription factor AP-1 / c-Jun

Clock 10 0.041 1.4 �0.41 11 865 Bmal1 Brain and muscle ARNT-like 1

14 0.003 2.6 �0.81 12 952 Cry1 Cryptochrome-1

22 0.014 1.8 �0.71 18 627 Per2 Period circadian protein homolog 2

27 0.000 4.3 �2.01 22 353 Vip Vasoactive intestinal peptide

Thyroid 29 0.001 2.8 �1.23 13 371 Dio2 Iodothyronine deiodinase type II

38 0.034 1.5 0.45 56 338 Txnip Thioredoxin-interacting protein

Growth 42 0.024 1.6 �0.31 20 606 Sstr2 Somatostatin receptor type 2

ET vs LT Clock 21 0.000 3.8 �1.07 18 626 Per1 Period circadian protein homolog 1

LT vs IBA Transcription 1 0.050 1.3 1.29 14 281 Fos Proto-oncogene c-Fos

Clock 10 0.026 1.6 �0.44 11 865 Bmal1 Brain and muscle ARNT-like 1

14 0.001 3.0 �0.90 12 952 Cry1 Cryptochrome-1

21 0.000 6.1 1.24 18 626 Per1 Period circadian protein homolog 1

22 0.043 1.4 �0.62 18 627 Per2 Period circadian protein homolog 2

Thyroid 29 0.000 4.0 �1.51 13 371 Dio2 Iodothyronine deiodinase type II

38 0.022 1.7 0.48 56 338 Txnip Thioredoxin-interacting protein

Metabolism 48 0.026 1.6 0.38 20 525 Glut1 Glucose transporter member 1

63 0.024 1.6 �0.54 18 166 Npy1r Neuropeptide Y receptor type 1
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Overrepresentation of the subpathways amino acid

transport, as well as Na+/Cl� dependent neurotransmit-

ter transporters, may support distinct remodeling of

both, blood–brain barrier as well as neurotransmission.

Five hundred and twenty-seven genes with increased

expression in LT vs IBA including the 202 genes with

increased expression shared between the torpid states

(Table 2, File S2), 10 pathways were enriched, eight of

which were shared with ET vs IBA and belong to the

high-ranking pathways hemostasis, extracellular matrix

organization and transport of small molecules. However,

each of the high-ranking pathways in LT vs IBA was sup-

ported by a smaller number of sub-pathways than in ET

vs IBA (Tables 1 and 2, File S2). One possible explana-

tion for this finding, together with the higher variance in

the clustering analysis, is the less precise state definition

for LT, that was sampled relative to torpor entry without

knowing the exact time of the next arousal for each indi-

vidual. It might also suggest that gene expression of

potentially torpor relevant mechanisms, shifts over the

duration of the torpor bout and becomes less distinct in

LT vs IBA. This might result from temperature-driven

effects on the transcriptional/translational machinery

that may accumulate over time, and “disorganize” torpor

relevant processes. It has previously been discussed, that

transcript of a “hypothetical hibernation gene” might be

degraded during torpor, until a threshold is reached that

triggers arousal, during which transcription can be

replenished [31]. In this line it is tempting to speculate,

that less distinct organization of torpor critical pathways

might eventually cause arousal.

Screening for indicator genes

The data set was screened for 68 indicator

genes potentially relevant for torpor (Fig. 6, Table 3,

File S3) [29]. Five differentially expressed indicator

genes were genes of the circadian system, four of

which were decreased during torpor. The latter is con-

sistent with previous gene expression studies of the cir-

cadian system in the Artic ground squirrel (Urocitellus

parryii) and the European hamster (C. cricetus), dem-

onstrating that clock genes in the suprachiasmatic

nucleus, stop cycling during hibernation and regain

rhythmicity upon arousal [30,81,82]. The only excep-

tion in our data was Per1, showing low mRNA levels

in ET and IBA and high levels in LT, suggesting an

oscillation of Per1 during torpor (Fig. 6). We can only

speculate whether this discrepancy might result from

species-specific clock regulation or the potentially very

soon upcoming arousal, prior to which Per1 transcrip-

tion might be initiated to quickly regain rhythmicity

during IBA. Certainly, the limited number of sampling

points irrespective of circadian biology and the

unknown circadian phase of the IBA sampling point

impedes a thorough interpretation.

In our data set, transcripts of the transcription factors

Jun and Fos were increased during torpor. Jun and Fos

act as heterodimers on AP-1 sites of target genes. Tran-

scription factors like Jun and/or Fos have previously been

shown to be increased in both, whole hypothalamus sam-

ples as well as distinct hypothalamic nuclei during torpor

in several species [29,31,62,81–85]. It is unclear whether

this increase results from specific mRNA stabilization, or

whether these factors are still transcribed. However, the

distinct spatial distribution at different stages during

the torpor arousal cycle suggests that they contribute to

maintaining functionality of specific hypothalamic nuclei

relevant to the torpor arousal cycle.

The iodothyronine deiodinase type II (Dio2) was

decreased in both torpor states. Dio2 is an enzyme,

converting T4 into bioactive T3. This finding is consis-

tent with previous studies suggesting that decreased T3

concentrations in the hypothalamus are involved in

torpor control [31,36,55,86,87]. The thioredoxin-

interacting protein (Txnip) was increased in both tor-

por states. Txnip is an important regulator of cellular

glucose and fatty acid metabolism in cells and thereby

controls fuel use [88]. Increase during torpor is consis-

tent with previous studies in various species [31,34,89].

The somatostatin receptor type 2 (Sstr2), of the

growth axis was decreased in early torpor (ET vs IBA).

The relevance of somatostatin and its receptors for tor-

por behavior have previously been shown in Djungarian

hamsters (P. sungorus) and European hamster

(C. cricetus) [27,29,90–92].
The glucose transporter member 1 (Glut1) was

increased in late torpor. In the hypothalamus of the 13-

lined ground squirrel (I. tridecemlineatus), Glut1 was

also increased in torpor entry, late torpor, and torpor

arousal, each compared with IBA [31]. This indicates

facilitated glucose transport to the brain during torpor.

The neuropeptide Y receptor type 1 (Npy1r) was

decreased in late torpor (LT vs IBA). Hypothalamic

neuropeptide Y signaling triggers an orexigenic response

that has been shown to induce torpor-like hypothermia

in the Djungarian hamster via Npy1r [93,94]. Accord-

ingly, NPY signaling of satiety might be modulated dur-

ing torpor in the dormouse via Npy1r expression.

Conclusion

In line with previous studies on other hibernating spe-

cies, the hypothalamic transcriptome of the garden

dormouse shows specific gene expression at different

stages of a torpor arousal cycle. Our results reveal
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distinct remodeling of pathways during torpor, related

to hemostasis, extracellular matrix organization and

transport of small molecules, that become less sup-

ported during late torpor and may be related to the

necessity for a reversal of metabolic functions as

occurring during periodic arousal [14,95–99].
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