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Microglia, the resident immune cells of the central nervous system (CNS),

have received significant attention due to their critical roles in maintaining

brain homeostasis and mediating cerebral immune responses. Understand-

ing the origin of microglia has been a subject of great interest, and emerg-

ing evidence suggests that microglia consist of multiple subpopulations

with unique molecular and functional characteristics. These subpopulations

of microglia may exhibit specialized roles in response to different environ-

mental cues as in disease conditions. The newfound understanding of

microglial heterogeneity has significant implications for elucidating their

roles in both physiological and pathological conditions. In the context of

disease, microglia have been studied rigorously as they play a very impor-

tant role in neuroinflammation. Dysregulated microglial activation and

function contribute to chronic inflammation. Further exploration of micro-

glial heterogeneity and their interactions with other cell types in the CNS

will undoubtedly pave the way to novel therapeutic strategies targeting

microglia-mediated pathologies. In this review, we discuss the latest

advances in the field of microglia research, focusing specifically on the ori-

gin and subpopulations of microglia, the populations of microglia types in

the brains of patients with neurodegenerative diseases, and how microglia

are regulated in the healthy CNS.

The central nervous system (CNS), the most intricate

human organ system, comprises billions of neurons

coordinating the intricate interplay of thoughts, emo-

tions, and physiological functions. However, the com-

plex network requires constant surveillance and

protection to maintain its delicate balance. So, in the

brain, microglia serve as the guardians, playing a vital

role in immune defense and maintaining cerebral

homeostasis. As part of the innate immune system,

microglia continuously monitor the CNS for potential

internal and external threats [1–3]. In addition to their

crucial role in defending the CNS against pathogens,

microglia also contribute significantly to controlling

neuronal proliferation, synapse formation, and elimina-

tion as well as debris clearance [4–6]. Moreover, they

actively participate in remodeling neuronal circuits in
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postnatal mice [7]. Given the diverse functions, it is not

surprising, given their diverse functions, that microglia

represent a heterogeneous myeloid cell population, which

is indispensable for the CNS in health and disease [8].

Considering the significance of microglia, it is

important to explore their origin, their various sub-

populations, and their precise mode of action. Micro-

glia, as essential neuroglial cells, account for 5–20% of

the entire glial population in mice while in humans,

they constitute 0.5–16.6% of the total population [9].

In this article, we review the recent findings in the

field of microglia research with a focus on their hetero-

geneity. The identification of distinct microglial sub-

types and their unique functional characteristics have

revolutionized our understanding of their roles in

brain development, homeostasis, and disease processes.

Understanding the modulation of these different

microglial subpopulations will be key to develop pre-

cise therapeutic interventions targeting CNS innate

immune mechanisms.

Origin of microglia

Over the past 160 years, multiple hypotheses about the

origin of microglia have emerged. W. Ford Robertson

was the first to introduce the term “mesoglia”, a phago-

cytic element derived from the mesoderm, distinct from

neurons and other CNS cells. In 1856, Virchow coined

the term “neuroglia” (originally “Nervenkitt”), referring

to these cells as “nerve-glue,” which was later translated

to “neuroglia” [10]. Santiago Ramon y Cajal, a promi-

nent scientist in the field of neuroscience, renamed the

cells the “third element of the nervous system.” A stu-

dent of his, Pio del R�ıo-Hortega, continued working on

these cells and made significant contributions to the

understanding of the “third element of the nervous sys-

tem.” Del R�ıo-Hortega studied the third element of the

nervous system using silver carbonate impregnation

staining. He redefined the concept of the “third ele-

ment” based on its morphology and function, which he

named “microglia cells.” Microglia cells are character-

ized as a small population of phagocytic and migratory

immune cells in the CNS, distinguishing them from neu-

rons, astrocytes, and oligodendroglia, which are of neu-

roectodermal origin [11].

In murine models, the precise origin of microglia

has sparked controversies. It was believed that micro-

glia are present during early development, suggesting

that they originated from embryonic progenitors. Del

R�ıo-Hortega proposed an additional possibility, that

microglia could derive from meningeal macrophages.

Another hypothesis during that era was that microglia

could originate from blood monocytes [10,11]. Ashwell

and colleagues initially observed the presence of amoe-

boid microglia cells at E11.0 in the fetal mouse cere-

bellum and later in the rat forebrain [12,13].

Subsequently, Sorokin and his colleagues detected

macrophage precursors and macrophage-like cells in

the embryonic mesenchyme and blood vessels in rats

starting from E10.5, highlighting the brain as the first

organ to be colonized [14].

The origin of microglia was studied using genetic

mapping, which revealed that microglia originate from

yolk sac primitive macrophages [15–19]. During embry-

onic development in mice, between embryonic days E8.0

and E10.0, there is blood vessel formation and remodel-

ing [20]. Around E7.0, precursor cells expressing vascu-

lar endothelial growth factor migrate from the primitive

streak to the proximal yolk sac, where they form blood

islands. These blood islands house the multilineage c-

kit+ erythromyeloid yolk sac precursor cells that give

rise to microglia [21,22]. The yolk sac precursor cells

mature from A1 (CD45+ c-kitlo CX3CR1� F4/80�) to
A2 (CD45+ c-kit� CX3CR1+ F4/80hi) amoeboid macro-

phages in the blood islands and cephalic mesenchyme.

Eventually, they acquire the phenotype of mature mac-

rophages in the neuroepithelium by E10.5 [23]. Fate

mapping studies using genetic targeting of hematopoi-

etic precursors expressing the runt-related transcription

factor Runx1 between E6.5 and E10.5 have shown that

yolk sac macrophages are specified between E7.0 and

E7.5 [15]. An interesting study demonstrated that nor-

mal yolk sac hematopoiesis from E9.5 to 10.5 in Ncx-1

knockout mice causes the absence of brain microglia

progenitors. This supports the notion that brain recruit-

ment of yolk sac progenitors depends on a functional

circulatory system [15]. Microglia enter the developing

brain through the leptomeninges and lateral ventricles

at E9.5 and then distribute within the cortical walls from

both directions. The speed of migration, proliferation

rates, and maturation of microglia vary based on the

region and developmental stage [15,24,25]. In early post-

natal weeks of mouse development, there is an increase

in the number of microglia cells. Subsequently, there is a

gradual decrease in their number, reaching approxi-

mately 50% of the peak density. From Week 5 to 6,

microglia density stabilizes [26].

In human fetuses, microglia-like cells can be

detected as early as 3 weeks of the estimated gesta-

tional age (EGA) [27]. By Week 4.5, amoeboid micro-

glial cells migrate into the cerebral wall via the pial

surface, ventricle, and choroid plexus [28,29]. In the

white matter, subplate, and cortical plate layers, radial

and tangential migration was observed and then at 12–
13 gestational weeks, the second wave of microglia

was observed via the vasculature [29,30]. Around
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Week 9, colonization of the spinal cord begins, and by

Week 16, there is a significant influx and distribution

of microglia throughout the entire CNS. It takes

approximately 22 weeks for microglia to adopt a rami-

fied form and to develop widely distributed processes.

Importantly, well-differentiated microglia are detected

at 35 weeks of pregnancy [28,30–33]. These studies

provide strong evidence that microglia originate from

embryonic hematopoietic precursors that populate the

CNS before birth and prior to bone marrow hemato-

poiesis. In zebrafish, yolk sac macrophages initially

invade the entire cephalic mesenchyme and subse-

quently infiltrate epithelial tissues, including the brain.

Additionally, other macrophages enter the blood circu-

lation, indicating that colonization occurs indepen-

dently of the blood circulation [34,35]. Summarizing

the current knowledge suggests the origin of microglia

is from yolk sac primitive macrophages, and the colo-

nization takes place before the formation of

neuroectoderm-derived cell types, such as astrocytes

and oligodendrocytes. Microglia remain in the brain

throughout life and self-renew [15–19,22,25,30,36].

Microglia subpopulations

In the CNS, microglia are non-uniformly distributed,

as observed by Lawson and colleagues using poly-

clonal antiserum targeting the F4/80 marker. Their

study revealed that the telencephalon region has the

highest density of microglia, followed by the dienceph-

alon, mesencephalon, and rhombencephalon, which

contain fewer microglia. Furthermore, the gray matter

is more densely populated with microglia compared

with the white matter [37]. These studies have pro-

posed the existence of different microglial subtypes,

each associated with a distinct molecular signature

[38]. Understanding these potential subtypes will pro-

vide insights into the differential responses of micro-

glia to intrinsic and extrinsic stimuli i.e.; microglia

near Ab-plaques show a neurodegenerative profile con-

trolled by TREM2-APOE, and targeting APOE can

revert them to a healthy state, reducing apoptotic neu-

ron phagocytosis [39–44].
What makes a cell subtype? Traditionally, a cell type

is defined based on its host tissue, morphology, line-

age, function, and molecular composition [45]. From a

historical perspective, del R�ıo-Hortega already defined

a microglial subtype known as “satellite microglia,”

which are located in close proximity to neuronal cell

bodies [46]. This early observation highlights the con-

cept of microglial subtypes based on their distinct ana-

tomical localization and association with specific

cellular components or morphological structures. It is

important to continue investigating and characterizing

microglial subtypes to gain a deeper understanding of

their functional diversity and associated molecular sig-

natures. Microglia distribution in the CNS is not only

variable concerning localization but also varies in mor-

phology based on their association with different cellu-

lar components such as neuronal cell bodies, dendrites,

axons, myelinated axons, and blood vessels. This vari-

ability is also reflected at the transcriptional level

[47,48]. Several studies have mounted evidence that

microglia isolated from unchallenged adult murine

brain exhibit variability in gene expression patterns

depending on the brain regions which they were iso-

lated from. Various markers such as CD40, CD11b,

CD45, CD80, CD86, F4/80, Triggering Receptor

Expressed on Myeloid Cells 2b (TREM2b), CX3CR1,

and CCR9 show variable expression levels in microglia

based on brain area and transcriptome analysis using

preselected panels [49,50]. Furthermore, recent research

by Jord~ao and colleagues revealed the diversity of CNS-

associated macrophages in three subsets expressing high

levels of Mrc1, Ms4at, Pf4, Stab1, Cbr2, CD163, and

Fcrls. These subsets are associated with different CNS

compartments, including the leptomeninges, choroid

plexus, and perivascular space [51]. The microglia in the

vicinity of these different types of neurons, as well as

other glial cells such as astrocytes, oligodendrocytes, and

progenitor cells, show distinct gene expression profiles

under steady-state conditions. Several subtypes of micro-

glia have been identified based on their unique genomic,

morphological, and function specialization.

These subtypes include satellite microglia, keratan sul-

fate proteoglycan-microglia (KSPG)-microglia, microglia

supporting neurogenesis, Hox8b+ microglia, CD11c+

microglia, dark microglia, and TREM2-positive-

microglia (Table 1). Satellite microglia interact with the

axon initial segment in the healthy brain and lose the

interaction upon injury. The markers required to iden-

tify satellite microglia are IBA1, CD11b, and CX3CR1;

these microglia are frequently detected in the cortex and

hippocampus [52–54]. KSPG-microglia appear upon dif-

ferent insults, for example around motoneurons in

Amyotrophic Lateral Sclerosis (ALS), and can be identi-

fied by the microglia marker IBA1, CR3, and CD11b.

KSPG-microglia are mainly present in the olfactory

bulb, hippocampus, and brainstem [55–57]. Microglia-

supporting neurogenesis are essential for neuroblast sur-

vival and migration in the subventricular zone (SVZ)/

rostral migratory stream (RMS), and their characteris-

tics include the expression of IBA1�, isolectin B4
�,

CD68�, P2RY12low, pSTAT6+ cells as well as their abil-

ity to produce IL4 and IL10. Morphologically,

these microglia are less ramified than microglia in
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neighboring brain cells and in the olfactory, subventri-

cular zone, and rostral migratory stream, they can be

identified by the expression of CX3CR1-EGFP [58–60].
Hox8b+ microglia have a critical role in the functioning

of the corticosteroid neuronal circuits. A deficiency of

Hox8b+ microglia affects corticosteroid neuronal cir-

cuits negatively and leads to impaired grooming, anxi-

ety, and altered social behaviors. Markers to identify

Hox8b+ microglia are IBA1 and CD11b. These micro-

glia are present in the olfactory bulb and cortex of the

brain [61–63]. CD11c-positive microglia promote myeli-

nation and neurogenesis in the neonatal brain and can

be identified with markers IBA1, CD11c, CD45low,

CX3CR1, and CCR2null. CD11c+ microglia cells are

present in the corpus callosum and cerebellum [64].

Dark microglia, which interact with blood vessels and

synapses, appear dark when detected by electron

microscopy and can be identified by IBA1low, CX3CR1-

GFPlow, CD11b, TREM2, and 4D4. Dark microglia

can be found in the cortex, hippocampus, amygdala,

and hypothalamus [65,66]. These subtypes of microglia

demonstrate diversity in their localization and func-

tional roles. The role of TREM2 microglia in Alzhei-

mer’s disease (AD) is essential for neuroprotection.

However, it is important to note that not all microglia

express the TREM2 receptor. TREM2-positive micro-

glia are known for their survival and proliferation, and

they tend to cluster around Ab-plaques in AD [67]. In

murine models, TREM2 expression in microglia varies

across different brain regions. The highest levels of

TREM2 expression are found in the cingulate cortex

and lateral entorhinal cortex, while much lower levels

are observed in regions such as the hypothalamus and

habenula. Interestingly, some regions, such as the cir-

cumventricular organs, completely lack TREM2 expres-

sion [68]. These regional differences in TREM2

expression are also observed in humans. Microarray

data from 101 individuals revealed significant variations

in TREM2 expression between different brain regions,

particularly in the white matter and cerebellum. This

suggests the presence of specific subtypes of microglia

with varying roles in different brain regions, which may

be relevant to the progression of AD and other neuro-

logical disorders [69]. Of note, the described pattern

may vary and be dynamic over the entire lifetime and in

particular during inflammatory challenges and

activation.

In addition to a subpopulation of microglia defined

by differential gene expressions, there are differences

in the microglia population between males and females

[70–73]. Microglial density in 13-week-old male mice is

higher than in females, while the opposite holds true

for 3-week-old mice, showcasing significant age- and

gender-related variation [74]. Hormones such as estra-

diol also play a major role in the gender-dependent

variation of microglia numbers [75,76]. During early

postnatal development, male mice have more microglia

in the cortex, hippocampus, and amygdala compared

with females. This is linked to increased expression of

CC-chemokine ligand (CCL) 20 and CCL4 due to tes-

tosterone, the primary masculinizing hormone, being

aromatized to estradiol in the mouse brain. Adult

female mice exhibit thicker microglia with longer pro-

cesses in the hippocampus, amygdala, and cortex com-

pared with male mice [76,77].

Microglia regulation

Microglia are crucial components of the neuroglial

network in the healthy CNS. In the “homeostatic”

state, microglia exhibit small cell bodies with ramified

processes [78]. In this state, microglia do not overlap

with the processes of neighboring cells, and each

microglia cell actively surveys its immediate vicinity.

While the soma of microglia remains stable, the pro-

cesses constantly elongate and retract, allowing them

Table 1. Microglia subpopulation in the CNS.

Microglial subpopulation Markers Specific brain region

Satellite microglia [46] IBA1, CD11b, and CX3CR1 Cortex and hippocampus

Keratan sulfate proteoglycan-microglia (KSPG)-

microglia [55,56]

IBA1, CR3, and CD11b Olfactory bulb, hippocampus, and brainstem

Microglia supporting neurogenesis [58] IBA1�, isolectin B4
�, CD68�,

P2RY12low, pSTAT6+
Olfactory, subventricular zone, and rostral

migratory stream

Hox8b+ microglia [61] IBA1 and CD11b Olfactory bulb and cortex of the brain

CD11c+ microglia [64] IBA1, CD11c, CD45low, CX3CR1, and

CCR2null
Corpus callosum and cerebellum

Dark microglia [65] IBA1low, CX3CR1-GFPlow, CD11b,

TREM2, and 4D4

The cortex, hippocampus, amygdala, and

hypothalamus

TREM2-positive-microglia [67] TREM2 Cingulate cortex and lateral entorhinal cortex
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to constantly explore the tissue environment widely.

Upon stimulation by pathogen exposure, microglia

rapidly retract their processes and become mobile

effector cells [2]. The activation of microglia is trig-

gered by various immune receptors, both endogenous

and exogenous, that are present on their surface and

collectively described as pattern recognition receptors

(PRR) [79–81]. Examples of these PPRs include Toll-

like receptors (TLRs), scavenger receptors, CD36, and

CD47, as well as numerous cytokine and chemokine

receptors. Further surface receptors are involved in the

regulation of microglial homeostasis, their interaction

with neighboring cells, and immune reactivity (Table 2):

CD200 is a crucial molecule expressed on the sur-

face of neurons, astrocytes, and oligodendrocytes. It

serves as a receptor on microglia and macrophages,

helping to maintain their resting state [82–84].
CX3CR1 is another essential molecule found on the

surface of monocytes, macrophages, dendritic cells,

and natural killer cells. Its ligand, fractalkine or neu-

rotactin (CX3CL1), is present on neurons and inter-

acts with microglia via CX3CR1. This interaction

plays an important role in regulating microglia func-

tions within the CNS [5,85–89]. Loss of this interac-

tion, as seen in animal models of PD and other

neurodegenerative disorders, can lead to increased

neuronal cell death [85]. CD47, expressed ubiqui-

tously on neurons, transmits “do not eat me” signals

to microglia through its interaction with CD172a/Sirp

alpha [84,90]. Ayata and colleagues showed that

cerebellar microglia have a unique ability for clear-

ance, while microglia in the striatum exhibit a

homeostatic surveillance phenotype [90,91]. It was

also demonstrated that the suppression of clearance

genes in striatal microglia is mediated by PRC2, an

enzyme complex that catalyzes the repressive chroma-

tin modification histone H3 lysine 27 trimethylation

(H3K27me3). Removal of PRC2 in microglia results

in enhanced clearance function in both the striatum

and cerebral cortex even in the absence of dying neu-

rons [91]. TREM2 is primarily known for its involve-

ment in the phagocytosis of cellular debris and the

downregulation of pro-inflammatory cytokines [92].

Studies showed that the deletion of TREM2 showed

identical phenotypes such as enhanced inflammatory

cytokine production [93,94]. Colony Stimulating Fac-

tor 1 (CSF1) plays a crucial role in regulating the

survival of myeloid lineage cells in general [95]. Col-

ony Stimulating Factor 1 binds to its receptor,

CSF1R, and the absence of CSF1R results in a defi-

ciency of several subsets of mononuclear phagocytes.

Notably, in mice lacking CSF1R, microglia, are

entirely absent [15,96].

Endogenous transcription factors, such as Runx1,

ETS (E-twenty six) family transcription factor PU.1

shown in Fig. 1, interferon regulatory factor 8 (Irf8),

and Hoxb8, play crucial roles in regulating differentia-

tion processes during the embryonic development

[15,22]. While c-myb is not directly involved in micro-

glia development, it plays a vital role in maintaining

Table 2. Factors regulating microglia.

Microglial regulation Function

CD200 [82] Helps to maintain resting state

CX3CR1 [85] Regulate microglia recruitment to the site of neuroinflammation

CD47 [84] Neuronal protein sends “do not eat me” signals to microglia via CD172a/Sirp alpha interaction

PRC2 [91] PRC2 enzyme catalyzes H3K27me3 modification

TREM2 [93,94] Role in phagocytosis of debris and reducing proinflammatory cytokines

CSF1 [95] Regulate the survival of myeloid lineage

Runx1, ETS, PU.1, Irf8, Hoxb8 [15,22] Regulating differentiation processes during the embryonic development

C-myb [97] Essential for microglia health, regulates proliferation, and survival in the CNS

Ionotropic receptors [98,99] Calcium influx and the release of pro-inflammatory molecules

Metabotropic receptors [98,99] Activate intracellular signaling cascades that contribute to microglial activation and inflammation

Nerve Growth Factor [100] Regulate microglial activation and survival

Prostaglandins E2 [101] Modulate microglial activation and pro-inflammatory responses

Gamma-aminobutyric acid (GABA) [105] Modulate microglial activation and inflammatory responses

Glucocorticoids [106] Suppresses microglia activation and inflammation via glucocorticoid receptor binding

Estrogen [106] Modulates microglia activation, migration, and phagocytic activity

Brain-derived Neurotropic factor (BDNF)

[107]

Modulate microglial function by influencing their activation, proliferation, and release of pro-

inflammatory cytokines

Norepinephrine [108,109] Controls the release of inflammatory factors like interleukin 6 (IL-6), interleukin 1b (IL-1b), and

tumor necrosis factor a (TNF-a)

Histamine and serotonin [111] Increases of calcium in the microglia
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microglial homeostasis. C-myb is an important regula-

tor of cell proliferation and survival, and its function

is essential for the normal functioning and maintenance

of microglia in the healthy CNS [97]. ATP release in the

CNS leads to various effects, including an inflammatory

response, migration, and proliferation, ultimately result-

ing in a microglial activation [2]. This activation is medi-

ated through the presence of purinergic receptors on the

surface of microglia, including ionotropic receptors

(P2X4, P2X7) and metabotropic receptors (P2Y1,

P2Y2, and P2Y12) [98,99]. Ionotropic purinergic recep-

tors, such as P2X4 and P2X7, are involved in calcium

influx and the release of pro-inflammatory molecules.

Metabotropic purinergic receptors, such as P2Y1,

P2Y2, and P2Y12, activate intracellular signaling cas-

cades contributing to microglial activation and inflam-

mation. Nerve Growth Factor (NGF) can regulate

microglial activation and survival. It has been shown to

modulate microglial morphology and pro-inflammatory

responses [100]. Prostaglandins, including prostaglandin

E2 (PGE2), can modulate microglial activation and pro-

inflammatory responses. They are synthesized by micro-

glia through cyclooxygenase 1 and 2 and can act in an

autocrine or paracrine manner [101].

Notably, microglia are well known to express

receptors for neurotransmitters [102–104]. Gamma-

aminobutyric acid (GABA), an inhibitory neurotransmitter

in the CNS, can also modulate microglial activation

and inflammatory responses. Activation of GABA

receptors on microglia has been shown to suppress their

pro-inflammatory phenotype, dampening the inflamma-

tory response [105]. Glucocorticoids and estrogen have

been shown to regulate microglia function. Glucocorti-

coids suppress microglia activation and pro-

inflammatory responses by binding to glucocorticoid

receptors expressed on microglia. Estrogen modulates

microglia activation, migration, and phagocytic activ-

ity [106]. Brain-Derived Neurotrophic Factor (BDNF)

can modulate microglial function by influencing their

activation, proliferation, and release of pro-inflammatory

cytokines [107]. Norepinephrine regulates microglia and

controls the release of inflammatory factors such as

interleukin 6 (IL-6), interleukin 1b (IL-1b), and tumor

necrosis factor a (TNF-a). This regulation impacts neu-

roinflammation, neuropathic pain, anxiety, and depres-

sion [108–110]. Histamine and Serotonin induce the

increase of calcium in the microglia [111]. Microglia and

neurons communicate through receptors for various neu-

rotransmitters, enabling neurons in specific brain regions

to influence microglia heterogeneity based on their com-

combined neurotransmitter profile. The communication

between microglia and neurons via neurotransmitter recep-

tors may be crucial for brain region-specific differences,

given variances in neuron-derived transmitter profiles.

Fig. 1. Origin of microglia in mice. Microglia stem from immature erythromyeloid precursors (EMPs) that depart the yolk sac blood island

around E7.5, regulated by PU.1 and RUNX. By E9.5, these EMPs reach the neuroepithelium, giving rise to embryonic microglia, which

mature into the fully developed form. Essential for mature microglia’s growth are IL-34 and CSF-1, vital factors that support their

proliferation.
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Microglia in disease

Emerging research has shown that microglia represent

a highly heterogeneous population composed of dis-

tinct subpopulations with diverse functions (Table 1).

Dysregulation of these subpopulations has been impli-

cated in various neurological and neurodegenerative

diseases. Here are some examples of microglial sub-

populations involved in specific diseases: Activation of

microglia in brain diseases mostly functions through

the ligation of PRRs, including the Toll-like receptor

family, the scavenger receptors, CD47, CD36, and sev-

eral others that cooperate to induce downstream

immune signaling pathways [79–81]. Various cytokines,
such as interleukin-1 beta (IL-1b) and tumor necrosis

factor-alpha (TNF-a), can modulate microglial activa-

tion and immune responses. They can be released by

microglia themselves or by other cells in the CNS

[112]. Consequently, microglia adopt disease-specific

states (Table 3), which still must be defined in greater

detail, as most of the existing literature is of cross-

sectional nature and may not fully account for highly

dynamic changes along the respective disease trajecto-

ries. Nevertheless, AD is linked to amyloid-beta pla-

ques from increased amyloid precursor protein (APP)

production or clearance issues and hyperphosphory-

lated tau protein buildup [113–115]. Disease-associated

microglia (DAMs) and Neurodegenerative microglia

(MGnD) represent a subset of microglia with height-

ened expression of AD-risk-associated genes (ApoE,

Trem2, and Clec7a) and functional activation of the

TREM2-APOE pathway [40,42]. Disease-associated

microglia is associated with protective phagocytosis,

and MGnD is a dysfunctional microglial phenotype

[116]. While many genes differ in DAM and MGnD

between mice and humans, they share some similari-

ties. Notably, both human microglia and activated

mouse microglia show increased APOE expression,

along with a reduced TREM2 expression [42,117,118].

They play a role in amyloid-beta plaque clearance and

may have both protective and harmful effects on AD

pathogenesis [40]. In AD, the CD33 transmembrane

receptor is mainly expressed by microglia, which regu-

lates innate immune responses [119,120]. Parkinson’s

disease (PD, a movement disorder caused by the

degeneration of dopaminergic neurons) is characterized

by motor impairment and the presence of intraneuro-

nal inclusions called Lewy bodies, which represent

aggregates of misfolded alpha-synuclein [121]. During

the course of PD, reactive microglia also become acti-

vated by alpha-synuclein and release pro-inflammatory

cytokines and oxidative stress-inducing factors, con-

tributing to PD-associated neuroinflammation and

likely causing dopaminergic neuron loss [122,123].

Multiple Sclerosis (MS) is characterized by multifocal

white matter lesions. Experimental Autoimmune

Encephalomyelitis (EAE) serves as an animal model

for studying inflammatory demyelination disease [124–
126]. Both neuroinflammatory and neurodegenerative

models develop double-positive TNF-alpha- and GM-

CSF-producing cells, this subset abundance correlated

best with the height of neuroinflammatory condition in

the MS model [124]. Within EAE lesion sites, three

distinct subtypes, namely daMG2, daMG3, and

daMG4, have been identified. These subtypes exhibit

variations in the expression of particular chemokines

and cytokines, and they also exert differing effects on

homeostatic markers such as P2RY12 and TMEM119

[51]. The expression of 5D4-KSPG is elevated within a

specific subgroup of microglia that are positive for

IBA1/CD11b in the context of amyotrophic lateral

sclerosis (ALS) and in a Wallerian degeneration mouse

model for spinal cord injury [57,127,128]. In stroke,

pro-inflammatory microglia can become activated and

exhibit a pro-inflammatory phenotype. These microglia

produce inflammatory cytokines and reactive oxygen

species, contributing to secondary brain damage [129].

In autism spectrum disorder (ASD), microglia show

impaired synaptic pruning. These microglia fail to

efficiently eliminate excessive synapses during brain

development, potentially leading to disrupted or dys-

functional neural circuits and subsequently altered

connectivity [130]. In brain tumors, the analysis of

activated microglia using CyTOF, which is a single-

cell-based immune phenotyping technique that relies

on time-of-flight mass cytometry, has revealed signifi-

cant differential expressions of HLA-DR, TREM2,

and APOE. [131].

Table 3. Microglia in disease.

Microglia identity Present in

Disease-associated microglia (DAM) &

Neurodegenerative microglia (MGnD)

[40,42]

Alzheimer’s disease

AD model

Reactive microglia [122] Parkinson’s disease

Alzheimer’s disease

PD model

Double-positive TNF-alpha- and GM-

CSF-producing cells [124]

Multiple sclerosis

MS model

daMG2, daMG3, and daMG4 [51] Expexrimental

autoimmune

encephalomyelitis

EAE model

5D4-KSPG [57] Amyotrophic lateral

sclerosis

ALS model
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In summary, microglia are diverse and dynamic cells

with important functions in the CNS and during CNS

disorders. Understanding their origin, distribution, and

subpopulations is crucial for unraveling their roles in

both healthy and diseased conditions. Further research

in this field will contribute to a deeper understanding

of microglial biology and help to identify potential

therapeutic interventions for CNS disorders.
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