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Propensity score analysis is a common approach to addressing confounding in nonrandomized studies. Its
implementation, however, requires important assumptions (e.g., positivity). The disease risk score (DRS) is an
alternative confounding score that can relax some of these assumptions. Like the propensity score, the DRS
summarizes multiple confounders into a single score, on which conditioning by matching allows the estimation
of causal effects. However, matching relies on arbitrary choices for pruning out data (e.g., matching ratio,
algorithm, and caliper width) and may be computationally demanding. Alternatively, weighting methods, common
in propensity score analysis, are easy to implement and may entail fewer choices, yet none have been developed
for the DRS. Here we present 2 weighting approaches: One derives directly from inverse probability weighting;
the other, named target distribution weighting, relates to importance sampling. We empirically show that inverse
probability weighting and target distribution weighting display performance comparable to matching techniques
in terms of bias but outperform them in terms of efficiency (mean squared error) and computational speed (up to
>870 times faster in an illustrative study). We illustrate implementation of the methods in 2 case studies where
we investigate placebo treatments for multiple sclerosis and administration of aspirin in stroke patients.

causal inference; confounding; density; disease risk score; epidemiologic methods; weighting

Abbreviations: ATE, average treatment effect in the entire population; ATT, average treatment effect in the treated population;
DRS, disease risk score; EDSS, Expanded Disability Status Scale; IPW, inverse probability weighting; IST, International Stroke
Trial; TDW, target distribution weighting.

Nonrandomized studies are increasingly being used to
study the effectiveness of therapeutic treatments. A key chal-
lenge in nonrandomized studies is the presence of confound-
ing, which implies that treatments of interest are assigned
according to variables that affect the outcome. If left unad-
dressed, confounding can lead to severely biased estimates
of intervention effect.

To remove confounding, the propensity score plays a cen-
tral role in nonrandomized, observational studies (1). Under
a set of assumptions (i.e., no interference (or the “stable unit
treatment value assumption”), consistency, the absence of
unmeasured confounders, and positivity), conditioning on
the propensity score—defined as the probability of receiving
the treatment given the confounding variables—leads to
comparability (or “exchangeability”) of the treatment groups
by balancing the distribution of confounders, thus removing

confounding and allowing estimation of causal treatment
effects (1, 2). However, the use of the propensity score is
challenged in some situations. For instance, violation of
the positivity assumption can occur in finite samples due
to chance, and in such cases, causal effects may be poorly
identified (3). In such situations, it might be reasonable to
opt for alternative methods.

The disease risk score (DRS), known as the prognos-
tic analog of the propensity score, has garnered interest
over the past few years. Initially developed for the case of
binary exposures (4, 5), it has since been extended—for
example, to multiple treatment exposure groups (6), survival
analysis (7), or multiple outcomes (8). The DRS models
the potential outcome that would be expected given the
confounding variables, if individuals were to receive the
control treatment. Hansen (5) shows that conditioning on
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the DRS allows a causal treatment effect estimation, under
assumptions that are relatively similar to those needed for the
propensity score: the stable unit treatment value assumption,
consistency, the absence of unmeasured confounders, and a
relaxed form of positivity—that is, a positive probability of
treatment at all values of the DRS, instead of all values of the
confounders. Therefore, the DRS offers an advantage when
the overlapping values of confounders are limited between
the treated and control individuals (i.e., near positivity viola-
tion). Wyss et al. (9) show that under different scenarios, the
overlapping regions of the DRS are often larger than those of
the propensity score. In practice, one can estimate the DRS
using the same confounding variables as those used with the
propensity score, and then perform matching (6, 9–13).

Matching can be computationally demanding—particu-
larly in large data sets—and may involve some arbitrary
choices (e.g., matching ratio, matching algorithm, sampling
with replacement, use of a caliper, caliper width). In the
case of the propensity score, weighting methods entail fewer
choices and can be easily implemented (14–19). Yet, to our
knowledge, no weighting methods have been described for
the DRS. In this article, we propose 2 simple weighting
methods for the DRS: One derives from inverse probability
weighting (IPW); the other one, which we have named target
distribution weighting (TDW), is a form of standardization
that relates to importance sampling. Below, we elaborate
on the theoretical framework behind the proposed methods,
present a series of simulations, and illustrate the methods in
2 case studies investigating placebo treatments for multiple
sclerosis and the administration of aspirin in stroke patients.

METHODS

Theoretical background

Let Yi denote the outcome, Ai the treatment status (Ai =
1 denotes “treated”; Ai = 0 denotes “control”) and Xi
the set of confounders. The effect caused by the treatment
in individual i, or simply the individual treatment effect,
is defined as (Y1i − Y0i). In this expression, Y1i and Y0i
are the potential (or “counterfactual”) outcomes that would
be observed if i were to receive the treatment and control
exposures, respectively (20). Under consistency, that is, Yi =
AiY1i + (1 − Ai) Y0i, either Y1i or Y0i is observed, since an
individual cannot be simultaneously allocated to Ai = 1
and Ai = 0. This fundamental problem implies that causal

inference is generally impossible at the individual level (20).
When estimating treatment effects at a population level, a

natural estimand is the average treatment effect in the entire
population (ATE), defined as ATE = E(Y1)−E(Y0). Yet, an
estimand of particular interest is the average treatment effect
in the treated population (ATT), for it informs on the effect
of the treatment in the specific subpopulation for which it
has been intended: ATT = E(Y1|A = 1) − E(Y0|A = 1). (In
both equations (ATE and ATT), we have removed the index
i due to averaging, and for the sake of notational simplicity,
we omit this index in the remainder of the article.)

The DRS is defined as δ(X) = E(Y0|X), which—under
the assumption of no unmeasured confounders, that is,
Y0 ⊥ A | X—is equal to E(Y0|A = 0, X) (5). The DRS

can be estimated in several ways. One option is to fit a
prognostic model in the control group; another option is to
use a historical cohort including only control individuals.
Compared with fitting a model to the same-sample control
group, the use of a large historical cohort of control
individuals may offer some advantages to reduce overfitting
(5, 12) and limit bias amplification in cases where the
assumption of no unmeasured confounders is not met (21).
Hansen (5) shows that the DRS has a balancing property
(called “prognostic balance”) that differs from that of the
propensity score (“covariate balance”): While conditioning
on the propensity score leads to balancing of the covariate
distribution per se, conditioning on the DRS leads to
balancing of the prognosis (i.e., the potential outcome that
would be observed under control exposure, conditionally
on the covariates). Thus, individuals sharing a same value
for the DRS can be regarded as having the same risk (or
prognosis) for the outcome, if they were to receive the
control exposure. This assumes that, all over the range of the
DRS, there exist control and exposed individuals who share
similar values of the prognostic score rather than similar
values of the covariates per se (i.e., the relaxed positivity
assumption). Hansen shows that the use of the DRS is
straightforward for the estimation of the ATT, as it requires
no information on the existence of effect modifiers (5). This
is because only the potential outcome under control exposure
is modeled, thereby resulting in partial exchangeability,
that is, Y0 ⊥ A | δ(X), which is sufficient for the ATT.
(Estimating the ATE would also require exchangeability
with respect to Y1, and therefore either the use of a second
DRS—that is, a prognostic score modeling E (Y1|X)—or
the assumption that the two DRSs are parallel—that is, there
are no effect modifiers (6).) Hansen shows that conditioning
on the DRS suffices for the following unbiased estimator of
the ATT: EA=1,δ(X) {E(Y|A = 1, δ(X)) − E(Y|A = 0, δ(X))} ,
where EA=1,δ(X) {·} denotes the expectation over the
distribution of the DRSs within the treated group (5).
This estimator can be regarded as the difference between
EA=1,δ(X) {E(Y|A = 1, δ(X))} = E(Y|A = 1), which is
the outcome expectation in the treatment group, and
EA=1,δ(X) {E(Y|A = 0, δ(X))}, which is the outcome expec-
tation in the control group conditional on having a
distribution of δ(X) similar to that in the treated arm. This
conditioning can be performed, for instance, by matching
(6, 9–13).

As alternatives to matching methods, we propose 2
weighting methods for estimating the ATT. One relates to
importance sampling; the other is similar to IPW based on
the propensity score (16, 18, 19).

First, to allow the DRS to be distributed as in the treated
group, one can construct weights using the following func-
tion, for which we suggest the name TDW:

WTDW {δ(X)} = A + (1 − A)
fA=1 {δ(X)}
fA=0 {δ(X)} .

Here, fA=1 {δ(X)} denotes the probability density function of
the DRS within the treated group, and fA=0 {δ(X)} denotes
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the probability density function of the DRS within the con-
trol group. To put it simply, the ratio fA=1{δ(X)}

fA=0{δ(X)} standardizes
the DRS distribution in the control group to that of the
treated group (i.e., the “target distribution”), thereby allow-
ing estimation of the ATT (see Web Appendix 1, available at
https://doi.org/10.1093/aje/kwad196). These density func-
tions can be estimated using a nonparametric kernel density
estimator.

Second, in a manner akin to the construction of weights
for IPW based on the propensity score (16, 18, 19), one
can show that the following weighting function also allows
unbiased estimation of the ATT (see Web Appendix 2):

WIPW {δ(X)} = A + (1 − A)
P(A = 1|δ(X))

1 − P(A = 1|δ(X))
.

Note that, as employed here for estimation of the ATT, this
form of IPW is often referred to as “standardized mortality
ratio weighting” in the epidemiologic literature (22). (We
keep the term IPW throughout, which is used in the statistical
literature to designate this class of estimators.) This method
requires the estimation of π {δ(X)} = P(A = 1|δ(X)), the
“prognostic propensity score” or “focused propensity score”
(23, 24), which is a propensity score including the DRS
as the sole variable. Such a propensity score is not new;
it has been previously proposed to balance the effect of
variables that are strongly associated with the outcome (23,
24). In Web Appendix 3, we show how IPW actually relates
to TDW.

Simulation study

We assessed the performance of the two proposed
methods, TDW and IPW, in a simulation study. We adopted
the design previously developed by Wyss et al. (9), who
studied the performance of DRS matching methods in
comparison with propensity score matching. We generated
100 confounders: X1 to X96 were drawn from a binomial
distribution with a probability equal to 0.5, and X97 to X100
were drawn from a standard normal distribution (mean 0 and
variance 1). Subsequently, we allocated the treatment expo-
sure according to a Bernoulli distribution with a probability

equal to P (A|X1, . . . , X100) = expit
{
α0 + ∑100

p=1αpXp

}
,

where expit {·} = 1
1+exp{−(·)} . We generated the potential

outcome that would be observed if all individuals were
to receive the treatment, following a Bernoulli distribu-
tion with a probability equal to P (Y1|X1, . . . , X100) =
expit

{
β0 + ∑100

p=1 βpXp + βA + βintX1

}
.

Similarly, we generated the potential outcome that would
be observed if all individuals were to receive control sta-
tus, following a Bernoulli distribution with a probability

P (Y0|X1, . . . , X100) = expit
{
β0 + ∑100

p=1 βpXp

}
.

Finally, we generated the observed outcome using Y in
the consistency equation: Y = AY1 + (1 − A) Y0. To allow
the 100 confounders to have different magnitudes and direc-

tions, we drew their effect α1, . . . , α100 on the treatment
exposure and their effect β1, . . . , β100 on the outcome, fol-
lowing uniform distributions with bounds [−0.182; 0.182]
(weak confounding scenarios), [−0.405; 0.405] (moderate

confounding scenarios), and [−0.7; 0.7] (strong confound-
ing scenarios). Finally, we set βA = 0 (i.e., null treatment
effect) and βint = 0 in scenarios without effect modification
and βint = 0.7 in scenarios with effect modification. We set
the sample size to n = 1, 000 and performed k = 1, 000
iterations.

For each scenario and iteration, we used 5 estimators:
1) the naive estimator; 2) the nearest-neighbor matching
estimator; 3) the optimal full matching estimator; 4) the IPW
estimator; and 5) the TDW estimator. The naive estimator
was simply the difference in average observed outcomes
across the treated and control groups. All matching and
weighting estimators were based on a DRS, which was esti-
mated by fitting a logistic regression model to a simulated
historical cohort including 10,000 control individuals (the
generation of this cohort followed the same procedure as
above, but without treatment exposure). Nearest-neighbor
matching was performed without replacement using a 1:1
ratio and a caliper width of 0.025 standard deviation of the
logit of the prognostic propensity score (9). Optimal full
matching was performed without replacement and caliper.
Contrary to nearest-neighbor matching, optimal full match-
ing preserves the complete sample and allows many individ-
uals to fall into the same “pair” (or subclass), such that the
overall average distance between matches becomes optimal
(25, 26). After matching, this approach assigns weights to
the matched pairs (or subclasses) such that their distribu-
tion approximates that of the target population (e.g., the
treated individuals). This rescaling is based on the proba-
bility (mass) function of the matched pairs. (See Nguyen
and Debray (6) for application of optimal full matching on
the DRS.) The IPW and TDW estimators were computed as
the weighted difference in outcome across the treated and
control arms after applying the aforementioned weighting
functions. To estimate the density functions necessary for
TDW, we used a Gaussian kernel estimator.

For each scenario, the true treatment effect was computed
as ATT = E{E (Y1|A = 1) − E(Y0|A = 1)} over all 1,000
iterations. Based on this true treatment effect, we computed
the bias and mean squared error (MSE) of each estimator
over all 1,000 iterations: bias = E

(
ÂTT−ATT

)
and MSE =

E
((

ÂTT − ATT
)2)

.
We present the R software code (R Foundation for Statis-

tical Computing, Vienna, Austria) for the simulation study
elsewhere (see Acknowledgments).

Illustrative case study 1

We applied the proposed estimators for DRS analysis
using synthetic data from patients with relapsing-remitting
multiple sclerosis. Our goal was to assess the effect of a
treatment on the Expanded Disability Status Scale (EDSS)
measured 36 weeks after baseline. The EDSS is a scale that
quantifies disability in 0.5-unit increments, and scores range
from 0 (no disability) to 10 (death due to multiple sclerosis).
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We combined the placebo arms from 4 clinical trials into
2 placebo treatment groups (27–30). We then generated
synthetic data for new (artificial) patients by adopting mul-
tiple imputation by chained equations. To ensure that both
placebo treatments had the same efficacy in the simulated
data set, treatment allocation was not used to inform the
generation of EDSS outcomes. This implies that the “true”
mean difference in EDSS between the treatment groups
was 0. Subsequently, to introduce baseline imbalance, we
selectively removed simulated patients from the treatment
groups. We labeled one group as “active” and the other
as “control.” The resulting data set was then treated as a
hypothetical observational nonrandomized study (see link in
Acknowledgments), where the “true” treatment effect was
expected to be 0.

We assessed the effect of the “active” treatment against
the “control” treatment on the EDSS score after 36 weeks.
To address confounding, we conducted a DRS analysis.
First, a DRS was derived in the “control” group using linear
regression. This model was then used to predict EDSS
score at 36 weeks for all (treated and control) patients,
using the baseline EDSS score and 20 additional baseline
covariates. Subsequently, we estimated the effect of “active”
treatment in the group of patients who received “active”
treatment (i.e., ATT) using 4 DRS methods as in our simula-
tion study: nearest-neighbor matching (1:1, no replacement,
caliper width of 0.025 standard deviation of the logit of the
prognostic propensity score), optimal full matching, IPW,
and TDW. As a reference, we also fitted a (naive) linear
regression model that only adjusted for received treatment
to estimate EDSS score at 36 weeks.

Ninety-five percent confidence intervals around the ATT
were obtained by bootstrapping (1,000 iterations), by taking
the 2.5th and 97.5th percentiles of the bootstrap distribution.
Each bootstrap loop included all analysis steps to take into
account the total uncertainty.

Illustrative case study 2

We reanalyzed data from the International Stroke Trial
(IST) (31). The IST was a large, multicenter, randomized,
placebo-controlled trial including 19,435 stroke patients
from 36 countries for which data are available in open
access (32). The IST evaluated the effect of aspirin on a
primary composite outcome of death or dependency (i.e.,
absence of autonomy) at 6 months (binary outcome) (31).
While the investigators found a modest beneficial effect of
aspirin versus placebo (−1.3% on an absolute risk difference
scale: 62.2% of patients’ experiencing the outcome vs.
63.5%), patients included in the trial received the treatment
at various initiation times (from 0 to 48 hours after the
onset of symptoms) (31). Nowadays, it is recommended
to initiate the administration of aspirin in stroke patients
as soon as possible (33); nonetheless, it is unclear to what
extent early administration of aspirin reduces the risk of the
outcome. In this reanalysis, we assessed the effect of early
aspirin administration (“treatment”; ≤8 hours after stroke
symptoms) as compared with late aspirin administration
(“control”; 9–48 hours after stroke symptoms). In this
regard, we focused our reanalysis on the aspirin arm of

the IST and analyzed it as an observational nonrandomized
study, since aspirin might have been initiated at different
time points due to confounding variables (e.g., age, sex, and
stroke symptoms of patients).

To address confounding, we conducted a DRS analysis.
First, a DRS was derived in the “control” group (i.e., patients
who received aspirin after 8 hours), since no historical cohort
of controls was available. We fitted a logistic regression
model including the following variables: age, systolic blood
pressure, sex, consciousness, previous computed tomogra-
phy scan, visible infarct on computed tomography scan,
stroke subtype, atrial fibrillation, aspirin intake within the
previous 3 days, and 8 function deficit variables (face deficit,
arm/hand deficit, leg/foot deficit, dysphasia, hemianopia,
visuospatial disorder, brainstem/cerebellar signs, or other
deficit). We used a restricted cubic spline with 3 knots to
handle nonlinearity of continuous variables (age and systolic
blood pressure). The fitted logistic model was used to return
a predicted DRS in all patients. Then, we estimated the
effect of early aspirin administration in the group of patients
who received aspirin at an early time (i.e., ATT), using 4
DRS methods as in our simulation study and first illustra-
tive case: nearest-neighbor matching (1:1, no replacement,
caliper width of 0.025 standard deviation of the logit of the
prognostic propensity score), optimal full matching, IPW,
and TDW.

Ninety-five percent confidence intervals around the ATT
estimate were obtained by bootstrapping (1,000 iterations),
by taking the 2.5th and 97.5th percentiles of the bootstrap
distribution. Each bootstrap loop included all analysis steps
to take into account the total uncertainty. For the sake of
simplicity and due to a low rate of missing data, we worked
on complete cases (94.1%; 9,148 out of 9,720 patients who
received aspirin).

RESULTS

Results of simulation study

Overall, the prevalence of the treatment exposure was
equal to 32.1%; that of the outcome was equal to 52.5%. As
shown in Figure 1, all 4 estimators based on the DRS con-
sistently estimated the ATT. The nearest-neighbor matching
and optimal matching methods led to a higher variabil-
ity in the estimates, when compared with IPW and TDW
(Figure 2). These two weighting methods performed best in
terms of mean squared error (Table 1).

On average, optimal full matching required the longest
computation time (0.1828 seconds/analysis), followed by
nearest-neighbor matching (0.0761 seconds/analysis). IPW
and TDW ran much faster than matching methods (0.0055
seconds/analysis for IPW and 0.0049 seconds/analysis for
TDW).

Supplementary simulations exploring different bandwidth
choices for TDW are described in Web Appendix 4 (see
results in Web Figures 1 and 2). We also performed an
additional series of simulations to explore complex scenarios
(Web Appendix 5), including positivity violation and model
misspecification, and a comparison with propensity score
weighting, direct substitution (i.e., G-computation), and a
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Figure 1. Estimates of the average treatment effect in the treated (ATT), according to different estimators based on the disease risk score
across simulations. Scenarios: A) weak confounding and no effect modification; B) weak confounding and the presence of effect modification;
C) moderate confounding and no effect modification; D) moderate confounding and the presence of effect modification; E) strong confounding
and no effect modification; F) strong confounding and the presence of effect modification. NNM, nearest-neighbor matching; OFM, optimal full
matching; IPW, inverse probability weighting; TDW, target distribution weighting. The top and bottom of the box represent the 75th and 25th
percentiles; the horizontal line inside the box represents the median; and the whiskers extend to the most extreme data point, which is no more
than 1.5 times the interquartile range from the box. The circle inside the box is the mean. The dotted line corresponds to the true ATT.
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Figure 2. Squared error of estimates of the average treatment effect in the treated (ATT), according to different estimators based on the
disease risk score across simulations. Scenarios: A) weak confounding and no effect modification; B) weak confounding and the presence of
effect modification; C) moderate confounding and no effect modification; D) moderate confounding and the presence of effect modification;
E) strong confounding and no effect modification; F) strong confounding and the presence of effect modification. NNM, nearest-neighbor
matching; OFM, optimal full matching; IPW, inverse probability weighting; TDW, target distribution weighting. The top and bottom of the box
represent the 75th and 25th percentiles; the horizontal line inside the box represents the median; and the whiskers extend to the most extreme
data point, which is no more than 1.5 times the interquartile range from the box. The circle inside the box is the mean.
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Table 1. Performance of Different Estimators of the ATT Based on the Disease Risk Score, Derived Using
Simulated Data (1,000 Replicated Samples)

Confounding Status Effect Modification Estimator Bias (×100) MSE (×100)

Weak No Naive −0.5617 0.1176

Weak No NNM 0.0046 0.1575

Weak No OFM 0.1013 0.1419

Weak No IPW −0.0659 0.1078

Weak No TDW −0.1076 0.1086

Moderate No Naive −1.7546 0.1435

Moderate No NNM −0.1308 0.1251

Moderate No OFM 0.0130 0.1102

Moderate No IPW 0.0313 0.0862

Moderate No TDW −0.0968 0.0873

Strong No Naive −3.0799 0.1994

Strong No NNM −0.1081 0.0910

Strong No OFM −0.0664 0.0825

Strong No IPW −0.0665 0.0688

Strong No TDW 0.0687 0.0702

Weak Yes Naive −0.5617 0.1250

Weak Yes NNM 0.0301 0.1671

Weak Yes OFM 0.1013 0.1557

Weak Yes IPW −0.0659 0.1159

Weak Yes TDW −0.1076 0.1165

Moderate Yes Naive −1.7546 0.1487

Moderate Yes NNM −0.1001 0.1344

Moderate Yes OFM 0.0130 0.1175

Moderate Yes IPW 0.0313 0.0953

Moderate Yes TDW −0.0968 0.0965

Strong Yes Naive −3.0799 0.1986

Strong Yes NNM −0.1496 0.0893

Strong Yes OFM −0.0664 0.0815

Strong Yes IPW −0.0665 0.0701

Strong Yes TDW 0.0687 0.0710

Abbreviations: ATT, average treatment effect in the treated population; IPW, inverse probability weighting; MSE,
mean squared error; NNM, nearest-neighbor matching; OFM, optimal full matching; TDW, target distribution
weighting.

doubly robust estimator. These simulations followed the
method of Kang and Schafer (34). Results are shown in Web
Figures 3 and 4.

Results of illustrative case study 1

The nonrandomized study based on synthetic data
contained 1,627 patients, with 500 receiving the “control”
treatment. For most baseline covariates, the distribution
substantially differed between the “control” and “active”
groups (absolute standardized mean differences > 0.10),
indicating potential confounding.

When estimating a naive treatment effect, without any
adjustment for baseline covariates, we found in the “active”

group an EDSS score at 36 weeks significantly lower than
the one found in the “control” group (0.33 (standard error,
0.07) points lower). This effect was mainly caused by con-
founding due to baseline EDSS score, which was much
lower in the “active” group (median, 2.0) than in the “con-
trol” group (median, 2.5). Although many other baseline
covariates were imbalanced, their prognostic effect on EDSS
score was much weaker.

When adjusting for differences in all of the observed base-
line covariates using the DRS, we found that all estimates of
the ATT were close to 0 (Table 2). In this illustrative study,
this meant that those individuals who were included in the
“active” group had, on average, no expected change in EDSS
score compared with the hypothetical scenario where they
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Table 2. ATT Estimates of the Placebo Treatment Effect (Versus Other Placebo Treatment (i.e., Expected True
Treatment Effect 0)) on EDSS Score at 36 Weeks in Patients With Relapsing-Remitting Multiple Sclerosis, on an
Absolute Difference Scale, Derived Using Synthetic Data

Estimator Estimation Time, secondsa Point Estimate 95% CIa

Naive 2 −0.33 −0.57, −0.30

Nearest-neighbor matching 29 0.02 −0.12, 0.10

Optimal full matching 1,897 0.07 −0.11, 0.13

Inverse probability weighting 6 0.06 −0.08, 0.13

Target distribution weighting 4 0.04 −0.09, 0.10

Abbreviations: ATT, average treatment effect in the treated population; CI, confidence interval; EDSS, Expanded
Disability Status Scale.

a Results are based on 1,000 bootstrap samples (nonparametric 95% CI: 2.5th and 97.5th percentiles).

were to receive the “control” placebo instead of the “active”
exposure.

The matching approaches required the most computa-
tional time, especially when 95% confidence intervals were
derived using bootstrapping (Table 2).

Results of illustrative case study 2

Among patients enrolled in the aspirin arm of the IST,
fewer than one-quarter received the treatment within 8 hours
following the onset of symptoms (23.6%; n = 2,161). In
this group, 1,443 patients (66.8%) were recorded with death
or dependency at 6 months versus 4,248 (60.8%) in the
group of patients who received aspirin later (after 8 hours).
After adjusting for confounding variables using the DRS, we
found that early initiation of aspirin resulted in a moderate
decrease in the outcome. This meant that patients who
received aspirin within 8 hours after a stroke had, on average,
an expected slight decrease in death/dependency at 6 months
compared with the hypothetical scenario where they were to
receive aspirin later (after 8 hours). Table 3 summarizes the
effects of early aspirin administration obtained from the 4
DRS estimators.

Although comparable results were found across the 4 DRS
estimators, the IPW and TDW estimators were much faster

to compute than nearest-neighbor and optimal full matching.
To complete the 1,000 bootstrap iterations, optimal full
matching required 20 hours, nearest-neighbor matching 10
minutes, IPW 87 seconds, and TDW 83 seconds (i.e., TDW
was more than 870 times faster than optimal full matching).

DISCUSSION

We propose 2 new weighting methods for estimating the
ATT using the DRS in nonrandomized studies. Presently, the
use of DRS analysis for confounder adjustment requires the
implementation of matching methods, which can be inef-
ficient and time-consuming. Results from our simulations
demonstrate that the proposed weighting methods yield valid
point estimates and outperform matching in terms of mean
squared error and computation time. The results from the
two illustrative case studies further support these findings.

Matching on the DRS allows researchers to estimate
treatment effects in samples in which treated and control
individuals are comparable in terms of potential outcomes.
Matching methods are often used because they offer several
practical advantages (e.g., nonparametric processing of
data, approximation of experimental design, reduction of
model-dependence (35)). However, implementing match-
ing requires decisions on the matching technique (e.g.,

Table 3. ATT Estimates of the Effect of Early Aspirin Administration on Death or Dependency (i.e., Absence of
Autonomy) at 6 Months in Ischemic Stroke Patients, on an Absolute Risk Difference Scale, Derived Using Data
From the International Stroke Trial, 1991–1996

Estimator Estimation Time, secondsa Point Estimate 95% CIa

Naive 6 0.06 0.04, 0.08

Nearest-neighbor matching 582 −0.01 −0.04, 0.01

Optimal full matching 72,498 0.00 −0.03, 0.01

Inverse probability weighting 87 −0.01 −0.02, 0.01

Target distribution weighting 83 0.00 −0.02, 0.02

Abbreviations: ATT, average treatment effect in the treated population; CI, confidence interval.
a Results are based on 1,000 bootstrap samples (nonparametric 95% CI: 2.5th and 97.5th percentiles).
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nearest-neighbor), sampling method (e.g., sampling with
replacement), matching ratio, and caliper size. Many differ-
ent combinations are possible, and it is not always clear how
those different choices may affect the estimates and target
estimands. Further, because the numbers of treated and
control individuals usually differ in nonrandomized studies,
techniques that are based on 1:1 matching necessarily prune
out data. This is all the more problematic when a caliper
is used to impose a maximal distance between matches,
resulting in estimation of the treatment effect within an
analytical subsample of the treated group (a subsample
including only individuals for whom a match has been
found) (36). (These analytical estimands are sometimes
referred to as feasible sample ATTs.) Although optimal full
matching has been proposed to preserve the complete sample
(14, 25, 37, 38), its implementation requires substantial
computation time, especially when bootstrapping is used
to make inferences as shown in our illustrative case studies.
This may particularly become problematic when using large
data sets or when combined with methods such as multiple
imputation of missing data.

We propose 2 simple weighting methods that may be
regarded as alternatives or complements to matching. The
first, which we called TDW, may be understood as the
smoothed analog of full matching. Full matching involves
a discretization of the DRS (i.e., creation of matched pairs
or subclasses) before rescaling of the data according to
the probability mass function of the discrete variable (i.e.,
the pair or subclass). In comparison, TDW preserves the
continuous nature of the DRS and standardizes the entire
distribution of the score to the one of the targeted population.
For instance, the probability density function of the DRS
can be approximated using a nonparametric kernel estimator.
Note that the TDW function is not restricted to the DRS;
it could also be applied to the propensity score or other
variables. To our best knowledge, no such approach of kernel
density weighting has been previously described.

In the econometrics literature, Heckman et al. (39–41)
proposed kernel-based estimators in matching analysis,
which weight untreated individuals proportionally to their
distance from their paired treated individual according to
a kernel smoothing bandwidth. In these studies, the kernel
method was not used to ascribe weights based on counterfac-
tual probability densities of the estimated propensity score.
In 1996, DiNardo et al. (42) proposed a weighting method
for estimating counterfactual densities, that is, probability
densities that would be observed under their counterfactual.
To this end, the authors presented a weighting function
including the probability of being in the arm of interest,
given a set of covariates (42). (DiNardo further described
this method of “propensity score reweighting” for estimating
the ATE in a later work (43); it is interesting to notice that
this method corresponded, in fact, to IPW.)

A key parameter of TDW is the smoothing bandwidth of
the kernel density estimator. Web Appendix 6 provides the
R codes for computing TDW, including an argument for the
bandwidth choice. The difficulty of selecting the optimal
bandwidth for causal inference has been discussed in the
econometrics literature by Imbens (44). This bandwidth
defines the degree of contribution of neighbors around a

particular value of the balancing score. The optimal choice
of this value should be explored in further studies, in compar-
ison with other methods of bandwidth selection, including
more flexible adaptive or variable bandwidths. TDW should
not be used in situations where the DRS is not continuous—
for example, if it includes only a few confounders that are
all categorical. In these unlikely situations, the direct use
of full matching methods (e.g., exact matching) should be
preferred. Further, because of relying on the nonparametric
modeling of 2 density functions, TDW can be challenged
in situations where nonparametric estimation is suboptimal.
In general, nonparametric modeling can become sensitive
in cases where outliers and misspecification are likely to
be present—for instance, when the outcome to be modeled
is not bounded or when underlying functional relationships
are complex. In additional simulations based on the work
of Kang and Schafer (34), we observed that such scenarios
led TDW to perform worse than IPW (see Web Appendix
5). This is probably because the estimates of the two density
functions required for TDW could be biased, which could
in turn introduce bias in the density ratio used as weight.
An alternative is to directly estimate the density ratio via a
classifier; this relates in fact to our second proposed method,
IPW (see Web Appendix 3 for theory).

The second weighting method we propose directly derives
from the well-known IPW approach based on the propensity
score. Applying IPW to the DRS requires the estimation of
a prognostic propensity score—that is, a propensity score
including the DRS as the sole variable (i.e., 1-to-1 mapping
on the propensity score space). In our simulation study, we
showed that both TDW and IPW were considerably faster to
compute and more efficient than matching when estimating
the ATT. Although this does not imply that weighting is
superior to matching, we hope that our approach facili-
tates comparative effectiveness research in situations where
matching is hardly feasible (e.g., a massive data set).

The additional series of simulations with scenarios of
positivity violation and important misspecification led to
complementary findings (see Web Appendix 5). First, under
the positivity violation, DRS weighting was more efficient
than propensity score weighting; this aligns with the theory
that the use of the DRS relaxes the need for the positivity
assumption. Second, under misspecification of the outcome
model, balancing (via weighting) the DRS reduced bias in
comparison with direct substitution with predicted outcome
values (i.e., G-computation). This finding aligns with the
missing-data literature, which recommends methods that
rebalance the distribution of the imputed values by, for
instance, borrowing an observed matched value (e.g., pre-
dictive mean matching), rather than directly imputing the
predicted values returned by a parametric model (e.g., see
Morris et al. (45)). In a way, DRS methods incorporate a
nonparametric balancing step to mitigate bias due to mis-
specification of purely parametric methods. In this regard,
the DRS methodology can be regarded as a semiparamet-
ric version of the use of the parametric G-formula. Third,
under misspecification of both the outcome model and the
propensity score model, the doubly robust estimator for the
ATT proposed by Mercatanti and Li (46) was slightly less
efficient than IPW based on the DRS. While the theory
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of Waernbaum (47) suggests that a misspecified DRS can
still possibly remove confounding bias after matching, we
emphasize that the generalizability of our finding is limited
to our specific scenarios (see Maldonado and Greenland
(48) for critical interpretation of simulation studies). It is
important to underscore that further work is needed to assess
how well our proposed methods generalize to settings not
considered here.

Our study should be considered under the conditions of
its limitations. Our weighting methods may depend on the
different parameters of the density estimator (e.g., smooth-
ing bandwidth, kernel, etc.) for TDW, and on the prognostic
propensity score for IPW. We did not propose DRS weight-
ing estimators for the ATE, since it would require weighting
functions based on the joint probability distribution of the
DRS and relevant effect modifiers. (See Hansen (5), who
shows that conditioning jointly on the DRS and effect mod-
ifiers is necessary to estimate the ATE.) We did not compare
our methods with propensity score methods. This compari-
son has been explored elsewhere (9, 11, 49, 50) and is out-
side the scope of our study. In this article, we aimed to extend
the range of methods suitable for the DRS. We did not study
the convergence rate of our estimators, nor did we provide
estimators for their standard errors (which should include the
uncertainty relating to all steps: from DRS estimation, prog-
nostic propensity score estimation, or kernel density estima-
tion to treatment effect estimation in the weighted sample).
In our illustrative case studies, we show how these standard
errors could be computed via bootstrapping. Our proposed
methods were applied and evaluated only in the case of time-
fixed settings. Yet, since the DRS is a semiparametric ver-
sion of the parametric G-formula, extension to a longitudinal
setting can be foreseen as long as the estimand is defined
on 1 exposure group (e.g., ATT). Finally, further studies
are needed to compare the performance of our proposed
weighting methods with other alternatives to matching, such
as fine stratification techniques (see Desai et al. (51)).

In conclusion, we propose DRS weighting methods for
estimating causal effects in nonrandomized studies of treat-
ments. These methods may be considered as alternatives or
complementary approaches to DRS matching and propen-
sity score methods. ATT estimates obtained by TDW and
IPW are relatively close to those obtained by matching
methods, and TDW and IPW are considerably faster than
matching in terms of computational time. Future studies are
needed to inform situations in which TDW and IPW methods
may be challenged (e.g., multiple categorical confounders
for TDW, extreme weights for IPW).
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