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Abstract

In silico investigations of enzymatic reactions and chemical reactions in condensed phases often 

suffer from formidable computational costs due to a large number of degrees of freedom and 

enormous important volume in phase space. Usually, accuracy must be compromised to trade for 

efficiency by lowering the reliability of the Hamiltonians employed or reducing the sampling time. 

Reference-potential methods (RPM) offer an alternative approach to reaching high accuracy of 

simulation without much loss of efficiency. In this perspective, we summarize the idea of RPM 

and showcase some recent applications. Most importantly, the pitfalls of these methods are also 

discussed, and remedies to these pitfalls are presented.
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Computer simulation is widely used nowadays for the study of chemical process and 

enzymatic reactions. However, applications of computer simulation still inevitably face 

three fundamental challenges, as have been summarized in a recent review by Hansen 

and van Gunsteren, namely the insufficient/inefficient sampling of the phase space, limited 

accuracy of the Hamiltonian describing the interaction potential, and the statistical reliability 

of the methods for data post-processing.1 Unfortunately, the first two difficulties require 

opposite solutions, thus posing a great dilemma. If one wants to reach a longer time 

scale (so interesting physical processes may take place), some further approximations 

to the Hamiltonian in use will be required. On the other hand, in order to achieve 

a higher accuracy, one needs to employ a higher-level Hamiltonian, which will further 

limit the simulation time scale. This dilemma becomes even irreconcilable when studying 

chemical reactions or enzymatic reactions, in which a hybrid quantum mechanical molecular 

mechanical (QM/MM) description (QM for atoms involved directly in bond forming/

breaking and MM for solvent and enzyme atoms) is required. In order to fully converge 

the calculations of thermodynamic properties along a reaction, tens of ns of simulation 

time must be performed, while the time step for all-atom QM/MM molecular dynamics 

(MD) simulation is typically 0.5 or 1.0 fs. Each step of QM/MM MD propagation may take 

hundreds or thousands of seconds on a mainstream computer. Therefore, a single QM/MM 

MD simulation may take years or even tens of years of wall-clock time on a single computer. 

Although the simulation can be massively parallel on modern supercomputers, it is still too 

expensive for routine use. Therefore, it is essential to develop a more efficient methodology 

for sampling a large number of configurations. For the trajectory analysis, on the other hand, 
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the calculations of statistical averages require independent and identically distributed (i.i.d.) 

samples. In order to avoid dependency among the sampled configurations, the sampling time 

interval should be no less than the correlation time of the physical properties in question. For 

simulations in condensed phase, the correlation time is on the order of ps. With a time step 

around 1 fs, only one configuration in every 1000 or more propagation steps can be used for 

further analysis, with the remaining 99.9% of the configurations discarded. Such a need to 

sample a large number of configurations of a condensed-phase system and then use only a 

small percentage of these configurations for subsequent analysis opens up the opportunity 

for more efficient sampling/analysis methodologies.

To this end, in the 1990s Gao and Warshel and his coworkers independently proposed the 

reference-potential method (RPM) for the calculations of hydration free energy and the free 

energy profiles for chemical reactions.2-5 Basically, the RPM is an importance sampling 

method, which exploits the fact that the expectation

E[f(X)] = ∫ f(x)p(x) dx ≈ 1
N ∑

n = 1

N
f(xn)

under the distribution function p(x), which is unavailable or difficult to obtain, can be 

efficiently calculated via

E[f(X)] = ∫ f(x)p(x)
q(x) q(x) dx ≈ 1

N ∑
n = 1

N f(xn)p(xn)
q(xn)

with samples drawn from an easy-to-get distribution q(x), if the surrogate distribution q(x)
is very close to the target distribution p(x). In the RPM, an initial simulation is carried 

out utilizing some inexpensive (surrogate) potential energy functions, such as empirical 

valence bond (EVB)6 and AM1,7 which is expected to be close to the target potential-of-

interest, usually the ab initio (ai) Hamiltonians. A perturbation rectification in the spirit 

of the second equation above is performed in a subsequent step to obtain the statistical 

properties at the level of the potential-of-interest. Inspired by these pioneering works, the 

RPM have emerged as powerful tools and have been applied in many studies, especially 

for the calculations of free energy landscapes. The pioneering work of Rod and Ryde 

in utilizing the RPM for the computation of free energy barriers in a methyl transfer 

reaction catalyzed by catechol O-methyltransferase is discussed. Their innovative approach 

of combining molecular mechanical calculations with density functional theory corrections 

has provided valuable insights into the underlying thermodynamics of this biologically 

important process.8 Beierlein et al. have made significant contributions to the field by 

applying the RPM to the calculation of free energy of protein-ligand binding,9 and two 

years later, Polyak et al. introduced a RPM called dual-Hamiltonian free energy perturbation 

(DH-FEP) for calculating free energy profiles of chemical reactions.10 König et al. have 

made notable progress by incorporating the Bennett acceptance ratio method into the 

RPM simulations, leading to the development of the non-Boltzmann Bennett acceptance 

ratio (NBB) method. This refined approach has demonstrated improved accuracy in free 
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energy calculations, paving the way for more precise results in future studies. Dybeck et 
al. compared the performance of NBB and Multistate Bennett Acceptance Ratio (MBAR) 

in solvation free energy calculations and showed that the variances are marginally smaller 

for MBAR.11 Jia et al. proved the superiority of the BAR+TP approach for RPM-based 

free energy calculations. Their comprehensive analysis has established the optimal path 

for accurate calculations.12 Hudson et al. incorporated energy reweighting into the chain-of-

replicas method and the non-equilibrium simulation method for the computations of free 

energy profiles.13,14 Their pioneering work has opened up new avenues for the applications 

of RPM. Piccini and Parrinello combined the RPM with metadynamics for the first time to 

study the free energy profile of a SN2 reaction.15 Giese and York integrated force matching 

into the molecular mechanics potential tuning process to enhance the similarity between 

MM and QM/MM potentials, resulting in a higher convergence rate of RPM.16 Rizzi et 
al. have advanced the field by integrating the RPM with machine learning, employing 

normalizing flow to assist in the correction from reference potential to target potential. Their 

innovative approach has the potential to revolutionize free energy calculations, offering 

a promising direction for future research in this area.17 Giese et al. have extended the 

idea of RPM by proposing the generalized weighted thermodynamic perturbation (gwTP) 

method.18 This novel approach, utilizing multiple reference potentials in umbrella sampling 

and piecing together free energy profile segments, can be used seamlessly with redundant 

neural network potentials from active learning and it has the potential to significantly 

advance the accuracy and efficiency of free energy calculations.19,20

In this perspective, we will first briefly introduce the statistical basis of the RPM, and then 

showcase some applications of the RPM conducted in our own groups. Finally, we will 

discuss potential future directions in RPM-based free energy simulations.

Theory

Due to the large gap in spatial-temporal scales between experimental physical/chemical 

processes and all-atom simulations, enhanced sampling on multiple thermodynamic states 

is now routinely employed to accelerate the exploration in phase space. For the study 

of chemical reactions, the most widely used enhanced sampling method is the umbrella 

sampling (US) method, 21 in which a direct propagation from reactant to product is replaced 

by stratified windows aligned along a pre-assumed low-dimensional reaction pathway. For 

the simulation in each window, a (harmonic) restraining potential is applied to keep the 

system in the vicinity of a prescribed phase space and prevent it from falling back to the 

reactant or product states, which can be written as

Uk(r) = U0(r) + ΔUk(ξ(r))

(1)

for the kth thermodynamic state. U0 and ΔUk are the unbiased and the restraining potential 

energy functions, and ξ is the collective variable (CV) describing the reaction process. In 

normal US calculations, U0 is the Hamiltonian-of-interest. However, in the RPM, it is the 

reference Hamiltonian. In each sampling window, the degrees of freedom (DoF) orthogonal 
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to ξ need be adequately sampled before the convergence can be reached. However, hidden 

barriers may slow down the exploration of the orthogonal DoF, thus long-time simulations 

are sometimes desirable.

After running K window simulations using a series of biased potential Uk(r), each simulation 

contributes Nk samples. All the samples are assembled together for the calculations of the 

expectation of any thermodynamics properties under the unbiased Hamiltonian U0 via

O
0

=
∑n = 1

N ω0(rn)O(rn)

∑n = 1
N ω0(rn)

,

(2)

where N = ∑k = 1
K Nk is the total number of samples, and ω0(rn) is the unnormalized weight of 

sample n under the unbiased Hamiltonian U0. Using the MBAR,22 the weight can be written 

as

ω0(r) = e−βU0(r)

∑k = 1
K Nke−β[Uk(r) − fk]

,

(3)

where

fk = − β−1 ln ∑
n = 1

N e−βUk(rn)

∑k′ = 1
K Nk′e−β(Uk′(rn) − fk′)

, ∀ k = 1, …, K

(4)

is the estimated free energy of state k and must be solved iteratively. The uncertainties can 

be estimated using the asymptotic covariance, bootstrapping or the block average.22,23 With 

the estimated free energy of the unbiased state

f0 = − β−1 ln ∑
n = 1

N e−βU0(rn)

∑k = 1
K Nke−β(Uk(rn) − fk)

,

(5)

the normalized weight under the unbiased Hamiltonian can be written as

ω0(r) = e−β(U0(r) − f0)

∑k = 1
K Nke−β(Uk(r) − fk)

.

(6)

It can be seen from the formulation above that in US simulations we only carry out biased 

simulations, from which unbiased properties can be obtained. This is an extrapolation 
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process in the Hamiltonian space, although this extrapolation is usually mild, and the 

calculated unbiased properties are reliable with small magnitude of uncertainties. Similarly, 

given sufficient samples, we can apply extrapolation to any other states, for instance to the 

target Hamiltonian in the RPM. The normalized weight under the target Hamiltonian Ut is 

now written as

ωt(r) = e−β[Ut(r) − ft]

∑k = 1
K Nke−β[Uk(r) − fk]

= e−βΔUt(r)

∑k = 1
K Nke−β[ΔUk(ξ(r)) − (fk − ft)]

,

(7)

with

e−βft = ∑
n = 1

N e−β[ΔUt(rn)]

∑k = 1
K Nke−β[ΔUk(ξ(rn)) − fk]

(8)

being the normalization factor. The “agressiveness” of the extrapolation depends on the 

distribution width of the difference ΔUt(r) between the target Hamiltonian Ut and the 

reference Hamiltonian U0. The second line of Eq. 7 indicates that it can be considered as a 

weighted free energy perturbation. Thermodynamic properties under the target Hamiltonian 

can thus be calculated via

O
t
= ∑

n = 1

N
ωt(rn)O(rn) .

(9)

The operator O can, for instance, measure the bond length, the charge distribution, etc. When 

it is the indicator function

δ(ξm − ξ(rn)) =
1, if−δξ ∕ 2 < ξm − ξ(rn) ≤ δξ ∕ 2
0, otherwise

,

(10)

its ensemble average yields potential of mean force (PMF), up to an additive constant,

F t(ξm) = − β−1 ln ∑
n = 1

N
ωt(rn)δ(ξm − ξ(rn))

(11)

Wang et al. Page 6

J Phys Chem Lett. Author manuscript; available in PMC 2024 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Applications

Proton transfer between titratable groups is ubiquitous in biomolecules. As a simplest 

model system, tautomerization reaction within a glycine molecule in aqueous solution was 

studied by us using the RPM.24 The semiempirical methods PM3 and PM6 were chosen 

as the reference potential, and the target potential was the density functional theory with 

the B3LYP functional and 6-31G(d) basis set. The free energy profiles show significant 

Hamiltonian dependency. As shown in Fig. 1.a, under the PM3 level, the free energy 

profile is qualitatively wrong, where the reaction free energy is nearly zero. PM6 yields 

qualitatively correct free energy profile. However, it overestimates the reaction free energy 

as compared to the result under the DFT level of theory. As shown in Fig. 1.b, after the 

corrections from the PM3 and PM6 levels to the DFT level, the free energy profiles show 

much improved agreement with the direct DFT calculation, while the computational cost of 

this indirect approach is only 3.4% of the direct approach.

With a continuous development of force fields, classical molecular modeling using force 

fields is becoming more and more accurate.28-35 However, there is still room for further 

improvement. Currently, the quality of force fields is improved via either introducing more 

atomic types or the introduction of extra terms in the functional forms as in the polarizable 

force fields.32,36,37 Both approaches require computation-intensive benchmarking. As an 

alternative solution, the RPM can be applied to improve the accuracy of classical force 

field based simulations. For 3-hydroxypropanal, for instance, the free energy profile for 

the dihedral rotation along the C─C bond (shown in Fig. 1.c) at the molecular mechanics 

(MM) level of theory was calculated via the MBAR analysis over the umbrella sampling 

trajectories, and it was extrapolated using RPM to the QM/MM level with the solute 

molecule in the QM region and the remaining atoms in the MM region. Figure 1.c shows 

the free energy profiles at the MM and B3LYP/6-31G(d)/MM levels, in which the shaded 

areas are the 95% confidence region. The profiles show different preference for the planar 

(dihedral angle ≈ 180°) and nonplanar (dihedral angle ≈ ±60°) structures at the MM and 

QM/MM levels of theory.

The microscopic explanation to the endo/exo stereoselectivity of the Diels–Alder (DA) 

reaction between cyclopentadiene and methyl vinyl ketone (MVK) in the aqueous solution 

has posed a challenge to the computational chemists.38-43 Quantum mechanical calculations 

utilizing a continuum model for solvent often fail to accurately predict the reaction barrier. 

Therefore, sampling of the reaction at a high level of theory in explicit solvent model 

is needed. With the RPM, the US was performed at the PM6/MM level, and later an 

extrapolation to the B3LYP/MM level was carried out.25 The statistical analysis at the 

B3LYP/MM level shows that the stereoselectivity mainly comes from the solvation effect. 

At their respective transition states, the first peak of the solvent distribution around 

the oxygen atom in MVK is slightly closer for the endo pathway than that for the 

exo pathway (shown in Fig. 1.d). Although one order of magnitude smaller than the 

experimental measurement, the predicted endo/exo ratio is qualitatively correct. A further 

improvement will require a more accurate QM/MM Hamiltonian as the target potential, 

longer simulations, and a more rational definition of the collective variable.
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The accuracy of QM/MM calculations depends on not only the Hamiltonian of the QM 

region, but also the partitioning scheme of the QM and MM regions. With a small 

QM region, one achieves higher computational efficiency often at a sacrifice of the 

computational accuracy.44-48 For most cases, the QM region is chosen with chemical 

intuition, and the convergence of the calculated properties with respect to the QM size is 

rarely checked in actual application projects due to the steep computational cost. Moreover, 

QM/MM calculations may face technical difficulties when the reactive region is varying 

over time. For instance, some solvent molecules may directly participate in the reaction 

beyond serving as a dielectric medium, and the exchange of water molecules between the 

reactive QM region and the surrounding MM region may occur on a time scale similar to 

the reaction time. In addition to the existing restrained QM/MM methods49-51 and adaptive 

QM/MM methods,52-59 RPM has been suggested as an alternative solution. The nucleophilic 

addition inside the 4-(dimethylamino)butanal molecule is a typical example. In this reaction, 

the solvent molecules stabilize the reaction product by accepting excess electrons from the 

aldehyde group. In the actual condensed phase system, the solvent molecules in different 

solvation layers surrounding the aldehyde group may exchange, resulting in a large scale 

of permutation. However, partitioning of the QM and MM regions with some solvent 

molecules included in the QM region breaks this symmetry, and once the exchange occurs, 

it may result in discontinuity in the QM region. Basically speaking, different QM/MM 

partition schemes correspond to different Hamiltonians. In order to avoid this technical 

difficulty, the lowest level of the partitioning scheme, where the QM region contains only 

the 4-(dimethylamino)butanal molecule, was utilized in our work as the reference potential, 

while the target potential encompasses several nearest solvent molecules in the QM region.26 

As shown in Fig. 1.e, by extrapolating from a semiempirical Hamiltonian to a DFT level 

of theory and from the minimal QM region to larger QM regions with different number of 

solvent molecules, the accuracy could be improved and the convergence with respect to the 

QM size can be examined with remarkably increased efficiency.

The RPM can be applied not only to the classical QM/MM trajectories but also to 

the path integral QM/MM molecular dynamics simulations for the studies of quantum 

delocalization of light particles such as protons. As a typical example, the protonated 1,8-

bis(dimethylamino)naphthalene (DMANH) molecule has a short hydrogen donor-acceptor 

distance.60 Therefore, the quantum tunneling effect for the proton transfer between the two 

nitrogen atoms can be nonnegligible. Using the RPM, the simulation time was extended by 

us to a scale of nanoseconds at the PM6/MM level with 16 beads for each QM atom, and 

then a PM6/MM to BLYP-D3/6-31G(d)/MM extrapolation was applied. Our results showed 

that the lowest-free energy structure at the PM6/MM level prefers a relatively more localized 

proton, while at the DFT level of theory a more diffused proton is preferred (See Fig. 

1.f). A 545-fold reduction in the total CPU time was achieved while reaching the accuracy 

comparable to the DFT level of theory.27

Remedies to Pitfalls

It can be seen from Eq. 7 that the RPM is fundamentally a free energy perturbation (FEP) 

method with energy difference appearing in the exponent in the numerator, only that each 

configuration has a unequal weight. Therefore, it naturally inherits the numerical difficulty 
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of FEP, i.e. the width of the distribution of Ut(r) − U0(r) determines the convergence rate 

with respect to the sample size.61-66 Any methods that can shrink the distribution width 

of Ut(r) − U0(r) can improve the convergence. Quantitative criteria to guide the convergence 

are long desired. So far, many criteria have been promoted, such as the variance of energy 

difference σ,67,68 bias measure Π,63,69 and overlap matrix.70 To characterize the reliability of 

the TP calculation, the “reweighting entropy”71 is introduced, which is defined as

St(ξm) = −
∑n = 1

N δ(ξm − ξ(rn))ωt
m(rn) ln ωt

m(rn)

ln∑n = 1
N δ(ξm − ξ(rn))

,

(12)

for the samples collected in the mth bin around ξm, and

ωt
m(rn) = ωt(rn)

∑n = 1
N δ(ξm − ξ(rn))ωt(rn)

,

(13)

which are normalized in the mth bin. It measures the flatness of the distribution of weight 

ωt(rn). An even distribution of ωt leads to St close to 1, while a sharply distributed ωt (only a 

very small number of samples have a non-negligible weight) makes St close to 0.

Another metric is the smoothness of the density of states (DoS). Rewriting the definition 

of the potential of mean force under the target Hamiltonian as an integral in the space of 

ΔU(r) = Ut(r) − U0(r)

F t(ξm) = − β−1 ln ∑
n = 1

N
ωt(rn)δ(ξm − ξ(rn))

= − β−1 ln∫
−∞

∞
Ω(ΔU)ξm exp ( − βΔU) dΔU + C,

(14)

where

Ω(ΔU)ξm = ∑
n = 1

N δ(ΔU − ΔUt(rn))
∑k = 1

K Nk exp [βfk − βΔUk(ξ(rn))]
δ(ξm − ξ(rn))

(15)

is the DOS of ΔU in the mth bin around ξm,

δ(ΔU − ΔUt(rn)) =
1, if−δΔU ∕ 2 < ΔU − ΔUt(rn) ≤ δΔU ∕ 2
0, otherwise

(16)
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is again the indicator function, and C is an irrelevant constant.72 With a continuous energy 

function, the DOS should be continuous intrinsically. However, with finite samples, the 

estimated DOS can be noisy, especially in the rarely sampled region. This sampled noise 

in the low energy region may deteriorate the calculated ensemble averages. With a large 

number of samples, Ω(ΔU)ξm can be fitted to a Gaussian with the mean being

ΔUξm =

∑n = 1
N ΔU(rn)

δ(ξm − ξ(rn))
∑k = 1

K Nk exp [βfk − βΔUk(rn)]

∑n = 1
N δ(ξm − ξ(rn))

∑k = 1
K Nk exp [βfk − βΔUk(rn)]

(17)

and the variance

σξm
2 =

∑n = 1
N ΔU(rn) − ΔUξm

2 δ(ξm − ξ(rn))
∑k = 1

K Nk exp [βfk − βΔUk(rn)]

∑n = 1
N δ(ξm − ξ(rn))

∑k = 1
K Nk exp [βfk − βΔUk(rn)]

.

(18)

With this Gaussian-shaped DoS, the probability of falling into the small energy bin with a 

width of δΔU near ΔU is

ρG ΔU ± 1
2δΔU = 1

2πσξm
∫ΔU − 1

2 δΔU

ΔU + 1
2 δΔU

exp −
ΔU − ΔUξm

2

2σξm
2 dΔU .

(19)

While, the sampled probability is

ρS ΔU ± 1
2δΔU =

∑n = 1
N δ(ξm − ξ(rn))δ(ΔU − ΔU(rn))

∑k = 1
K Nk exp [βfk − βΔUk(rn)]

∑n = 1
N δ(ξm − ξ(rn))

∑k = 1
K Nk exp [βfk − βΔUk(rn)]

.

(20)

By rescaling the sample weights via

ωt
′(rn) = ωt(rn) ⋅

ρG ΔU ± 1
2δΔU

ρS ΔU ± 1
2δΔU

,

(21)

the potential of mean force becomes

Wang et al. Page 10

J Phys Chem Lett. Author manuscript; available in PMC 2024 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



F t(ξm) = − β−1 ln ∑
n = 1

N
ωt

′(rn)δ(ξm − ξ(rn)) .

(22)

The results show that with this Gaussian smoothing over the DoS, the potential of mean 

force becomes much less noisy as shown in Fig. 2.a.

Most semiempirical QM/MM Hamiltonians show limited similarity to ab initio QM/MM 

Hamiltonians, therefore the important region in the phase space on a semiempirical 

QM/MM (free) energy surface does not necessarily cover the important region of ab 

initio QM/MM ones. It may lead to aggressive extrapolation if the RPM is employed, 

and a slow convergence may deteriorate the calculation results. Even when the free 

energy properties can be restored by the correction from the reference potential to the 

target potential, the recovery of the geometric properties, e.g. the reaction pathway in a 

two-dimensional or ever higher-dimensional space, can be much more difficult. By simply 

altering the importance of each sample, one does not gain access to the unsampled important 

configurations of the target Hamiltonian. In order to strength the similarity between the 

reference and the target Hamiltonians, calibration of semi-empirical Hamiltonians via force 

matching is one of the promising approaches. By constraining the parameters within ±5% 

of their original values, the parameters of the standard PM3 method were optimized using 

the force matching method against the B3LYP/6-31G(d) level of theory for a series of 

reactions in a recent work.73 As shown in Fig. 2.b, the reparametrized PM3 method can 

produce a much improved reaction pathway projected in a 2D CV space for the chorismate 

mutase reaction. After a correction from this newly reparametrized PM3 Hamiltonian to 

the DFT Hamiltonian, the free energy profile was accurately reproduced. Although such 

a reparametrization of the semi-empirical Hamiltonian against high level QM methods 

for molecules of interest can improve the convergence rate of RPM, the magnitude of 

improvement is usually limited due to the relatively small number of parameters available 

for tuning. Artificial neural network (ANN) granted us a capability to further correct the 

semi-empirical Hamiltonians towards higher-level Hamiltonians. In a recent study, we 

trained a delta machine learning potential (ΔMLP) to reproduce the differences between 

the ai-QM/MM and semiempirical (se) QM/MM energies and forces. With this machine 

learning correction to the semi-empirical Hamiltonian, the ai-QM/MM energy and forces 

could be well reproduced with errors less than 1.0 kcal · mol−1 and 1.0 kcal · mol−1 · 

Å−1, respectively, on average for representative configurations along the reaction pathway 

for Menshutkin and chorismate mutase reactions.74 Thus, the free energy profiles and the 

reaction pathways show much improved agreement with the ground truth (at the DFT level 

of theory) as shown in Fig. 2.d. Such machine-learning assisted potential refinement can 

be greatly helpful for enhancing the applicability of RPM. It is important to note that the 

final results, such as the free energy barrier and reaction free energy, are highly dependent 

on the choice of target Hamiltonian, which we have intentionally set as density functional 

theory with a small basis set for the sake of convenience in presentation. However, a 

higher level of theory may be desirable for comparison with experimental measurements. 

For example, Brickel and Meuwly reported a barrier of 12.4 kcal/mol for the chorismate 
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mutase reaction at the MP2/6-311++G(2d,2p) level of theory,75 which closely agrees with 

our study’s result of 12.1 kcal/mol. In contrast, Turan et al. obtained a barrier of 18.0 

kcal/mol for the Menshutkin reaction at the same MP2/6-311++G(2d,2p) level of theory,76 

which is 2.7 kcal/mol higher than our DFT level of theory result. The choice of a suitable 

target Hamiltonian or improving the density functional’s quality is beyond the scope of this 

perspective. Therefore, readers should exercise caution in selecting the target Hamiltonian, 

as the accuracy of the RPM method cannot exceed that of the chosen target Hamiltonian.

Parallel to the idea of improving the reference potential, the convergence of RPM can be 

facilitated by optimizing the mapping from the configurations from the reference potential 

sampling to those from the target potential utilizing elegant mathematical transformations, 

such as targeted free energy perturbation (TFEP)77-79 and normalizing flow.17 The basic 

idea of TFEP is to find an optimal auxiliary state A′ (B′), which can be mapped from 

the sampled state A (B) via an invertible transformation ℳ (ℳ−1) and has more significant 

overlap with the target state B (A) than A (B) does. Therefore, the FEP from the auxiliary 

state to the target state converges faster than the original FEP from the sampled state 

to the target state.77 However, for a complex system, the optimal ℳ is difficult to find. 

Wirnsberger et al. proposed to use normalizing flow for the mapping and optimize the 

parameters79 by minimizing the Kullback-Leibler (KL) divergence (DKL[PA′ ∣ ∣ PB] and/or 

DKL[PB′ ∣ ∣ PA]). Rizzi exploited the fact that this idea can also be used for the calculation 

of free energy surfaces, and they applied this method to the analysis of the samples from 

umbrella sampling using

F t(ξm) = − β−1 ln ∑
n = 1

N e−βΔUt
′(rn)

∑k = 1
K Nke−β[ΔUk(ξ(rn)) − fk]

δ(ξm − ξ(rn)),

(23)

where ΔUt
′ is the energy difference between the auxiliary state mapped from the target 

Hamiltonian and the reference Hamiltonian.17 Here, the equation has been reformulated 

instead of the weighted FEP form in their original paper. They showed that this 

configuration mapping using normalization flow can accelerate the convergence of RPM 

for an asymmetric SN2 reaction.

Outlook

In this Perspective, we have reviewed the theory and applications of reference-potential 

methods, while also highlighting their limitations. Despite progress in improving the 

robustness of these methods, it is crucial for practitioners to be aware of potential sources 

of error and regularly assess convergence of results. Looking forward, we anticipate that 

further advancements in quantum chemistry and machine learning, such as the emergence 

of new semi-empirical quantum mechanical methods,80,81 transfer learned and Δ-machine 

learned potential energy functions,82-84 and optimal transport theory85 etc, will significantly 

improve the applicability of reference-potential methods in the near future. Moreover, we 

believe that these methods can help bridge the gap between computational studies and 
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experimental investigations, and thereby strengthen the use of computational methods for 

understanding and interpreting experiments.
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Figure 1: 
Some applications of RPM. The PMF for proton transfer within glycine molecule in water 

solution (a) at semi-empirical levels, and (b) the ones at the DFT level after the correction 

using RPM. Reproduced from Ref. 24. Copyright [2018] American Chemical Society. (c) 

The PMF of the dihedral rotation in 3-hydroxypropanal at the MM level and the extrapolated 

B3LYP/6-31G(d)/MM level using RPM. (d) Solvent radial distribution near the oxygen atom 

in methyl vinyl ketone (MVK) averaged over the transition-state ensembles under PM6 

Hamiltonian (top) and B3LYP Hamiltonian (bottom) for the endo pathway (red) and the exo 

pathway (green). Reproduced from Ref. 25. Copyright [2019] American Chemical Society. 

(e) Free energy profiles at the PM6 level without solvent molecules in the QM region 
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and at the DFT/MM levels with different numbers of water molecules in the QM region. 

Reproduced from Ref. 26. Copyright [2021] American Chemical Society. (f) The PMF of 

the proton transfer in the protonated 1,8-bis(dimethylamino)naphthalene molecule under 

different levels of theory. Reproduced from Ref. 27. Copyright [2021] American Chemical 

Society.
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Figure 2: 
a. Density-of-states in a certain CV bin and the free energy profiles for the glycine 

proton transfer. Reproduced from Ref. 72. Copyright [2020] American Chemical Society. 

b. Reaction pathways for the identity SN2 reaction, Menshutkin reaction, glycine 

intramolecular proton transfer reaction in explicit TIP3P water molecule, and the chorismate 

to prephenate reaction in chorismate mutase. Reproduced from Ref. 73. Copyright [2019] 

the Royal Society of Chemistry. c. Sampled pathway and free energy profiles for the 

Menshutkin reaction and the chorismate mutase reaction. Reproduced from Ref. 74. 

Copyright [2021] American Chemical Society.
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