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ABSTRACT

Evidence supports significant interactions among microbes, immune cells,
and tumor cells in at least 10%–20% of human cancers, emphasizing the
importance of further investigating these complex relationships. However,
the implications and significance of tumor-related microbes remain largely
unknown. Studies have demonstrated the critical roles of host microbes
in cancer prevention and treatment responses. Understanding interac-
tions between host microbes and cancer can drive cancer diagnosis and
microbial therapeutics (bugs as drugs). Computational identification of
cancer-specific microbes and their associations is still challenging due to
the high dimensionality and high sparsity of intratumoralmicrobiomedata,
which requires large datasets containing sufficient event observations to
identify relationships, and the interactions within microbial communities,
the heterogeneity in microbial composition, and other confounding effects
that can lead to spurious associations. To solve these issues, we present a
bioinformatics tool, microbial graph attention (MEGA), to identify the mi-
crobes most strongly associated with 12 cancer types. We demonstrate its

utility on a dataset from a consortium of nine cancer centers in the On-
cology Research Information Exchange Network. This package has three
unique features: species-sample relations are represented in a heteroge-
neous graph and learned by a graph attention network; it incorporates
metabolic and phylogenetic information to reflect intricate relationships
within microbial communities; and it provides multiple functionalities for
association interpretations and visualizations. We analyzed 2,704 tumor
RNA sequencing samples and MEGA interpreted the tissue-resident mi-
crobial signatures of each of 12 cancer types. MEGA can effectively identify
cancer-associated microbial signatures and refine their interactions with
tumors.

Significance: Studying the tumor microbiome in high-throughput se-
quencing data is challenging because of the extremely sparse data matrices,
heterogeneity, and high likelihood of contamination. We present a new
deep learning tool, MEGA, to refine the organisms that interact with
tumors.
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Introduction
The study of microbial communities and their impact on human health has
gained increasing attention over the past decade (1). The role of intratumoral
microbes in the tumor microenvironment has become an increasingly im-
portant area in studying the development and progression of cancer (2). The
intratumoral microbiome affects outcomes in several cancers, including Fu-
sobacterium nucleatum in the development of colon cancer and Helicobacter
pylori in stomach cancer. To explore the relationship between the microbiome
and cancer, large-scale genomic datasets such as The Cancer Genome Atlas
(TCGA)have been utilized. In this context, theOncologyResearch Information
Exchange Network (ORIEN) provides a real-world dataset consisting of clini-
cal, genomic, and transcriptomic data collected under an Institutional Review
Board (IRB)-approved common protocol known as Total Cancer Care (TCC).
It represents a valuable resource for identifying intratumoral microbes from
various cancer types (3). Advances in sequencing technologies have provided
large-scale human tissue sequencing data, which enables the characterization
of the tissue-resident metagenome. However, exploring the links between the
intratumoral microbiome and cancer tissues is ongoing due to the difficulties
in obtaining clinical biopsies specifically dedicated to microbial profiling.

While the interplay between cancer-specific gene–microbe interactions has
garnered attention, the evolutionary underpinnings driving these interactions
remain largely underexplored. The principle of evolutionary biology posits that
phylogenetically related organisms frequently share analogous functional at-
tributes, an inheritance from a common evolutionary ancestor (4, 5). Closely
related species usually have similar biological functions, and they are likely to
be associated with the outcome simultaneously, which suggests that closely re-
lated species often exhibit similar traits due to their shared ancestry (6–8). For
instance, a study highlighted the anticancer potential inherent in specific strains
of the Streptomyces genus in the intestinal microbiota. Intriguingly, within this
genus, species composition showed nuanced variations across age brackets, al-
luding to the possibility that a bacterial species’ impact—be it in facilitating or
suppressing cancer—could find an echo in its closely related phylogenetic kin
(9). Bullman and colleagues showed the stability of the Fusobacterium micro-
biome between primary tumors and their subsequent metastases (10). Several
studies emphasized the pivotal role of the Bacteroides genus in triggering
immune-related adverse events (irAE) in immune checkpoint blockade treat-
ments. Notably, species such as Bacteroides vulgatus and Bacteroides dorei have
demonstrated predictive potential for irAEs during the immune checkpoint
blockade therapy of metastatic melanoma (11–13). Moreover, the integration
of phylogenetic trees in bioinformatics workflows has showcased enhanced
analytic accuracy and classification robustness in analyzing host–microbiome
interactions (14–16). Given these findings, there is a compelling rationale for
embedding phylogenetic insights within the assessment of cancer-associated
microbial communities, especially when discerning the potential significance
of microorganisms within the same genus in the cancer landscape.

Here, we present Microbial Heterogeneous Graph Attention (MEGA), a deep
learning–based Python package for identifying cancer-associated intratumoral
microbes. The model is trained on ORIEN intratumoral microbial RNA se-
quencing (RNA-seq) data to identify microbial communities associated with
each of the 12 human cancer types. The core framework is a heterogeneous
graph transformer (HGT; ref. 17) that can learn the importance and contribu-
tion of species to cancer samples. We have shown the superior performance of
HGT in characterizing cell-gene relations from single-cell multi-omics datasets

(18) and identifying sample-species relations (bioRxiv 2023.04.16.537088) from
The Cancer Microbiome Atlas (TCMA) data (19). To demonstrate the effec-
tiveness and credibility of MEGA on the more complicated ORIEN data, we
focus on two widely studied cancer types: colon adenocarcinoma (COAD) and
thyroid carcinoma (THCA). By leveraging metabolic and phylogenetic rela-
tionships, MEGA was able to capture the association of low attention score
microbes, suggesting the importance of integrating multiple types of data
in identifying cancer-associated microbes. We believe that MEGA offers a
comprehensive and nuanced approach to identifying cancer-associated intratu-
moralmicrobes in theORIENdataset, which could ultimately serve as potential
targets for further study and therapy development.

Materials and Methods
Study Design
Established in 2014, the ORIEN is an alliance of 18 U.S. cancer centers. All
ORIEN alliance members utilize a standard IRB-approved protocol: TCC. As
part of theTCC, participants agree to have their clinical data followed over time,
to undergo germline and tumor sequencing, and to be contacted in the future
by their provider if an appropriate clinical trial or other study becomes available
(20). TCC is a prospective cohort study where a subset of patients elects to be
enrolled in theORIENAvatar program,which provides research use only-grade
whole-exome tumor sequencing, RNA-seq, germline sequencing, and collec-
tion of deep longitudinal clinical data with lifetime follow-up. Nationally, over
325,000 participants have enrolled in TCC. M2GEN, the commercial and op-
erational partner of ORIEN, harmonizes all abstracted clinical data elements
andmolecular sequencing files into a standardized, structured format to enable
the aggregation of deidentified data for sharing across the network. Data access
was approved by the IRB in an Honest Broker protocol (2015H0185) and TCC
protocol (2013H0199) in coordination with M2GEN and participating ORIEN
members.

Sequencing Methods
ORIEN Avatar specimens undergo nucleic acid extraction and sequencing at
HudsonAlpha or Fulgent Genetics. For frozen and optimal cutting tempera-
ture (OCT) tissue DNA extraction, Qiagen QIASymphony DNA purification is
performed, generating a 213 bp average insert size. For frozen and OCT tissue
RNA extraction, Qiagen RNAeasy plus mini kit is performed, generating 216
bp average insert size. For formalin-fixed paraffin-embedded (FFPE) tissue, a
Covaris Ultrasonication FFPE DNA/RNA kit is utilized to extract DNA and
RNA, generating a 165 bp average insert size. RNA-seq is performed using the
Illumina TruSeq RNA Exome with single library hybridization, cDNA synthe-
sis, library preparation, and sequencing (100 bp paired reads at Hudson Alpha,
150 bp paired reads at Fulgent) to a coverage of 100M total reads/50M paired
reads.

Microbe Abundance and Diversity
RNA-seq reads are used to calculate microbe abundances using the (exotic)
pipeline, as described previously (3). Briefly, reads are aligned first to the hu-
man reference genome, and then unaligned reads are mapped to a database
of bacteria, fungi, archaea, viruses, and eukaryotic parasites. The observed
microbes then proceed through a series of filtering steps to carefully and con-
servatively remove contaminants before batch correction and normalization.
Diversity measures were estimated by calculating the Shannon and Simpson
indices, as well as Chao1, ACE, and inverse Simpson using the R package vegan.
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FIGURE 1 Overview of the MEGA workflow. Four main steps were included in carrying out model training and biological gene network inference.
MEGA uses ORIEN datasets and two database dependencies as the data sources. Preprocessing steps are employed to generate AI-ready data for
graph neural network training. After deep learning model training, the cancer-associated microbial signatures were selected on the basis of the
attention scores of each species at the sample level. The final results of the identified cancer-associated microbial communities have been provided in
a tabular format and are available for additional visualization.

The input dataset for MEGA includes the microbiome matrix and the sam-
ple metadata of the cancer types. The raw counts of the ORIEN microbiome
matrix consist of 2,603 species in 2,891 samples. The sample metadata is a two-
column matrix that describes the label of the total of 12 cancer types at each
sample. The NJS16 metabolic database (21) is a literature-curated interspecies
network of the human gut microbiota, composed of approximately 570 micro-
bial species and three human cell types metabolically interacting throughmore
than 4,400 small-molecule transport and macromolecule degradation events.
We utilized the R package taxizedb to access the NCBI taxonomy database (22).
It was integrated to prepare for the taxonomy ID to taxonomy name conversion
and to extract additional phylogenetic relationships from the ORIEN data (see
Fig. 1—Data Sources).

Data Preprocessing
We initially converted the organism’s name to a standard taxonomy ID using
the taxizedb package. Species were filtered by removing those that expressed
less than 0.1% of the total species. After filtering, 2,266 species were obtained.
To normalize themicrobiomematrix, we scaled the values in each sample of the
matrix that summed to 1. Thismethod ensures that the contribution of each fea-
ture to the total sum is proportional to its relative abundance in the sample. We
used the normalized matrix as the basis for downstream analyses. Specifically,
we generated themetabolic relationship network by comparing the total species
list in the ORIEN matrix with the NJS16 metabolic database. In this network,
an edge was placed between two species if they shared the samemetabolic com-
pound shown in the NJS16 database. We compared the total species list in the
ORIENmatrix with theNCBI taxonomy database, placing an edge between two
species if they share the same genus information. Finally, the processed data, in-
cluding the normalized abundancematrix,metabolic relationship network, and

phylogenetic relation network, served as artificial intelligence (AI)-ready data
for model training (see Fig. 1).

Model Training
Heterogeneous Graph and Initial Embeddings

The main MEGAmodel was implemented in PyTorch (23) (1) (v1.4.0) and was
trained on an NVIDIA A100 graphics processing unit (GPU) for 50 epochs
(∼15 minutes). We utilized our previously developed heterogeneous graph
transformer model for model training (bioRxiv 2023.04.16.537088). The input
graph incorporates both species and sample nodes, along with the relations
among them as edges. By capturing both neighbor and global topological
features among samples and species, the model was able to construct sample-
sample and species-species relations simultaneously.Weused two autoencoders
to generate the initial embeddings for the heterogeneous graph. This allowed
the representation of each node as a dense vector, which can be used as input
for the deep learningmodel.Meanwhile, we were able to reduce the dimension-
ality of each species and sample, resulting in an initial embedding size of 256
dimensions for all nodes in the graph.

Multi-head Attention Mechanism

The complete heterogeneous graph embedding was subsequently passed to a
graph attention transformer, which was trained to learn the relations between
sample and species.MEGAadopts a heterogeneousmulti-head attentionmech-
anism to model the overall topological information (global relationships) and
neighbor message passing (local relationships) on the heterogeneous graph.
Themulti-head attentionmechanism is a combination ofmultiple independent
attention processes, enabling the model to attend to different parts of the fea-
ture space differently, thereby capturing diverse aspects of the relationships in
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the graph (24). On the basis of grid search results, we use h attention heads, set-
ting h= 8 as default. Each attention head calculates the attention value between
each source node and target node independently. These individual attention
values are then concatenated to forma comprehensive attention vector. For each
attention head in each layer of the HGT, we use node type–dependent linear
projection functions to map the embeddings of the source and target nodes.
This results in a key vector and a query vector for each node. These vectors
are then used to compute the similarity between the source and target nodes,
with an edge-type–dependent matrix applied to account for different types of
connections between nodes. By concatenating the multi-head attention mech-
anisms, we derive an attention vector for each pair of nodes. Subsequently, we
collate all attention vectors from the source nodes for a specific target node.
Using the softmax function normalizes these vectors so that the cumulative
importance of a source node to a target node equals 1. This normalization
effectively measures the contribution of a source node to a target node. This
meticulous process allows the multi-head attention mechanism in our MEGA
model to effectively tease apart the intricate and heterogeneous relationships
within the graph, enabling the successful identification of significant microbial
signatures associated with each cancer type.

Optimizer, Loss Function, and Hyperparameters

We used the Adam optimizer with a learning rate of 0.003 and default settings
for other hyperparameters: n_hid = 128, KL_COEF = 0.00005, and THRES =
3. The Focal Loss function was used to quantify the differences between the
predicted cancer type labels and true cancer type labels. The learning rate was
reduced by a factor of 0.5 when the evaluation metric stopped improving for
5 epochs.

Microbial Signature Identification

The heterogeneous graph representation learning facilitated the embedding
of samples and species simultaneously using the transformer, yielding the at-
tention score as an important training outcome. This score represents the
importance of a source node to a target node. We extracted the attention scores
from source nodes spanning from species to sample. A high attention score
between a given species and a sample indicates that the species was highly
represented in the sample. We leveraged this information to identify micro-
bial signatures associated with specific cancer types. We accomplished this by
counting the number of samples within the cancer type for each species with
high attention scores. Species with a P value less than 0.05 were considered to
be significantly associated with the cancer type. These reliable microbial signa-
tures were selected and served as the final output of MEGA (see Fig. 1—Model
Training).

Model Performance Evaluation
To assess the classification performance, we used accuracy, precision, recall, and
the F1-score. While accuracy offers a measure based on the entire set of predic-
tion results, precision, recall, and the F1-score are computed as averages across
the 12 cancer types.

accuracy = TP + TN
TP + FP + TN + FN

precision = TP
TP + FP

recall = TP
TP + FN

F1 = 2 × precision × recall
precision + recall

Where:

TP (true positive) = count of samples correctly classified as having the cancer
FP (false positive) = count of samples incorrectly labeled as having the cancer
TN (true negative) = count of samples correctly classified as not having the

cancer
FN (false negative) = count of cancer samples incorrectly classified as not

having the cancer

Results Interpretation and Visualization
The final output of MEGA is a tab-delimited list, where each row represents
each cancer type followed by identified microbial signatures. The results can
be visualized in UpSet plots (25) and Cytoscape networks (26). UpSet plots are
a powerful visualization technique designed to display complex set data with
more than three intersecting sets. This method provides an intuitive and com-
prehensivemeans of exploring the relationships between sets and their overlaps,
allowing for a more nuanced interpretation of the underlying data. Cytoscape
is a widely used open-source software platform that offers a suite of tools for
the visualization, analysis, and modeling of complex networks. To leverage the
strengths of Cytoscape’s capabilities, the RCy3 R package (refs. 3, 27) was uti-
lized to implement the network visualization aspect ofMEGA. Through the use
of Rcy3’s REST application programming interface, users can seamlessly access
the full feature set of Cytoscape within the R programming environment. Users
can import network works directly to Cytoscape with the predefined layout and
theme using MEGA output files. The network comprises cancer-species nodes,
with the thickness of the edges reflecting the attention weight scores. In addi-
tion, phylogenetic or metabolic relationships between species are represented
by additional edges. This approach allows for a comprehensive and nuanced
exploration of the relationships between cancer and species, providing valu-
able insights into the underlying biological processes and pathways involved.
The attention weight scores, represented by the edge thickness, highlight the
key connections and interactions within the network, enabling researchers to
effectively identify potential targets for further study (see Fig. 1—Results In-
terpretation and Visualization). Additional tutorials on generating both UpSet
plots and Cytoscape networks can be found in the MEGA GitHub repository
https://github.com/OSU-BMBL/MEGA.

Implementation
MEGA was developed using Python 3.7.12 with PyTorch v1.4.0 and torch-
geometric v1.4.3. The MEGA GPU mode was tested in CUDA v11.6 on a Red
Hat Enterprise 7 Linux system 8.3, which featured 128-core AMD Epic cen-
tral processing units (CPU), NVIDIA A100-PCIE-80GB GPUs, and 1TB RAM.
Similarly, theMEGACPUmodewas tested on theOhio Supercomputer Center
Pitzer cluster, which incorporated Intel Xeon Gold 6148 CPUs and 64GB RAM.
MEGA was versioned and uploaded to the Python Package Index (PyPI) using
Python-Versioneer, a tool that simplifies the management of version numbers
in a software project. By subjecting the software to extensive testing in both
GPU and CPU modes, we ensured that MEGA functions effectively and effi-
ciently across a range of computational architectures, ultimately providing users
with a reliable and versatile tool.

16S Sequencing and Analysis
The bacterial 16S rRNA gene was amplified from fresh frozen tumor (n = 31)
and adjacent normal (n = 31) tissues from 31 patients. Tissues were lysed on a
PowerLyzer 24 at 2,000 rpm for 30 seconds, and then DNA was purified using

296 Cancer Res Commun; 4(2) February 2024 https://doi.org/10.1158/2767-9764.CRC-23-0213 | CANCER RESEARCH COMMUNICATIONS

https://github.com/OSU-BMBL/MEGA


Microbial Graph Attention for the Tumor Microbiome

an AllPrep mini kit (Qiagen). The bacterial rDNA was amplified using V3-V4
primers and KAPA HiFi enzyme (50°C 30 seconds, 72°C 2 × 20 cycles). Mag-
netic beads cleaned amplicons, and sequencing libraries were generated using a
QIAseq kit (Qiagen) following the manufacturer’s instructions. Libraries were
sequenced on a MiSeq 2 × 300 (600 cycles) using a V3 reagent kit (Illumina).
Demultiplexed fastqs were filtered for quality and length (340–440 bp). Taxon-
omy was assigned by processing through the precontamination filtering steps
of the (exotic) pipeline v1.0.

Plasma Metabolomics
Plasma metabolomics from 31 individuals with tumor 16S data were
retrieved from the Mass Spectrometry Interactive Virtual Environment
(MSV000092836). Briefly, polar metabolites were extracted in methanol, sep-
arated on a Vanquish ultra-high-pressure liquid chromatography system using
an Xbridge BEH Amide (2.5 μm, 2.1 × 150 mm, Waters) column and increas-
ing acetonitrile, as described previously (4). Ions were analyzed on a hybrid
QuadrupoleOrbitrapQExactivemass spectrometer (ThermoFisher Scientific)
in positive and negative ionmodes. CompoundDiscoverer 3.1 1 (ThermoFisher
Scientific) was used for identification.

Data Availability
The Ohio State University IRB approved data access through an Honest Bro-
ker protocol (2015H0185) and TCC protocol (2013H0199) in coordination with
Aster Insights. The processed data generated in this study are publicly avail-
able in Gene Expression Omnibus through the BioProject PRJNA856973. The
metabolomics data are available through the Mass Spectrometry Interactive
Virtual Environment (MSV000092836FF).

Code Availability
The source code and tutorial of the MEGA package have been made available
under the open-sourceMIT license and can be freely accessed at https://github.
com/OSU-BMBL/MEGA.

Results
MEGA Identifies Intratumoral Microbes from 12 Cancer
Types in the ORIEN Dataset
Overall, MEGA is a deep learning package for identifying cancer-associated
intratumoral microbes. It consists of four main steps: (i) Collect the ORIEN
dataset, Human NJS16 metabolic database, and NCBI taxonomy database; (ii)
Preprocess ORIEN dataset as input for the deep learning model; (iii) Train
the graph attention transformer using a heterogeneous graph; and (iv) Inter-
pret cancer-associated intratumoral microbes. Our investigation using MEGA
enabled the identification of unique microbial communities comprising 73
species across 12 cancer types within the ORIEN data (Fig. 2). These find-
ings are thoroughly tabulated in Supplementary Table S1, which provides an
inclusive listing of the cancer-associated microbial signatures. Notably, certain
species marked with an asterisk (*) are referenced in the literature, reaffirming
their association with specific cancer types. In addition, the normalized atten-
tion weights associated with each of these identified microbial signatures are
elaborated in Supplementary Table S2. Our analysis revealed that 15 species
were shared across all 12 cancer types (Supplementary Table S3). Notably, eight
species were uniquely shared among COAD, rectum adenocarcinoma (READ),
and other colorectal cancer (OtherCR). This group of eight species repre-
sented the second-highest number of shared species across all intersections,

and their shared presence is consistent with the fact that these cancers all origi-
nate in the large intestine, as in the case of colorectal cancer (see Supplementary
Fig. S1). Furthermore, our study spotlighted several microbial species that ex-
hibited associations with multiple cancer types. For example, F. nucleatum
was identified in several cancers including COAD, Lung Adenocarcinoma
(LUAD), Lung Squamous Cell Carcinoma (LUSC), READ, small cell lung
cancer (SCLC), other colorectal cancer types (OTHERCR), other lung can-
cer types (OtherLung), and other pancreatic cancer types (OtherPancreatic).
F. nucleatum is a gram-negative bacterium that has been widely studied for its
associations with various cancers, particularly colorectal cancer (28, 29), due to
its ability to promote a proinflammatory environment conducive to tumorige-
nesis (30). Our finding of F. nucleatum’s broad presence in diverse cancer types
aligns with recent studies suggesting its oncogenic potential in lung (31), pan-
creatic (32), and colorectal cancers (33), and expands the understanding of its
role in cancer beyond the traditionally associated colorectal cancer.

MEGA Identifies Cancer-associated Microbes in
COAD and THCA
To demonstrate the data analysis and interpretation capabilities of MEGA, we
focused on case studies in COAD and THCA. These cancers were chosen for
their contrasting levels of attention within the tumor microbiome research
community. COADhas been relativelywell studied in relation to its associations
with tumormicrobes, whereas THCA has not yet received significant attention.
By using these well-known cases as a benchmark, we validated the effectiveness
and credibility of MEGA. COAD is a common malignant tumor in the diges-
tive tract (34). Increased evidence suggests intestinal microbiota was crucial
in developing colorectal cancer (35). Our analysis revealed that eight microbial
species were uniquely shared among the colorectal cancer types COAD, READ,
and OtherCR. These species are Bacteroides fragilis (B. fragilis), Ruminococcus
gnavus (R. gnavus), Bacillus subtilis (B. subtilis), Bacteroides ovatus (B. ova-
tus), Lacrimispora saccharolytica (L. saccharolytica), Odoribacter splanchnicus
(O. splanchnicus), Phocaeicola dorei (P. dorei), Phocaeicola vulgatus (P. vulga-
tus), and Streptococcus porcinus (S. porcinus). Notably, three of these species, B.
fragilis, R. gnavus, and B. ovatus, were found to be consistent with previously
validated experimental results (36–41).

Our model highlights the prominence of B. fragilis and F. nucleatum in COAD
(Fig. 3A). These species have demonstrated oncogenic effects by modulating
E-cadherin and β-catenin signaling pathways, subsequently activating proin-
flammatory responses (42). The influence of the B. fragilis toxin on colorectal
cancer initiation is evident through its induction of inflammatory reactions. In
addition, both B. fragilis and F. nucleatum share compounds known as short
chain fatty acids (SCFAs), including butyrate, propionate, and acetate (Supple-
mentary Table S4). While F. nucleatummetabolism yields high levels of SCFAs
(43), these metabolites paradoxically suppress colon cancer cell proliferation.
Notably, butyrate activates pyruvate kinaseM2 (PKM2), a direct binding target,
leading to metabolic reprogramming in colorectal cancer cells (44). This intri-
cate interplay of microbiome and metabolites underpins the complex network
within the tumor microenvironment. Dysbiosis-induced imbalances in SCFA
production, influenced by diet and commensal bacteria, add further complexity
(45). Other species, including B. ovatus, R. gnavus, O. splanchnicus, L. saccha-
rolytica, P. dorei, and P. vulgatus, also share SCFA compounds, aligning with
their roles as mediators in the communication between the intestinal micro-
biome and the immune system (45). The integration of metabolic relationships
throughMEGA reinforces its ability to decipher the intricate interplay between
the microbiome and cancer.
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FIGURE 2 Circos plot representation of the distribution of identified species and cancer types. The segment length for each cancer type is
proportional to the ratio of the total number of detected species within that cancer type, and individual ribbons are linked to their respective species.
The cancer types are abbreviated as COAD (colon adenocarcinoma), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), OtherCR
(other colorectal cancer types not specified), OtherLung (other lung cancer types not specified), OtherPancreatic (other pancreatic cancer types not
specified), PAAD (pancreatic adenocarcinoma), READ (rectum adenocarcinoma), SARC (sarcoma), SCLC (small cell lung cancer), SKCM (skin
cutaneous melanoma), and THCA (thyroid carcinoma).

To provide support to our findings from MEGA, we included the analysis of
16s rRNA andmetabolic compounds from patients with human colorectal can-
cer. Interestingly, the species associated with SCFAs, as identified by ourmodel,
were corroborated in the 16s RNA dataset (F. nucleatum, B. ovatus, R. gnavus,
O. splanchnicus, L. saccharolytica, P. dorei, and P. vulgatus; Supplementary
Table S5). Further probing into paired metabolomics revealed the consistent
presence of butanoic acid—the conjugate base of butyrate—in all analyzed
samples. Butanoic acid induces apoptosis in colorectal cancer cells by con-
necting to the transcriptional upregulation of the Bax gene through the
activation of the JNK/AP1 pathway in colonic epithelial cells (46). The
presence of these microbes and SCFAs further confirms the results of our
model.

B. subtilis and O. splanchnicus emerged as significant species with attention
scores of 0.436 and 0.236, respectively (Fig. 3A; Supplementary Table S2).
B. subtilis exhibited a protective effect against intestinal tumorigenesis. Con-
versely, the abundance of O. splanchnicus was diminished in patients with
colorectal cancer compared with the control group (47). Further cementing
its significance, our 16s rRNA data from colorectal cancer samples also con-
firmed the presence ofO. splanchnicus. Our findings suggest that these bacterial

species share metabolic pathways involving the compound tryptophan (48).
Tryptophan, a pivotal molecule, serves as a precursor to pyridoxal 5′-phosphate
(PLP), the active form of vitamin B6, participating in diversemolecular synthe-
ses. B. subtilis employs the PdxST enzyme complex for PLP production (49).
Notably, consistent research reveals that elevated plasma PLP corresponds to a
significant reduction in colorectal cancer risk, highlighting the potential im-
pact of these findings (50). Tryptophan and its derivates were also detected
as metabolites in the colorectal cancer metabolomics dataset (Supplementary
Table S6). Furthermore, the metabolic repertoire of B. subtilis includes ri-
boflavin and cobalamin, each exerting distinct effects on COAD. Riboflavin
displays an inverse association with colorectal cancer risk, while cobalamin is
linked to an increased risk of COAD (51).

THCA has increased substantially in many countries during the past few
decades (52). The species related to compound Triacylglycerol, including Pseu-
domonas aeruginosa and Staphylococcus aureus were found in THCA groups.
Recent studies suggest that elevated triglyceride levels may be a potential
biomarker for identifying individuals at a higher risk of developing thyroid can-
cer (ref. 53; see Fig. 3B). The full metabolic relationships for all 12 cancer types
can be found in Supplementary Table S4.
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FIGURE 3 Network visualization of identified microbial communities in COAD and THCA. The cancer-type nodes were highlighted by an octagon
shape, while the microbial species nodes were highlighted in a circle shape. The thickness of the edges in the network reflects the attention weight
scores, indicating the strength of the relationship between the species and cancer. In addition, the metabolic compound nodes were highlighted with a
yellow triangle shape, while the phylogenetic relationship edges were highlighted in gray. A, COAD-associated microbes highlighted with metabolic
compound. B, THCA-associated microbes highlighted with metabolic compound. C, COAD-associated microbes highlighted with phylogenetic
relationships. D, THCA-associated microbes highlighted with phylogenetic relationships.

By integrating phylogenetic relationships, MEGA was able to capture associa-
tions with relatively low attention scores. A previous study found that B. ovatus
maybe one of the dominant species in colon cancer (41). AlthoughB. ovatushad
a relatively low attention score, MEGA can identify it using the phylogenetic
association with B. fragilis, which has a high attention score (see Fig. 3C). We
found that Pseudomonas mendocina, Pseudomonas putida, and Pseudomonas
yamanorum were uniquely identified in the Pseudomonas genus in THCA, in
contrast to COAD. This aligns with the study showing the predominance of
Pseudomonas in THCA (see Fig. 3D; ref. 54). The phylogenetic relationships
for all 12 cancer types can be found in Supplementary Table S7.

Discussion
The development of MEGA represents a significant step forward in identifying
and interpreting cancer-associated intratumoral microbes. The deep learning

package presented in this study utilizes RNA-seq data from the ORIEN dataset
to identify microbial signatures associated with 12 different cancer types. By
leveraging the power of graph attention transformers, MEGA can capture both
local and global topological features of the heterogeneous graph, resulting in
a more comprehensive and nuanced understanding of the underlying biologi-
cal processes and pathways involved. The application of MEGA to the ORIEN
dataset has provided valuable insights into the role of intratumoral microbes in
cancer. The analysis revealed 73 unique species associated with the 12 cancer
types studied.

Interestingly, our study identified 15 species that were shared across all 12 types
of cancer examined, spanning a diverse range of both prokaryotic and eu-
karyotic organisms. This observation underscores the rich biodiversity within
tumormicrobiomes. The universal presence of these species across diverse can-
cer types might reflect their ubiquitous nature within the human microbiota,
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their adaptability to the unique conditions of the tumor microenvironment, or
their potential involvement in cancer progression. For instance, Candida albi-
cans and S. aureus, two of the shared species, have been previously associated
with various forms of cancer, primarily due to their capacity to incite chronic
inflammation and modulate the host cell cycle. However, it is crucial to un-
derscore that the precise functional roles of these shared organisms across the
different cancer types could be markedly different and are yet to be fully under-
stood.Moreover, their co-occurrence across distinct cancer tissues may suggest
complex interactions and adaptations between the microbiome, the tumor, and
the host immune system. While our study provides a novel perspective on the
common microbial signatures in cancer, further investigations are needed to
elucidate the functional implications of these shared species in tumorigenesis
and their potential as therapeutic targets.

While we have made considerable progress in understanding the microbiome–
cancer interactions, we recognize several limitations that warrant attention.
The depth of the sequencing used influences the current study’s resolution,
and therefore we are developing a new protocol that enhances sequencing
depth for a more accurate microbial identification and abundance estimation.
In addition, as we aim to integrate our results with data from sources like
TCGA in the future, potential batch effects and issues related to contamination
could arise. To mitigate these, stringent quality control measures are being
instituted to maintain the robustness of our findings. Also, we recognize that
our current methodology does not capture possible negative associations
between microbial species and cancer types, an aspect we plan to explore in
future investigations.

As a next step, we will further compare the cancer-associated intratumoral
microbes identified from TCMA and ORIEN data using MEGA to provide
a more comprehensive understanding of the role of intratumoral microbes
in relation to cancer biology and host immunology. In the long run, the
genotype-tissue expression (GTEx) data can be involved as control samples
to identify relationships specific to tumors. In addition, applying MEGA to
single-cell RNA-seq data could provide a more detailed understanding of the
interactions between microbial communities and tumor cells at the cellular
level. It may give us a new angle to characterize tumor heterogeneity based
on intratumoral microbiome diversities. In conclusion, the development of
MEGA represents an important advance in identifying cancer-associated
intratumoral microbes. Our analysis of ORIEN data using MEGA revealed the
presence of unique microbial signatures in specific cancer types, which may
provide new targets for therapeutic intervention.
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