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Abstract

INTRODUCTION: Multiple infectious agents, including viruses, bacteria, fungi, and

protozoa, have been linked to Alzheimer’s disease (AD) risk by independent lines of

evidence. We explored this association by comparing the frequencies of viral species

identified in a large sample of AD cases and controls.

METHODS:DNAsequence reads that did not align to the human genome in sequences

were mapped to viral reference sequences, quantified, and then were tested for asso-

ciationwithAD inwhole exome sequences (WES) andwhole genome sequences (WGS)

datasets.

RESULTS: Several viruses were significant predictors of AD according to the machine

learning classifiers. Subsequent regression analyses showed that herpes simplex type

1 (HSV-1) (odds ratio [OR] = 3.71, p = 8.03 × 10−4) and human papillomavirus 71

(HPV-71; OR = 3.56, p = 0.02), were significantly associated with AD after Bonfer-

roni correction. The phylogenetic-related cluster of Herpesviridae was significantly

associated with AD in several strata of the data (p< 0.01).
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DISCUSSION:Our results support the hypothesis that viral infection, especially HSV-

1, is associated with AD risk.
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1 BACKGROUND

Development of efficacious therapies for Alzheimer’s disease (AD) is

a critically important international research priority. Despite numer-

ous advances in our understanding of the fundamental pathological

mechanisms leading to AD, substantial knowledge gaps exist. Neu-

ronal response to stress from multiple sources has been linked to AD

pathology,1 and abnormal microglial response and associated inflam-

mation due to viral infection may be one such stressor.1 Multiple

lines of evidence suggest infectious agents might impact this stress

and inflammation cascade. Several studies reported an association of

microbial DNA/RNA detected in brain samples with AD risk.2,3 Pro-

duction of amyloid beta (Aβ) increases in response to infection and

may protect against infectious agents including herpes simplex type 1

(HSV-1),4 H1N1 influenzaA virus (IAV),5 and various bacterial agents.6

HSV-1 infections also induce accumulation of Aβ42 inside neurons by

a calcium-dependent mechanism.7 Herpes infections have also been

shown to increase levels of intracellular phosphorylated microtubule

associated protein tau protein (P-tau).8,9 In addition, HSV-1 DNA has

been found within senile plaques in AD brains.10 The association

between HSV-1 and AD is strongest in carriers of the apolipoprotein

E (APOE) ε4 allele.11 Finally, treatment with antiviral agents has been

shown to reduce AD pathology in mice12 and was associated with

significantly higher cognitive function in humans in non-AD clinical

trials.13,14 Acyclovir, which targets viral DNA replication, was shown to

significantly reduce the levels of Aβ and P-tau in HSV-1 infected cells

in culture, as well as HSV-1 levels.15 A clinical trial of another antiviral

agent, Valacyclovir, for AD treatment is ongoing.16

In this study, we tested the hypothesis that viral species and/or

the aggregate viral load are associated with AD risk. We identified

and categorized human viral DNA present in whole exome sequence

(WES) or whole genome sequence (WGS) data obtained by 37,000

participants of the Alzheimer Disease Sequencing Project (ADSP) and

applied machine learning methods to detect viral species that pre-

dicted AD status. Viruses were further tested for association with AD

risk in ancestry population subsets and the total sample using logistic

regressionmodels.

2 METHODS

2.1 Subject ascertainment and characteristics

WGS and WES data were derived from blood and brain samples

donated by participants of the ADSP, which was established by the

National Institute on Aging and National Human Genome Research

Institute to identify genetic risk factors for late-onset AD.17 The

ADSP ascertained subjects in multiple waves. In the Discovery phase,

one group of approximately 11,000 unrelated AD cases and con-

trols including 9590 individuals of European ancestry (EA) and 386

CaribbeanHispanic individuals (CH)were selected for exome sequenc-

ing based on sex, age, and APOE genotype. Controls were deemed to

have a low likelihood of conversion to AD by age 90 based on cogni-

tive assessment or neuropathological exam, and AD cases who were

likely enriched for genetic factors other than APOE genotype were

preferentially selected.18,19 The WGS sample contained 583 related

individuals from 111 EA and CH families. These families were selected

based on the presence of more than three AD affected individuals and

families without APOE ε4 alleles and other known AD risk variants

were preferentially chosen.19 WGS was also performed for a portion

of the ADSP extension sample that included additional members of

the 111 families and approximately 3000 unrelated AD cases and con-

trols (nearly equal numbers of EA, CH, and African Americans (AA)

individuals.19 Approximately 8000 additional unrelated AD cases and

controls including 2690 EA, 3984 AA, and 1673 CH subjects in the

extension sample underwent WES. WGS data were obtained from an

independent group enriched for AA individuals included in the ADSP

follow-up study containing 9107 unrelated AD cases and controls.

Cases either met National Institute of Neurological and Communica-

tive Disorders and Stroke and the Alzheimer’s Disease and Related

Disorders Association (NINCDS-ADRDA) clinical criteria for AD, or

post-mortem findings met moderate or high likelihood of neuropatho-

logical criteria of AD. Autopsy data were available for 28.7% of the

cases and controls used in the analysis. Controls were free of dementia

by direct cognitive assessment or neuropathological examination.

2.2 DNA sequencing and microbial DNA
detection

WES and WGS methods and quality control (QC) procedures are

described in detail elsewhere.17,18,19 The sample included 15,125WES

and 13,396 WGS data derived from either brain (N = 3449) or blood

(N = 25,072). We developed a pipeline called MicrobeSeq to detect

viral DNA in the human DNA sequence data and classify it using the

complete reference genomes (FASTA files) from 318 viral species. We

started with 511 viral reference genomes available through National

Center for Biotechnology Information (NCBI) with humans listed as

the host species.20 We removed 20 species that were duplicates,

47 that were primarily zoonotic viruses that rarely affected humans,
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and 1 that was acutely fatal. Additionally, we removed seven viruses

with no documented cases in the Unied States, 92 with no NCBI

number, an indicator that the existence of the virus as a separate

species had not been confirmed, and 26 for reasons including sparse

information on the virus or whether it was a DNA virus. First, we

removed all sequencing reads that mapped to the human genome

sequence (build GRCh38) and generated a new FASTQ file. The result-

ing FASTQ file, which was enriched for non-human DNA reads, was

then aligned to a set of microbe reference sequences encompass-

ing all reference genomes using BWA-MEM.21 Viral read matches

were counted and normalized by the depth of the original host align-

ment data. Although reads were initially mapped to 61 viral species

in more than one sample but, after QC filtering, 59 unique species

remained.

2.3 Statistical analysis

Three types of analysis were conducted to identify viral species asso-

ciated with AD. First, supervised machine learning (ML) algorithms,

including random forest, decision tree, LASSO, k-nearest neighbors,

adaboost, support vectormachines, and thegeneralizedboostedmodel

(GBM), were applied to total and species-specific viral read counts.

An ensemble method was used to aggregate the predictive accura-

cies from the ML algorithms. Ensemble methods are known to make

better predictions andachievebetter performance than any single con-

tributing model.22 Additionally, ensemble methods are more robust

and reduce the spread or dispersion of the predictions and model

performance.22 In addition to viral read counts, variables represent-

ing potential confounders, and technical artifacts (i.e., sequence center,

polymerase chain reaction (PCR) amplification, demographic factors)

were also included in thesemodels (Figure S1). Significant non-viral AD

predictors were included as covariates in subsequent logistic regres-

sion models. These classifiers were fitted on a training set (80% of the

data) using the scikit-learn module in Python23 and then tested on the

remaining 20% of the data. The permutation importance algorithm,

implemented in the Scikit-Learn module in Python 3 utilizing 10-fold

cross-validation in each model was used to determine which viruses

were the most important predictors of AD. A feature was considered

“important” if randomlypermuting its values increased themodel error,

because the model relied on the feature for the prediction.24 For each

permutationof the response vector, the relevance for all predictor vari-

ables was assessed yielding a vector of s importancemeasures for each

variable. Feature importancewas defined as the difference in accuracy

between the baseline model which included all the predictors and a

permuted model where one predictor at a time was replaced with ran-

dom values.24 Larger positive values indicate that the baseline model

yielded higher accuracy than the model with random values for that

feature.

Wedevelopedaweighting algorithm to summarize thebest features

across all classifier models to integrate the information generated by

all ML methods. The ML weighting algorithm was applied to four sub-

sets stratified by sequencing method (WES/WGS) and tissue source.

RESEARCH INCONTEXT

1. Systematic review: We searched PubMed sources for

relevant articles. Prior studies have reported that her-

pes simplex virus type 1 (HSV-1) might contribute to

Alzheimer’s disease (AD) pathogenesis. In recent years,

there have been reports indicating that antiviral treat-

ment might protect against dementia in herpes infected

individuals.

2. Interpretation: Our findings, together with previous

work, suggest that viral infection, especially HSV-1, is

associated with AD risk, and demonstrate the value

of deep sequencing technology for detecting microbial

agents in multiple tissues and detecting associations

between infectious agents and AD.

3. Future directions: We aim to determine the role of host

genetic modifiers within and across populations on the

association between AD and HSV-1 and other viruses,

as well as examine the relationship between viruses and

more specific AD pathology and biomarkers.

The weighting algorithm calculated the number of times a feature’s

permutation importance score was above zero and that count was fur-

ther weighted by the accuracy of that model. Ties were broken based

on how those features performed in the highest performing model. If

tied features did not appear in the highest performing model, the fea-

tures were iteratively compared in the next best performing model

until a difference was found. Features that were identified across

many models and ranked most highly in the best performing mod-

els were considered the most predictive of AD. ML models were not

corrected for multiple testing because they did not produce standard

p-values.

GLM models were implemented in R to obtain effect sizes and p-

values for the association of AD risk with prevalence and quantity of

viruses and alsowith binary indicators of the presence of any versus no

DNA. Models for analysis of WES data were adjusted for sequencing

center, APOE genotype, and ancestry. WGS data analysis models were

adjusted for these covariates as well as an indicator variable for the

use of PCRamplification. Regressionmodelswere evaluatedwithin the

same four strata as theML analysis, and the results for each virus were

combined across strata via inverse variance weighted meta-analysis.

Multiple testing thresholds were determined based on the number of

speciesdetected inevery stratumof thedata contributing to thatmeta-

analysis, for example, 10 viruses were detected in WES, WGS, blood,

and brain so the adjusted significance threshold for that meta-analysis

was p < 0.005. A secondary analysis was conducted within ancestry

groups, further stratified byWES/WGS and body tissue source. A one-

way analysis of covariance (ANCOVA) was used to test the association

between the prevalence and/or quantity of several viruses and ances-

try with the following covariates: sequencing center, APOE genotype,
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and tissue source. The multiple testing thresholds were determined

similar to the primary analysis, for example, 59 viruses were detected

in every AA stratum so the significance threshold was p < 0.001. Only

HSV-1 was detected in more than 5% of samples and only human

papillomavirus 71 (HPV-71), hepatitis C (HCV), andMCwere detected

in more than 1% of total samples. Therefore, we performed feature

selection on only those samples with at least one virus detected to

address problems with sparsity in the data. As a sensitivity analysis,

we repeated the regression-basedanalysesusingonly the sampleswith

any virus detected (Table S1).

To test whether viral clusters were associated with AD and to

address the potential for misassignment of reads or identical reads

across closely related species, we performed the unsupervised learn-

ing algorithm K-means to create phylogenetic clusters within the 59

human viruses detected based on Gower’s distance using the Scikit-

Learn module in Python 3. We varied the number of clusters from 2 to

20 and found k= 5 to be the optimal number based on an elbow plot of

within-cluster sums of squares and silhouette scores. Five composite

variables were created from these clusters such that the viral load of

each virus within each cluster was summed for each individual. AD sta-

tuswas then regressed on each of these five cluster quantities, and also

binary indicators of the presence of any versus no DNA from species

within that family, with adjustment for the aforementioned covariates

using GLM.

3 RESULTS

3.1 Viral DNA detected in both brain and blood

Less than0.0001%of theDNAreads did notmap to the humangenome

but rather to 59 distinct viral species deemed likely to appear in elderly

humanDNAsamples.Of these, 19were detected in brain-derived sam-

ples and all 59 were detected in blood-derived samples. Additionally,

10 and 6 viruses were unique to WGS and WES data, respectively.

Ten viral species were detected in all four-tissue source and sequenc-

ing experiment type strata of the data: HSV-1, Epstein–Barr virus

(EBV), human betaherpesvirus 6A (HHV-6A), human betaherpesvirus

6B (HHV-6B), human betaherpesvirus 7 (HHV-7), HPV-71, HCV, mol-

luscum contagiosum (MC), Torque teno midi virus 9 (TTMV-9), and

F IGURE 1 Frequency of viral reads by tissue source and type of sequencing. Proportion of total viral readsmapping to individual species in (A)
whole exome sequence (WES) data from blood, (B) whole genome (WGS) sequence data from blood, (C)WES data from brain inWES, and (D)WGS
data from brain. The innermost circle shows the proportion of all viral reads between Alzheimer’s disease (AD) cases and controls within each of
these subsets. Themiddle ring shows the proportion of viral readsmapping to a viral family within AD cases and controls, and the outer ring is the
breakdown between viral species within a viral family
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F IGURE 2 Top virus predictors of Alzheimer’s disease (AD) by tissue source and type of sequencing. Bar charts of theMLweighted algorithm
for (A) whole exome sequence (WES) data from brain, (B) whole genome (WGS) sequence data from brain, (C)WES data from blood inWES, and (D)
WGS data from blood. Each feature within each subset is assigned a score created by summing the accuracy of theML predictionmodel in which it
improved the prediction of AD. The top 15 features are shown in each bar chart though several other viruses improved the predictionmodels

tick-borne encephalitis (TBE). Viral reads were detected in 49% of

brain-derived and59%of blood-derived sequences. The average cumu-

lative viral read counts in the four strata were 12.56 in blood/WGS,

5.38 in blood/WES, 6.75 in brain/WGS, and 4.52 in brain/WES (see

Table S2 for further breakdown by cases and controls). Figure 1 shows

the proportion of total reads mapping to a viral species that map

to each individual species and taxonomic family within each of the

four strata of the data described above. Herpesviridae, Flaviviridae,

Anelloviridae, Papillomaviridae, and Poxviridae were five most com-

mon virus families detected in both theWES andWGS sequence data.

Herpesviridae was the most detected human viral family, comprised

almost entirely of HSV-1.

3.2 AD associations in WES blood

Figure 2 shows AD-predictive viral features, as well as AD predictive

demographic and technical factors. The length of the bars corresponds



258 TEJEDA ET AL.

TABLE 1 Significant associations of viral read counts and AD risk.

Virus Tissue Dataset1 Odds ratio p-Value Adjusted p-value Effect direction2

HSV-13 Meta-analysis Meta-analysis 3.69 6.71× 10-5 6.71× 10-4 –++

Blood WES 4.08 3.58× 10-5 3.58× 10-4 +

WGS 0.49 0.64 1 –

Brain WES 4.83 0.44 1 +

WGS 1.80× 10-5 0.26 1 –

HPV-713 Meta-analysis Meta-analysis 3.55 3.41× 10-3 0.03 –+-

Blood WES 3.9 1.97× 10-3 0.02 +

WGS 3.09× 10-100 0.93 1 –

Brain WES 0.16 0.47 1 –

WGS 1.83× 10126 0.98 1 +

*Results from blood and brain anaylzed by dataset (WES/WGS) and combined bymeta-analysis.

† + indicates virus associatedwith increased AD risk,—indicates lower risk. The order of datasets isWES-blood,WES-brain,WGS-blood,WGS-brain.
‡p-values adjusted for 10 tests.

to the number of ML methods in which the feature was significant.

HSV-1, human alphaherpesvirus 2 (HSV-2), HHV-6B, HHV-6A, EBV,

human betaherpesvirus 5 (cytomegalovirus [CMV]), HPV-71, Torque

teno virus 3 (TTV-3), Torque teno virus 7 (TTV-7), Torque teno virus 10

(TTV-10), torque teno midi virus 5 (TTMV-5), TTMV-9, MC, and cumu-

lative mapped viral reads had permutation feature importance scores

above zero in this stratum (Figure 2C). The bestmodel was LASSOwith

67.2% predictive accuracy for AD status in the test set. The quantity

of HSV-1 (odds ratio [OR] = 4.08, Padj = 3.58 × 10−4) and HPV-71

(OR = 3.90, Padj = 0.02) (Table 1) were significantly associated with

AD status using logistic regression models after correcting for the 10

viruses detected in all four strata of the data. HSV-1DNAwas detected

in 94.9% of samples in this stratum, andHPV-71DNA in 12.8%.

3.3 AD associations in WES brain

HSV-1, HHV-6B, HHV-6A,MC, and cumulativemapped viral reads had

permutation feature importance scores above zero in WES brain sam-

ples (Figure 2A). The best model was GBM, showing 80.0% accuracy

predicting AD status in the test set. Although no viral species was

significantly associated with AD after multiple test correction using

logistic regression, the association with the Herpes family cluster was

significant in after multiple test correction for five clusters (OR= 4.16,

Padj = 0.048) (Table 2). HSV-1 DNAwas present in 93.2% of samples in

this stratum, while HPV-71was present in 9.8%.

3.4 AD associations in WGS blood

HSV-1, HSV-2, HHV-6A, HHV-6B, HCV,MC, Torque tenomidi virus 10

(TTMV-10), EBV, CMV, HPV-71, TTV-3, TTMV-5, TTMV-9, and cumu-

lative mapped viral reads were top predictors of AD. (Figure 2D). GBM

was the best predictor of AD status with 69.1% accuracy in the test

set. No viral read counts were significantly associated with AD risk in

this stratum in logistic regression models, but the quantity of reads

within the Herpes family cluster was significantly associated with AD

(OR = 2.30, Padj = 0.044) after Bonferroni correction for five tests

(Table 2). HSV-1DNAwas detected in 56.4%of samples in this stratum,

andHPV-71DNA in 0.3%.

3.5 AD associations in WGS brain

HSV-1, HHV-6B, HHV-6A,MC, and cumulativemapped viral reads had

permutation feature importance scores above zero in WGS in brain

(Figure 2B). GBM was again the best performing model in this stra-

tum with 77.9% predictive accuracy for AD status in the test set. No

viral read countswere significantly associatedwith AD risk in theWGS

brain dataset using logistic regression. HSV-1 DNA was detected in

59.9% of samples in this stratum, and HPV-71DNA in 1.0%.

3.6 Differences in viral DNA prevalence by
ancestry

The prevalence and/or quantity of several viruses, and their associa-

tion with AD differed across ancestry groups according to ANCOVA

tests; p-values are based on an F-statistic of a one-way ANCOVA of

ancestry group and viral counts adjusting for covariates (Table 3). The

cumulative viral loadwashighest in theCHgroup and lowest in EA indi-

viduals (p=9.96×10−17), driven primarily byHSV-1 (p=9.17×10−88,

Table 3). AA individuals had disproportionately higher levels of HPV-

71 (p = 0.05), TTV-3 (p = 0.01), and TTV-10 (p = 4.02 × 10−8), and

EA individuals had disproportionately lower levels of HCV (p = 0.01)

and TTMV-9 (p = 0.01) compared to other groups. The association

of AD with HSV-1 was evident in both AA individuals (OR = 9.30,

p = 5.81 × 10−3) and EA individuals (OR = 4.95, p = 2.27 × 10−3),

whereas AA individuals primarily accounted for the associations with

HPV-71 (OR= 7.24, p= 2.13× 10−4) and TTV-10 (OR= 534, p= 0.01)
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TABLE 2 Association of viral phylogenetic clusters with AD by ancestry andDNA source.

Herpes cluster* Torque teno cluster† Retrovirus cluster ‡

Subset Odds ratio p-Value§ Odds ratio p-Value§ Odds ratio p-Value§

WES Total 1.10 0.42 1.40 0.01 0.30 0.09

Ancestry African American 0.82 0.29 1.67 8.73× 10-3 0.50 0.52

Caribbean hispanic 1.89 0.11 0.90 0.78 4.02× 10-7 0.98

European 1.22 0.27 1.20 0.45 0.30 0.33

Body tissue

source

Blood 1.02 0.85 1.39 0.02 0.36 0.18

Brain 4.16 9.54× 10-3 2.53× 107 0.99 0.04 0.04

WGS Total 1.80 0.04 1.29 0.04 0.57 0.45

Ancestry African American 0.71 0.58 1.46 0.03 0.73 0.72

Caribbean hispanic 1.48 0.06 0.95 0.83 NA NA

European 2.82 3.4× 10-3 1.58 0.10 2.53 0.59

Body Tissue

Source

Blood 2.30 8.79× 10-3 1.29 0.03 0.61 0.50

Brain 1.89× 10-5 0.99 4.21x106 0.99 NA NA

*Includes HSV-1, HSV-2, HSV-3, EBV, CMV, HHV-6A, HHV-6B, HHV-7, andHHV-8.
†Includes TTV-1, TTV-2, TTV-3, TTV-5, TTV-6, TTV-7, TTV-8, TTV-9, TTV-10, TTV-11, TTV 12,TTV-14, TTV-25, TTV-27, and TTV-ALA22.
‡Includes HIV, human endogenous retrovirus K, primate T-lymphotropic virus 1, and primate T-lymphotropic virus 2.
§p< 0.01 significant level after Bonferroni correction of five tests.

NA= viral family not detected.

(Table 4). Permutation feature importance scores above zero within

ancestry are shown in Figures S2, S3, and S4.

The group of Herpes viruses was also associated with AD in EA

individuals in the WGS dataset (OR = 2.82, Padj = 0.017) (Table 2). In

contrast, the Torque teno virus family was associated with AD among

AA individuals in the subset of WES data (OR = 1.67, Padj = 0.04)

(Table 2). Further scrutiny of these results revealed that the associa-

tion with the Herpesviridae cluster in both WES and WGS data was

accounted for primarily by HSV-1. HHV-6B was the second most com-

mon herpes virus identified in WES and WGS data. We also note that

HHV-6B and HHV-7 were 2 and 10 times, respectively, more frequent

in WGS compared to WES samples derived from blood. In contrast, in

sequence data derived frombrain, therewas a higher percentage ofAD

cases with HHV-6B in WES compared to WGS. HSV-2 was five times

more prevalent inWES thanWGS brain samples.

4 DISCUSSION

4.1 AD risk is differentially associated with
multiple viruses in brain and blood

We applied a novel approach to detect viral DNA in human WES and

WGS data that entailed identifying DNA sequences that did not align

to the human reference genome and mapped them to viral reference

genomes. Higher quantity of HSV-1 was associated with increased AD

risk inAAandEA individuals but notCH individuals. Although themean

level of HSV-1 in CH AD cases was similar to other ancestry groups,

CH controls had 1.5 and 2.1 times more HSV-1 than in AA and EA

controls, respectively. The overall prevalence of HSV-1 was consistent

with a study of 3533 pregnant women in London showing that the

observation that the HSV-1 seroprevalence was nearly 100% in Black

women born in Africa or the Caribbean and 60%–80% inWhite, Asian,

and Black women born in the United Kingdom.25 We also found sig-

nificant AA-specific associations with HPV-71 and TTV-10. Analysis

of phylogenetically related viruses showed that increased AD risk was

associatedwith the group of herpes viruses detected in brain from sub-

jects in the WES brain dataset but in blood from subjects in the WGS

dataset, as well in the aggregate WES and WGS data obtained from

EA individuals. The cluster of Torque teno viruseswas also significantly

associated with AD inWES data fromAA individuals.

Our approach to identify and quantify viral load in DNA sequence

data was similar to that employed by Readhead et al.3 who quanti-

fied viruses in RNA sequence data derived from brain tissue obtained

from AD cases and controls in three cohorts, including ROS-MAP,

which is one of the sources of samples for our study. The viruses most

strongly implicated in AD in their study were herpes viruses HHV-

6A and HHV-7, which were significant in ML analyses but not logistic

regression. While Readhead et al.3 split the viral reference genomes

into 31 base pair segments and removed any cross-species duplicate

31-mers from the viral reference genomes prior tomapping the human

RNA reads to them, we mapped the DNA sequence reads to the com-

plete viral genomes without removing duplicate 31-mers. It is possible

that differences in mapping methods led to differential assignment of
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TABLE 3 Average viral load and standard deviation for top viruses by ancestry group.

Species

African

american

(n= 5078)

African

american

SD

Caribbean

hispanic

(n= 3132)

Caribbean

hispanic SD

European

ancestry

(n= 8074)

European

ancestry SD p-Value*†

Epstein–Barr virus

(EBV)

2.76× 10-3 0.07 0.01 0.11 2.85× 10-3 0.07 0.08

Human

betaherpesvirus 6A

(HHV-6A)

0.33 8.96 0.25 10.67 0.23 5.49 0.53

Human

betaherpesvirus 6B

(HHV-6B)

0.33 8.64 1.26 33.75 0.65 14.71 0.13

Human

betaherpesvirus 7

(HHV-7)

0.01 0.17 0.02 0.22 0.01 0.11 6.59× 10-4

Human papillomavirus

71 (HPV-71)

0.4 1.44 0.03 0.22 0.06 0.28 0.05

Human

alphaherpesvirus 1

(HSV-1)

7.23 8.11 9.89 10.81 5.69 9.49 9.17× 10-88

Hepatitis C (HCV) 0.09 0.43 0.09 0.43 0.04 0.3 0.01

Molluscum

contagiosum virus

(MC)

0.08 0.47 0.01 0.13 0.02 0.14 0.18

Torque tenomidi virus

9 (TTMV-9)

0.03 0.25 0.03 0.27 0.01 0.16 0.01

Torque teno virus 10

(TTV-10)

0.02 0.32 0.01 0.15 2.97× 10-3 0.08 4.02× 10-8

Tick-borne

encephalitis virus

(TBE)

0.01 0.16 0.01 0.12 2.72× 10-3 0.07 0.07

Cumulative viral load 8.76 15.87 11.79 37.74 6.79 18.58 9.96× 10-17

*p-Value is based on an F-statistic of a one-way ANCOVA of ancestry group.
†Adjusted for sequencing center, APOE genotype, and body tissue source.

TABLE 4 Significant associations of viral read count with AD in at least one ancestry group.

African american European ancestry Caribbean hispanic

Mean viral load Mean viral load Mean viral load

Virus

AD

cases Controls

Odds

Ratio p-Value
AD

cases Controls

Odds

ratio p-Value
AD

cases Controls

Odds

ratio p-Value

Human alphaher-

pesvirus 1

(HSV-1) *

7.32 7.18 9.30 5.81× 10-3 6.04 5.26 4.95 2.27× 10-3 6.77 11.0 1.35 1.00

Human

Papilomavirus

71 (HPV-71) *

0.50 0.34 7.24 2.13× 10-4 0.05 0.07 0.04 0.06 0.05 0.02 0.70 1.00

Torque teno virus

10 (TTV-10) †
0.05 0.01 5.34× 102 0.01 0.003 0.003 0.56 1.00 0.01 0.01 3.04 1.00

*Adjusted for 10 independent tests.
†Adjusted for 59 independent tests.

Analyses were stratified by dataset (WES/WGS) and combined bymeta-analysis.



TEJEDA ET AL. 261

herpes reads across herpes species. Despite this difference, both stud-

ies identified herpes viruses as themost abundant family and observed

association with AD, adding to the body of literature suggesting they

increase AD risk.4–11

This is the first study to suggest a role forTTV inAD.TTVand its sub-

variants, including Torque teno mini and midi viruses, infect humans

at a high rate,26 but are not known to cause disease. A recent study

showed that TTV load in plasma increased with age, decreased in the

presence of CMV infection, and was associated with HLA type B27

but not AD.27 The discordance with our finding showing an associa-

tion between TTV and AD may be explained by differential effect of

TTV onAD risk in blood versus brain, where two TTV strains have been

detected.28 One possible mechanism that might explain our observed

association with TTV is that EBV, which has been associated with AD

risk, may stimulate TTV replication.29

4.2 AD/virus associations vary across populations

This was the first study to examine AD-related differences in viral

load by ancestry. Total viral load was highest in the CH group pri-

marily driven by HSV-1. This finding is consistent with a CDC report

showing that Hispanics had higher HSV-1 prevalence (71.7%) com-

pared to non-Hispanic White persons (36.9%).30 In contrast, all other

common viruseswe detected had the highest prevalence in AA individ-

uals, including genital HPV, a finding consistent with other studies.31,32

These ancestry differences observed could be due to health disparities,

genetics, geographic differences, or an artifact of the smaller sample

sizes available for non-Europeans.

4.3 Latent versus active HSV-1 infections

HSV-1 is typically transmitted during childhood and is present in

approximately 65% of the U.S. population.33 It generally persists as a

latent infectionwith a viral reservoir present in sensory and autonomic

neurons and can periodically reactivate to produce active infections.

During latent infection, sections ofDNAcalled latency associated tran-

script (LAT) are transcribed, but not thought to be translated or leave

the nucleus of the infected neuron.34,35 We mapped the HSV-1 viral

reads to specific genes in the viral genome and found four samples in

which sequence fragments mapped to the LAT region. This number is

not likely sufficient to make meaningful inferences about latent ver-

sus active infections. The prevalence of HSV-1 DNA in these samples

is consistent with detecting both latent and active infections, but not

active infections alone. Although the presence of HSV-1 is not sur-

prising in brain-derived samples where the viral reservoirs reside, the

presence of HSV-1 as well as HPV-71 DNA in blood-derived samples

is a potentially surprising finding. Although some evidence suggests

herpes virus is shed at low levels even during latency, this is not well

established.36,37 Several viruses, including EBV, HSV-1, HPV, and TTV

have been detected in blood samples.38,39 HSV-1 DNA is not known to

insert into the host genome,40 so it is unlikely that this explains its pres-

ence in non-neuronal tissue. Although it is not possible to definitively

determinewhyHSV-1 andHPV-71was detected in blood, the fact that

its prevalence closelymatches that in the epidemiological literature, as

well as the fact that thequantity ofDNA from these viruses is quite low,

are evidence that the identification ofDNA from these species is not an

artifact.

4.4 Study strengths and limitations

Our study has several strengths. The sample size is much larger than

previous studies that used next generation sequence data to detect

microbial DNA/RNA, providing greater statistical power to detect

associations with viruses. Additionally, the fact that 74% of cases were

autopsy-confirmed is a strength of this study. Also, we adjusted for

several potential confounders and technical artifacts in our models

including APOE-ε4 status, sequencing center, sex, age, tissue source,

ancestry, and use of PCR amplification. Substantial effort was also

made to remove species not known to infect humans or were unlikely

to be observed in elderly residents of the United States (i.e., Ebola).

For example, our pipeline initially detected a large quantity of DNA

fromMacacine alphaherpesvirus, which is rarely found in humans and

highly lethal. Subsequently, we determined that this species shares a

high level of genetic homology to a sub-species of HSV-1 that was not

initially included among the reference viral genomes tested.

Several limitations to this work should also be noted. The relatively

small number of brain samples may explain why the parametric mod-

els detected significant associations only in blood samples. However,

the nonparametric ML models identified several viruses as predictors

of AD in brain. Second, most of the detected viruses had relatively

low read counts, with the exception of HSV-1. As a result, several viral

species identified using ML models did not yield robust regression

results, as evidenced by very large ORs and standard error estimates.

Another caveat is the fact that DNA reflects a “snapshot” of an indi-

vidual’s microbial load at the time the sample was collected. Hence, we

are unable to establish temporality for the association with AD. Unlike

other viruses that cause acute infection, however, HSV-1 is persis-

tent and generally life-long. Also, despite our efforts to harmonize our

analyses,weutilizeddata thatwere generatedusing fundamentally dif-

ferent sequencing methods and tissue sources. Although it is difficult

to account for all potential sources of contamination, the significant

viruses were associated across several sequencing centers, indicating

that contamination at individual labs was not a likely source of bias.

Although ML-based associations with several viral species were

observed across all four strata of the data, many findings were incon-

sistent across tissue source and type of sequence data. Differences

between data derived from blood and brain may be explained by dif-

ferential cell type infection among viruses and the variable ability of

species to cross the blood–brain barrier. These factors may explain

why substantially more species were detected in DNA derived from

blood. Associations between AD andHSV-1which were observed only

in blood-derivedWES samples could indicate that only more severe or

active infections are detectable in blood. The significant association of
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the quantity of reads from the herpes virus family with AD in brain

samples may be evidence that WES samples may be less able to dis-

criminatebetweendifferentmembersof specieswithin that family. The

detection ofHPV-71 in bloodonlywas not surprising because this virus

does not infect neurons and instead infect basal epithelial cells.41 The

capture kits used in WES may explain the higher viral load detected in

theWGSdata because only species containing a sequence complemen-

tary to one of the capture probes would be detected. Unfortunately,

no duplicate samples were sequenced in DNA derived from both brain

and blood, nor from both WGS and WES, making direct comparisons

impossible.

5 CONCLUSIONS

Findings fromthis studyprovide further support for a role of viral infec-

tions, especially HSV-1, in the development of AD and demonstrate

that they canbedetected andquantified in humanDNAsequence data.

Additional studies are needed to determine the role of host genetic

modifiers within and across populations on the association of AD with

HSV-1 and other viruses, as well as examine the relationship of specific

viruses to AD-related pathology and biomarkers. Finally, these find-

ings suggest that reducing the load and/or activity of HSV-1may lower

future risk of AD.
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