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Abstract

INTRODUCTION: Memory-associated neural circuits produce oscillatory events

including theta bursts (TBs), sleep spindles (SPs), and slow waves (SWs) in sleep elec-

troencephalography (EEG). Changes in the “coupling” of these events may indicate

early Alzheimer’s disease (AD) pathogenesis.

METHODS: We analyzed 205 aging adults using single-channel sleep EEG, cere-

brospinal fluid (CSF) AD biomarkers, and Clinical Dementia Rating® (CDR®) scale.

We mapped SW-TB and SW-SP neural circuit coupling precision to amyloid positivity,

cognitive impairment, and CSF AD biomarkers.

RESULTS: Cognitive impairment correlated with lower TB spectral power in SW-TB

coupling. Cognitively unimpaired, amyloid positive individuals demonstrated lower

precision in SW-TB and SW-SP coupling compared to amyloid negative individuals.

Significant biomarker correlations were found in oscillatory event coupling with CSF

Aβ42/Aβ40, phosphorylated- tau181, and total-tau.
DISCUSSION: Sleep-dependent memory processing integrity in neural circuits can

be measured for both SW-TB and SW-SP coupling. This breakdown associates with

amyloid positivity, increased AD pathology, and cognitive impairment.
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Highlights

∙ At-home sleep EEG is a potential biomarker of neural circuits linked tomemory.

∙ Circuit precision is associated with amyloid positivity in asymptomatic aging adults.

∙ Levels of CSF amyloid and tau also correlate with circuit precision in sleep EEG.

∙ Theta burst EEG power is decreased in very early mild cognitive impairment.

∙ This techniquemay enable inexpensive wearable EEGs for monitoring brain health.
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1 BACKGROUND

Sleep dysfunction is hypothesized to share a bidirectional relation-

ship with Alzheimer’s disease (AD) pathology,1,2 and there is growing

interest in understanding the neurophysiological properties of sleep

that are most strongly associated with neurodegeneration. Among

many putative neuroprotective attributes of sleep, slow wave activity

(SWA) stands out for both the robust data supporting plausible neu-

roprotective mechanisms,2,3 and the readily quantified SWA metrics

that can be obtained from widely available single-channel electroen-

cephalography (EEG).4–6 Loss of SWA correlates with age7–11 and

neurodegenerative processes including Alzheimer’s disease (AD) and

Parkinson’s disease.2,12 Further, in preclinical AD, SWA loss occurs in

association with amyloid deposition rates,13 and the presence of tau

pathology.4

There are extensive data supporting SWA’s role in synaptic

homoeostasis,14 and regulation of synaptic plasticity is thought to

support SWA’s role in sleep-dependent memory consolidation.15,16

Within SWA, multiple types of oscillatory events occur in association

with replay of memory sequences, mirroring wake-like experiences

in the patterns of neuronal activity.17–23 Oscillatory components

of SWA’s memory playback include slow waves (SWs), theta bursts

(TBs), and sleep spindles (SPs), and together they form nested, or

“coupled,” complexes with one another during SWA.24–29 Both TB

and SP events are described to propagate through thalamocortical

and hippocampal-cortical neural circuits,25,26,30–32 although these

events are distinguished by their temporal relationships to the troughs

of SWs6,25,26,30 and differences in their coupling to high frequency

cortical gamma, which is reported to occur in distinct phases of TB and

SP events.30

While the mechanisms underlying sleep-dependent memory con-

solidation are a topic of debate among several competing (and non-

mutually exclusive) models, there is a general consensus that sleep’s

oscillatory events support memory processing.15,33,34 In this context,

some of the most insightful studies have focused on the coupling

relationships betweenSWandSPevents,whichhave emerged as a crit-

ical mechanistic component of sleep’s memory functions.19,35,36,37–39

Indeed, experiments in preclinical models and human research par-

ticipants demonstrate that memory processing can be disrupted or

enhanced via modulation of SW and SP events.35–36,40,39 In addi-

tion, age-associated changes in the temporal coupling of SW and

SP events correlate with performance in sleep-dependent memory

tests.37,41

Timing irregularities of SW and SP coupling are also correlated

with amyloid42 and tau43 in positron emission tomography (PET)

imaging studies. Further, subpopulations of SW and SP oscillatory

events demonstrate unique properties, and distinct relationships exist

within SW events defined by either high versus low transition fre-

quencies in the context of aging,44 amyloid positivity,42 and cognitive

processes.42,45 TB events are detectable prior to the troughs of

SWs5,6,25,26,30 and play a role in normal sleep-dependent memory

processing,30,46 although their relationships to SW subpopulations,

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture within PubMed and relevant citations are provided.

Oscillatory events in sleep electroencephalography (EEG)

are a potential biomarker of Alzheimer’s disease (AD);

however, studies have been limited in types of partic-

ipants and biomarkers assessed, reliance on traditional

polysomnography, and relatively simple EEGmetrics.

2. Interpretation: Our study demonstrates that memory-

associated neural circuit precision is measurable within

at-home single-channel sleep EEG. Advanced signal pro-

cessing can probe the integrity of these circuits, and dis-

tinct subtypes of oscillatory events inform cerebrospinal

fluid levels of core AD biomarkers and amyloid positivity

among asymptomatic aging adults.

3. Future directions: Our study offers a framework to

develop inexpensive wearable EEG devices that monitor

brain health, detect preclinical AD, and track treatment

response. Refining signal processing techniques could

strengthen predictive performance. Further understand-

ing the function of oscillatory events may elucidate neu-

roprotective properties of sleep in preventing cognitive

decline and AD progression.

and their potential changes in aging and neurodegenerative processes,

have yet to be formally assessed.

Remarkably, a simple single channel of EEG recording is sufficient

to probe the integrity of memory-associated oscillatory events, thus

opening the door to deploy inexpensive “wearable” devices in the home

setting for monitoring brain health and early signs of neurodegener-

ative disease. Nonetheless, translation of this technology into clinical

application will require significant additional work, including steps to

better characterize thevarious subtypesof SWA-associatedoscillatory

events in both normal and pathological processes. Here, we sought to

make such advancements by innovating signal processing methods to

map the spectral coordinates of individual oscillatory events in time-

frequency (TF) space, thus providing a metric of both temporal and

frequency precision of the neural circuits underlying sleep-dependent

memory consolidation.

In this study, we utilized this novel TF spatial mapping to exam-

ine the properties of several key oscillatory events (including high and

low transition frequency SW subtypes, SPs, and TBs) within a large

and well-characterized cohort of older adults. We hypothesized that

the TF precision and event-specific EEG power of SW-coupled oscilla-

tionswould correlatewith amyloidpositivity andcognitive impairment.

We further assessed correlations betweenmetrics of oscillatory event

coupling and cerebrospinal fluid (CSF) levels of core AD biomarkers.
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2 METHODS

2.1 Participant sample

Community-dwelling participants from a longitudinal cohort at the

Knight Alzheimer Disease Research Center (ADRC) at Washington

University in St. Louis were selected for analysis (n = 205). All

data were collected with written informed consent under research

protocols approved by the Washington University in St. Louis Insti-

tutional Review Board. Participants were selected for this study

if they had completed at least three nights of single-channel EEG

recording, one night of monitoring with a home sleep apnea test,

genotyping for apolipoprotein (APO)E4 status, one lumbar punc-

ture for Alzheimer’s biomarkers within 1 years of sleep record-

ings, and a Clinical Dementia Rating® (CDR®)47 within 2 years

of sleep recordings. All participants were either cognitively unim-

paired (CDR 0) or very mildly cognitively impaired (CDR 0.5) with

the exception of one participant who was mildly cognitively impaired

(CDR 1).

2.2 EEG and apnea data acquisition

Overnight EEG recordings were acquired as previously described.48

Briefly, longitudinal EEG recordings were obtained from partici-

pants at home up to six nights using a single-channel EEG device

worn on the forehead (with sensors at approximately AF7, AF8, and

Fpz) and with a sampling rate of 256 samples per second (Sleep

Profiler, Advanced Brain Monitoring). Resulting EEGs were visually

scored by registered polysomnographic technologists using criteria

adapted from the American Academy of Sleep Medicine guidelines.49

An additional a one-night home sleep apnea test was utilized as

previously described45 to measure hypopneas greater than 4% oxy-

gen desaturation criteria and compute an apnea–hypopnea index

(AHI) for each participant (HSAT; Alice PDx, Philips Respironics Inc,

Murrysville, PA).

2.3 SW detection

Raw EEG timeseries data were processed with MATLAB R2021b

(MathWorks, Inc., Natick, MA). SWs were identified via automated

zero-crossingdetection aspreviously described.6 Briefly, SWdetection

was performed from forehead electrodes, roughly FP1-FP2 montage,

from sleep stages N2 and N3. Epochs with un-scorable data were

excluded from analysis. Automated management of high amplitude

artifacts was accomplished via exclusion of EEG segments exceeding

900 μV after detrending data with sliding window of three sec-

onds across raw data. A high amplitude, repeating artifact from the

recording device was also excluded by thresholding. Discrete Fourier

transform (DTF) was computed using a fast Fourier transform (FFT)

algorithm for the affected frequency region (15hz - 17hz) and artifact-

containing regions were removed if the DFT vector values exceeded

8 μV. EEG data were subsequently detrended and band-pass filtered

in a forward and backward direction using a sixth-order Butter-

worth filter between 0.16 and 4 Hz. Zero crossings were identified to

detect negative and positive half-waves, and SW events were iden-

tified when the half-wave pairs approximated a frequency range of

0.4–4 Hz. Minimal and maximal half-wave amplitudes were measured,

and SWs with both positive and negative maximum amplitudes in the

top 50% of all waves were selected for subsequent coupling anal-

ysis. An upper threshold of ±200 μV for zero crossing pairs was

utilized to reducemisidentification of non-SWevents. A further reduc-

tion of false identifications was accomplished by rejecting all zero

crossing pairs with peak/trough amplitudes exceeding four standard

deviations from the mean min/max zero crossing pair values for each

subject.

2.4 Spindle and TB identification

Spindle and TB event identification was performed using established

methods.5,6 Briefly, EEG data were detrended and bandpass filtered in

a forward and backward direction using a third-order Butterworth fil-

ter between 10 and 13.5 Hz for late-fast spindles and 4-8 Hz for TBs.

Note that early-fast spindles are more prominent in central record-

ing locations5 and were not consistently detected in the FP1-FP2

channel, and therefore were excluded from analysis. Maximum spindle

envelopes were calculated and an amplitude threshold of 75% per-

centile of the root mean squared value with a length window of 0.5 to

3.0 s was used to define spindle events and TBs. An absolute threshold

of 40 μV in range was used to eliminate artifacts and only spindle/TB

envelopes within eight standard deviations from the mean amplitude

values were selected for analysis.

2.5 Separation of SW by transition frequency

SW events were categorized as high versus low transition frequency

in accordance with previously published methods.42,44 The distance

between the trough and peak of each SW was calculated and resul-

tant halfwave was converted into a frequency value in Hertz. A cutoff

of 1.2 Hz was then used to separate all detected SWs into two

populations, as previously described (Figure 1).42,44

2.6 Detection of SW coupling with spindles
and TBs

Individual SW events were sorted by their co-localization with SPs and

TBs in the time domain as previously described.5,6 Spindles occurring

within 0–1.5 s from the trough of each SWwere classified as a coupled

event. TBs occurring within −0.5 to 0.2 s from the trough of each SW

were classified as a coupled event.
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F IGURE 1 A visual summary of the signal processingmethods. (A) An illustrative example of raw sleep electroencephalography (EEG) data
containing an identified theta burst (TB) event and a spindle (SP) event, each temporally coupled to the trough of a slowwave (SW) event. Note
that not all SW events can bematched to coupled TB or SP events. (B) An anatomical illustration (not to scale) of the hippocampal-cortical and
corticothalamic circuits that propagate oscillatory events including TBs, SPs, and SWs. (C) A conceptual illustration of TB and SP oscillatory events
that are individually identified from raw EEG (illustration not to scale). (D) SWoscillations are identified from raw EEG and characterized as having
low or high transition frequencies bymeasuring the distance from their troughs to peaks. (E) Temporal sequences of “1” TBs, “2” SWs, and “3” SPs
create “coupling” as the events co-occur in fixed timewindows from one another (illustration not to scale). (F) An example of a normalized
time-frequency EEG spectrogram containing an individual SP event coupled to the trough of an individual SW (SW and SP shapes are
superimposed as a conceptual illustration, not to scale). (G) An example of event detection wherein the time-frequency location of individual SP
events frommultiple spectrograms are outlined and superimposed. (H) An example of precision event topographical localization. The precision of
SP event centroids in panel “F” is calculated bymeasuring the number of SP event centroids within the inner ring, divided by the total number
within the outer and inner ring areas. H= hippocampus, T= thalamus, C= cortex.

2.7 TF spectrogram analysis

TF wavelet spectrograms of SW-coupled spindles and TBs were cre-

ated via established methods.5,6 Briefly, troughs of each SW were

centered in 5-s intervals of EEGdata andmatched to 5-s baseline inter-

vals immediately preceding SW events (excluding baseline segments

containing SW events). A Morlet-wavelet transformation (65 cycles

from4 to 10Hz) was applied to the unfiltered EEG for SWand baseline

segments between 4 and 20 Hz in steps of 0.25 Hz with varying wave

numbers (65 cycles from 4 to 10Hzwith a step size of 0.0938 tomatch

the frequency step size). Themean of baseline regionswas used to nor-

malize the amplitude of themeanMorlet-wavelet transformation of all

5-s SW-adjacent regions. TF windows were defined within TF spectral

space for quantification of baseline-normalized EEG power. TBs were

defined by a TF-window between 4 and 6.5 Hz at −0.5 to 0.2 s from

theaverageSWtrough. SpindleTF-windownormalizedEEGpowerwas

measured between 10 and 13 Hz at 0.3–1.3 s from the average SW

troughs.

2.8 Precise event topographical localization
analysis

TF wavelet spectrograms of normalized EEG power were utilized to

perform precise event topographical localization (PETL) to determine

the location of each TB and SP event in TF space. Briefly, the indi-

vidual spectrogram images for each SW-TB and SW-SP event were

processed via the MATLAB image processing toolbox to detect oscil-

latory events within awindow of TF space surrounding each SWevent.

Each spectrogram was converted into a binary image using the “imbi-

narize”MATLAB function, where pixels above an intensity threshold of

0.65 were set to 1 and all other pixels were set to zero. Subsequently,

the “bwareaopen” function was used to remove noise, “imclose” and

“imfill” to fill gaps and holes, and “bwboundaries” to identify bound-

aries of oscillatory events in the spectrogram images. Centroids of

round-shaped oscillatory events (each event exceeding >0.4 round-

ness factor; >1000 pixels/250,250 total pixels) were then mapped

within two circular target zones with radii spanning 4 and 2 Hz in
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frequency space, respectively, and centered over the greatest region

of spindle (or TB) normalized power density for each participant.

A precision metric was calculated by dividing the number of event

centroids within the inner circular target zone by the total num-

ber of event centroids in the inner and outer circular target zones

(expressedas apercentageof eventswithin the inner circle target zone;

Figure 1).

2.9 CSF biomarker acquisition and thresholding

CSF collection was performed as previously described in a standard-

ized protocol.50 Briefly, lumbar punctures were performed at 8:00 a.m.

with a 22-gauge Sprotte spinal needle and aliquoted into polypropy-

lene tubes after low-speed centrifugation. Samples were stored at

−80◦C until analysis. Concentrations of amyloid-β42, amyloid-β40, t-
tau, and p-tau 181were obtained using previously described protocols

via automated electrochemiluminescence immunoassay (LUMIPULSE

G 1200, Fujirebio), and thresholding for amyloid positivity was per-

formed as previously described.51,52

2.10 Statistical analysis

Statistical analysis was performed with SAS v9.4 (SAS Institute Inc.,

Cary, NC). Demographics and other subject level variables were com-

pared among groups, using analysis of variance (ANOVA) type models

for continuous or scale variables, and chi-squared/Fisher’s exact asso-

ciation test for categorical variables. Logarithmic transforms were

considered for right skewed distributions. Negative binomial count

rate models, with robust standard errors, were considered for counts

of sleep events.

EEG variables were logarithmically transformed and analyzed

with mixed models to compare cognitive groups, adjusted for age,

sex, years of education, APOE4 (yes vs. no), and AHI. A random

intercept was invoked for repeated measures on a subject across

multiple nights. Different residual variances were allowed for dif-

ferent treatment. An omnibus F test for performed for differences

among the cognitive groups, followed by pair-wise comparisons with

the Tukey-Kramer adjustment. Additive differences on the logarith-

mic scale were back transformed into ratios and percent differ-

ences on the original scale. Estimates, 95% confidence intervals,

and p-values for testing the null hypothesis of no difference were

reported.

Partial Spearman correlations were run for the relationships

between EEG variables (subject averaged on the logarithmic scale)

and biomarkers, adjusted for age, sex, years of education, APOE4 (yes

vs. no), and AHI. The p-values for the hypothesis test of no correla-

tion were obtained, and confidence intervals were calculated using

the Fisher Z transform. Sample correlations, 95% confidence inter-

vals, and p-values were reported. A Benjamini-Hochberg procedure

was used to control the false discovery rate (FDR) among biomarker

correlation with the EEG precision variables for the different spectra

and select the ones which remained statistically significant. Two-sided

alpha= 0.05.

3 RESULTS

3.1 Sample characteristics

A total of 205 participants met criteria for analysis. Subdividing the

participants by amyloid positivity and CDR status resulted in 105 par-

ticipants who were cognitively normal by CDR testing and amyloid

negative by Aβ42/40 CSF cutoff (herein referred to as the Aβ-CU
group). An additional 69 participants were cognitively normal by CDR

testing and amyloid positive by CSF cutoff (herein referred to as the

Aβ+CU group), and 31 participants were cognitively impaired by CDR

testing and amyloid positive by CSF cutoff (herein referred to as the

Aβ+CI group). Demographics and sleep study metrics are provided in

Table 1. Age was not significantly different between Aβ-CU and Aβ+CI
individuals, although the Aβ+CU individuals were on average ∼2 years

older than Aβ-CU individuals (p < 0.05). There were no statistically

significant differences in education, sex, or AHI between the groups.

TheAPOE4 allele demonstrated an expected higher prevalence among

Aβ+CU and Aβ+CI adults, compared to Aβ-CU adults (p < 0.001).

Sleep staging metrics were similar across groups, with no significant

differences observed (Table 1).

3.2 Detection of memory-relevant events from
sleep EEG

We observed similar numbers of overall SW, TB, and SP events

between Aβ-CU, Aβ+CU, and Aβ+CI adults (Table 2). SW events were

sorted into subtypes of high and low transition frequency at 1.2 Hz

cutoff, and no significant differences in event counts were identified

between groups. Temporal coupling of SWs to both SPs and TBs was

also comparable between groups, without any significant differences

identified (Table 2).

3.3 Event-matched TF spectrograms of TBs

TB coupling to both high and low transition frequency SWswas appre-

ciable with a distinct TB spectral event in averaged TF spectrograms

(Figure 2). The normalized (SW coupling specific) TB power was quan-

tified from a TF-window (region of TF space) surrounding the TB

spectral event for each individual and averaged to make group com-

parisons after controlling for co-variables and multiple comparisons

(Table 3). Quantifying the normalized EEG power of TBs nested with

high transition frequency SWs demonstrated ∼ 6.56% less normal-

ized power among the Aβ+CI group, compared to the Aβ-CU (95% CI:

[−2.83, −10.15%], adjusted p < 0.001). The high transition frequency

SW-coupled normalized TB power was also ∼6.14% lower comparing

Aβ+CI toAβ+CUgroups (95%CI: [−2.62,−9.54%], adjustedp<0.001).
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TABLE 1 Demographics and staging.

Demographics Aβ– CU Aβ+CU Aβ+CI

No. of participants (%) 105 (51) 69 (34) 31 (15)

Age at sleep study, years, median (IQR) 71 (69 – 75) 73 (71 – 79)a 74 (69 – 79)

Males, n (%) 46 (43.8) 30 (43.48) 20 (64.52)

Education, years, median (IQR) 16 (15 – 18) 17 (15 – 18) 18 (15 – 19)

Number of APOE4-positive (%) 21 (20) 35 (50.72)b 21 (67.74)c

Aβ42/Aβ40 ratio, median (IQR) 0.092 (0.087 – 0.097) 0.048 (0.041 – 0.059)b 0.044 (0.039 – 0.052)c

P-tau, pg/mL, median (IQR) 33.9 (27.2 – 39.1) 54.4 (43 – 82) 75.3 (54 – 99.1)

Total tau, pg/mL, median (IQR) 253 (204 – 313) 395 (298 – 572) 514 (401 – 664)

ApneaHypopnea Index, median (IQR) 6.4 (2.7 – 12.4) 6 (2.3 – 11.6) 5.5 (2.5 – 8.6)

Sleep Staging, minutes, median (IQR)

TST 371.6 (340.38-399.5) 374.75 (331.60 – 408.92) 401.83 (352.28 – 446.20)

Stage N1 29.67 (23.25 – 37.6) 31.08 (22.33 – 38.0) 26.70 (20.92 – 40.00)

Stage N2 254.33 (215.92 – 284.5) 258.5 (226.67 – 289.30) 271.4 (218.58 – 318.05)

Stage N3 2.13 (0.33 – 9.3) 2.58 (0.3 – 12.58) 1.17 (0.11 – 8.65)

REM 83.83 (60.63 – 96.58) 77.6 (63.20 – 88.38) 86 (63.29 – 106.17)

REM latency 86.17 (62.33 – 123.80) 77.67 (56.33 – 114.33) 76 (58.83 – 136.73)

SOL 18 (10.50 – 24) 12.67 (7.75 – 24.20) 14.8 (6.74 – 21.33)

SE 81.14 (73.54 – 85.25) 80.53 (75.82 – 84.84) 81.37 (76.29 – 87.78)

WASO 67.70 (47 – 105.10) 74.6 (50.58 – 90.83) 74.1 (39.65 – 99.27)

N1% 7.99 (6.34 – 10.91) 8.36 (6.12 – 10.35) 7.71 (5.72 – 9.71)

N2% 67.70 (63.65 – 72.10) 68.01 (62.27 – 75.10) 67.59 (63.70 – 75.86)

N3% 0.61 (0.10 – 2.16) 0.66 (0.09 – 3.01) 0.35 (0.03 – 2.21)

REM% 22.50 (18.33 – 25.25) 20.31 (16.38 – 25.18) 21.13 (16.83 – 27.42)

Abbreviations: Aβ= amyloid; APO, apolipoprotein; CI= cognitively impaired; CU= cognitively unimpaired; IQR, interquartile range; P-tau= phosphorylated

tau 181; REM= rapid eyemovement; SE= sleep efficiency; SOL= sleep onset latency; TST= total sleep time;WASO=wake after sleep onset.
ap< 0.05 Aβ– CU versus Aβ+CU.
bp< 0.001 Aβ– CU versus Aβ+CU.
cp< 0.001 Aβ– CU versus Aβ+CI.

*Statistically significant when controlled for a false discovery rate (FDR) of 0.05.

The TF-windows for TBs matched to wide low transition frequency

SWs demonstrated similar group comparisons, with ∼6.45% less EEG

power among the Aβ+CI group compared to the Aβ-CU group (95%CI:

[−2.24, −10.47%], adjusted p < 0.002). The Aβ+CI group was ∼6.36%

lower in TB power compared to the Aβ+CU group as well (95% CI:

[−2.37,−10.18%], adjusted p= 0.001).

3.4 Event-matched TF spectrograms
of spindles

TF spectrograms for SPs matched to both high and low transition

frequency SWs demonstrate a clear SP spectral event (Figure 2). As

with TBs, normalized (SW-coupling specific) SP EEG power was quan-

tified from a TF-window surrounding the SP spectral event for each

individual and averaged to make group comparisons after control-

ling for co-variables and multiple comparisons (Table 3). Comparisons

betweengroupsdemonstratedno statistically significant differences in

SP TF-window normalized EEG values for either high or low transition

frequency SWs.

3.5 Event-matched precise topographical TB
localization

The precision of SW-TB coupling was calculated as a metric of the

consistency in timing and frequency of SW-coupled TB events in TF

spectrogram representations. The SW-TB precision for high transition

frequency SWs demonstrated a modest, but statistically significantly

∼2.57% lower precision between Aβ+CU individuals compared to Aβ-
CU individuals (95% CI: [−0.08, −4.99%], adjusted p < 0.05) (Table 3).

Additional group comparisons of precision of SW-TB coupling did not

reach statistical significance after controlling for multiple comparisons

(Table 3; Figure 3).



PULVER ET AL. 307

TABLE 2 Sleep event counts.

Median (IQR) Aβ– CU (n= 105) Aβ+CU (n= 69) Aβ+CI (n= 31)

Total SWs 15,138 (10,188 – 20,550) 15,763 (11,027 – 20,806) 13,856 (11,208.50 – 21,228.50)

Total SWs per night 2,549.50 (1,698 – 3,454.17) 2,870.25 (1,985.5 – 3,467.67) 2,631.50 (1,980.45 – 3,538.08)

High transition frequency SWs 5,252 (3,237.50 – 7,151.50) 6,048 (3,850 – 8922) 5,405 (3,569 – 7,559)

High transition frequency SWs per

night

917 (544.20 – 1,201.33) 1,055.25 (683.83 – 1,490.83) 1,063.33 (697.90 – 1,320.92)

Low transition frequency SWs 9,414 (6,312.50 – 12,050.50) 10,642 (7,077 – 11,581) 8,124 (6,553 – 13,747)

Low transition frequency SWs per

night

1,588 (1,059.17 – 2,015.33) 1,797.50 (1,277 – 2,087.67) 1,636.83 (1,209.67 – 2,315.65)

Total TBs 20,946 (15,426 – 26,058.50) 22,646 (17,378 – 26,532) 20,504 (17,529.50 – 26,729)

TBs per night 3,579.83 (2,566.17 – 4,360) 3,997.33 (2,971.75 – 4,622.50) 3,683.60 (3,271.42 – 4,657.22)

Total SPs 23,016 (17,263.50 – 28,177.50) 24,963 (18,439 – 28,942) 22,391 (17,864 – 29,271.50)

SPs per night 3,836.83 (2,894 – 4,759.33) 4,362.83 (3,221.17 – 4,909.83) 4,257.50 (3,250.67 – 4,946.17)

High transition frequency SW-TB

coupling

1,624 (1,021.50 – 2,301) 1,810 (1,194 – 2,742) 1,673 (1,143.50 – 2,245)

High transition frequency SW-TB

coupling, per night

270.67 (160.33 – 388) 323(205.67 – 457) 304 (212.40 – 394.17)

High transition frequency SW-SP

coupling

2,623 (1,582.50 – 3,466.50) 3,107 (1,948 – 4,298) 2,694 (1,766 – 3,750.50)

High transition frequency SW-SP

coupling, per night

437.17 (255.33 – 605.17) 521.83 (342 – 730.33) 490.75 (333.33 – 658.75)

Low transition frequency SW-TB

coupling

2,836 (1,752 – 3,629.50) 2,996 (2,081 – 3,575) 2,305 (1,883.50 – 3,491)

Low transition frequency SW-TB

coupling, per night

479 (285.83 – 631) 531.17 (369.20 – 609.67) 443.20 (353.57 – 630.67)

Low transition frequency SW-SP

coupling

4,448 (2,975 – 5,701) 4,991 (3,347 – 5,811) 3,847 (2,968 – 6,413)

Low transition frequency SW-SP

coupling, per night

753.17 (496 – 968.67) 858 (627.50 – 986) 803.17 (540.25 – 1,068.83)

Note: Number of detected events are presented asmedian (IQR). There were no significant differences between groups.

Abbreviations: Aβ = amyloid; CU = cognitively unimpaired; CI = cognitively impaired; IQR = interquartile range; SP = spindle; SW = slow wave; TB = theta

burst.

3.6 Event-matched precise topographical spindle
localization

The low transition frequency SW-SP coupling demonstrated ∼5.10%

lower precision between Aβ+CU individuals compared to Aβ-CU
individuals (95% CI: [−1.28, −8.77%], adjusted p < 0.01) (Table 3).

Additional comparisons of precision within high and low transition

frequency SW-SP coupling were not statistically significant between

groups after controlling for multiple comparisons (Table 3; Figure 3)

3.7 Correlations with CSF and biomarker levels

We next performed an analysis of the relationships between SW-TB

and SW-SP precision with concentrations of CSF biomarkers, control-

ling for age, sex, education, APOE4 gene status, AHI, and FDR for

multiple comparisons (Table 3). High transition frequency SW-TB cou-

pling precision and low transition frequency SW-SP coupling precision

were significantly correlated with CSF Aβ42/Aβ40 ratios (rho = 0.197,

95%CI: [0.060–0.327], p= 0.005; rho= 0.183, 95%CI: [0.046–0.314],

p < 0.01). Neither low transition frequency SW-TB or high transi-

tion frequency SW-SP coupling precision were significantly correlated

with Aβ42/Aβ40 levels. With regard to CSF p-tau and total-tau, high

transition frequency SW-TB precision was the only coupling metric

significantly correlated with CSF p-tau levels (rho = −0.201, 95%

CI: [−0.330 to −0.064], p < 0.005) and with CSF total-tau levels

(rho = −0.175, 95% CI: [−0.306 to −0.037], p < 0.05). The correla-

tions remained significant under a FDR (alpha=0.05) for all SW-TBand

SW-SP precisions with Aβ42/Aβ40, p-tau, and total-tau.
Given the significant AD biomarker correlations observed with high

transition frequency SW-TB precision and low transition frequency

SW-SP precision, we performed an additional exploratory analysis to

observe whether combining these two distinct metrics might provide

a better gauge of memory-associated neural circuit integrity. Here we

combined these SW-TB and SW-SPmetrics into one summed precision

value (log scale precision values were summed for each participant to
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F IGURE 2 Comparison of slowwave–theta burst (SW-TB) and slowwave–sleep spindle (SW-SP) coupling normalized electroencephalography
(EEG) power across stratified groups spanning stages of normal aging tomild cognitive impairment in early Alzheimer’s disease. (A) High transition
frequency SW-TB coupling and (B) low transition frequency SW-TB coupling are visually represented as averaged time-frequency plots, and
quantified EEG power among individuals is graphed in box/whisker plots. (C) High transition frequency SW-SP coupling and (D) low transition
frequency SW-SP coupling are visually represented as averaged time-frequency plots, and quantified EEG power among individuals is graphed in
box/whisker plots, Aβ= amyloid, CU= cognitively unimpaired, CI= cognitively impaired. [*] indicates statistical significance< 0.005 after
adjusting for covariates andmultiple comparisons (Tukey-Kramer adjustment).

create a hybrid precision metric that incorporates both their SW-TB

and SW-SP precision; Table 3; Figure 4). The covariate-adjusted cor-

relations with this hybrid metric were statistically significant for CSF

Aβ42/Aβ40 ratios (rho = 0.266, 95% CI: [0.132, 0.390], p < 0.001), p-

tau (rho=−0.210, 95% CI: [−0.339,−0.073], p < 0.003), and total-tau

(rho = −0.182, 95% CI: [−0.313, −0.044] p < 0.010). The correlations

remained significant under a FDR (alpha = 0.05) for these summed

precision values with Aβ42/Aβ40, p-tau, and total-tau.

4 DISCUSSION

Our study evaluated potential biomarker properties of single-channel

sleep EEG in early AD, examining brain communication events linked

to memory replay sequences during slow-wave sleep. Our findings

distinguish high and low transition frequency SW subtypes and their

coupling precision to TBs and SPs. Analysis of normalized SW-coupled

TB EEG power among Aβ+CI individuals demonstrated significant

differences in TB power coupled to both high and low transition

frequency SWs, compared to both Aβ-CU and Aβ+CU individuals.

Amyloid positivity and ratios of CSF Aβ42/Aβ40 were associated

with loss of precision in the circuits controlling high transition fre-

quency SW-TB coupling and low transition frequency SW-SP coupling.

Loss of high frequency SW-TB precision was also correlated with

CSF p-tau and total-tau levels (see Figure 5 for an illustrative sum-

mary). An exploratory analysis further enhanced these correlative

relationships by combining the high transition frequency SW-TB and

low transition frequency SW-SP metrics, suggesting that these sep-

arate neural circuit metrics jointly contribute to each individual’s

statistical relationship with AD core biomarkers. Collectively, our

analyses reveal distinct abnormalities in memory-associated oscil-

latory events of SWA in association with both CSF biomarkers of
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TABLE 3 Precision and TF-window results.

Perfect

difference

estimate

Adjusted confidence

interval

Adjusted

p-value

Aβ+CU vs. Aβ-CU

High transition frequency SW-TB precision −2.568 −4.993 to−0.081 0.041

High transition frequency SW-SP precision −3.042 −7.815 to 1.979 0.319

Low transition frequency SW-TB precision −1.938 −4.126 to 0.301 0.104

Low transition frequency SW-SP precision −5.099 −8.770 to−1.280 0.006

High transition frequency SW-TB TF-window −0.448 −3.710 to 2.924 0.946

High transition frequency SW-SP TF-window 1.395 −2.256 to 5.182 0.645

Low transition frequency SW-TB TF-window −0.097 −3.497 to 3.423 0.998

Low transition frequency SW-SP TF-window 0.848 −2.754 to 4.583 0.847

Aβ+CI vs. Aβ-CU

High transition frequency SW-TB precision −1.707 −5.336 to 2.060 0.517

High transition frequency SW-SP precision −4.676 −10.916 to 2.002 0.213

Low transition frequency SW-TB precision −2.032 −4.814 to 0.832 0.210

Low transition frequency SW-SP precision −4.853 −10.896 to 1.600 0.170

High transition frequency SW-TB TF-window −6.561 −10.146 to−2.834 <0.001

High transition frequency SW-SP TF-window −1.083 −5.364 to 3.393 0.826

Low transition frequency SW-TB TF-window −6.446 −10.471 to−2.241 0.002

Low transition frequency SW-SP TF-window −0.393 −4.728 to 4.139 0.976

Aβ+CI vs. Aβ+CU

High transition frequency SW-TB precision 0.883 −2.742 to 4.644 0.832

High transition frequency SW-SP precision −1.685 −8.104 to 5.182 0.818

Low transition frequency SW-TB precision 0.259 −2.886 to 2.774 0.996

Low transition frequency SW-SP precision −0.096 −6.016 to 6.953 0.995

High transition frequency SW-TB TF-window −6.141 −9.537 to−2.617 <0.001

High transition frequency SW-SP TF-window −2.444 −6.566 to 1.860 0.360

Low transition frequency SW-TB TF-window −6.356 −10.175 to−2.374 0.001

Low transition frequency SW-SP TF-window −1.230 −5.412 to 3.136 0.772

Correlation

Estimate

95%Confidence

Interval p-value

CSF 42/40 &Coupling Precision

High transition frequency SW-TB coupling 0.197 0.060 to 0.327 0.005*

High transition frequency SW-SP coupling 0.140 0.001 to 0.273 0.047

Low transition frequency SW-TB coupling 0.151 0.012 to 0.284 0.033

Low transition frequency SW-SP coupling 0.183 0.046 to 0.314 0.009*

p-Tau181 & Coupling Precision

High transition frequency SW-TB coupling −0.201 −0.330 to−0.064 0.004*

High transition frequency SW-SP coupling −0.091 −0.255 to 0.019 0.089

Low transition frequency SW-TB coupling −0.121 −0.226 to 0.049 0.201

Low transition frequency SW-SP coupling −0.134 −0.267−0.005 0.059

total Tau &Coupling Precision

High transition frequency SW-TB coupling −0.175 −0.306 to−0.037 0.013*

High transition frequency SW-SP coupling −0.056 −0.193 to 0.084 0.432

Low transition frequency SW-TB coupling −0.033 −0.171 to 0.106 0.640

Low transition frequency SW-SP coupling −0.123 −0.257−0.016 0.082

(Continues)
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TABLE 3 (Continued)

Correlation

Estimate

95%Confidence

Interval p-value

Combined SW-TB/SW-SPmetric

Precision correlationwith Aβ42/Aβ40 0.273 0.132 to 0.390 <0.001*

Precision correlationwith p-tau181 −0.21 −0.073 to 0.339 0.003*

Precision correlationwith total-tau −0.182 −0.044 to−0.313 0.01*

Note: Precision of coupling and TF-window EEG power are expressed as a percent difference between groups, adjusted for covariates, and controlled for

multiple comparisons with via Tukey-Kramer adjustment. Correlations between precision of coupling and biomarkers are adjusted for covariates only.

Abbreviations: Aβ = amyloid; CU = cognitively unimpaired; CI = cognitively impaired; IQR = interquartile range; SP = spindle; SW = slow wave; TB = theta

burst; TF= time-frequency.

F IGURE 3 Comparison of slowwave–theta burst (SW-TB) and slowwave–sleep spindle (SW-SP) coupling precision across stages of normal
aging tomild cognitive impairment in early Alzheimer’s disease. (A) High transition frequency SW-TB precision comparison between groups. (B)
Low transition frequency SW-TB precision comparison between groups. (C) High transition frequency SW-SP precision comparison between
groups. (D) Low transition frequency SW-SP precision comparison between groups, Aβ= amyloid, CU= cognitively unimpaired, CI= cognitively
impaired. [*] indicates statistical significance< 0.05 and [**] indicates statistical significance< 0.01 after adjusting for covariates andmultiple
comparisons (Tukey-Kramer adjustment).

AD and clinical symptoms of mild cognitive impairment as measured

by CDR.

Our study focused on SW subtypes, TBs, and a lower frequency

(late-fast) subtype of SPs (higher frequency, early-fast spindles were

not reliably measured from the single frontal channel). There were

no significant differences in the average number of detected events

or coupled event pairs across groups. Sleep staging further demon-

strated no significant group differences. Together, this suggests that

that the production of the SWA-associated oscillatory events exam-

ined herein is not significantly impacted by amyloid positivity and/or
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F IGURE 4 Regression analyses are illustrated for combined slowwave–theta burst (SW-TB) and slowwave–sleep spindle (SW-SP)metrics (log
scale precision values were summed for each participant to create a hybrid precisionmetric that incorporates both their high frequency SW-TB
and low frequency SW-SP precision). The covariate-adjusted correlations with this hybrid metric were statistically significant for (A) CSF
Aβ42/Aβ40 ratios (rho= 0.266, 95% confidence interval [CI]: [0.132, 0.390], p< 0.001), (B) p-tau181 (rho=−0.210, 95%CI: [−0.339,−0.073],
p< 0.003), and (C) total-tau (rho=−0.182, 95%CI: [−0.313,−0.044], p< 0.010). The correlations remained significant under a false discovery rate
(alpha= 0.05) for these summed precision values with Aβ42/Aβ40, p-tau181, and total-tau. Note that raw values are graphed for conceptual and
illustrative purposes, while correlation coefficients and p-values were obtained via partial Spearman correlations after adjusting for covariate
effects. Aβ= amyloid.

F IGURE 5 An illustrative summary of the key findings. (A) The temporal coupling of a single theta burst (TB) event and a single spindle (SP)
event to the trough of a slowwave (SW) event is re-illustrated from Figure 1 as a conceptual reference. (B) An illustration of reduced
electroencephalography (EEG) power in TB events that are coupled to both high transition frequency and low transition frequency SWevents
(illustration not to scale). Individuals with symptoms of mild cognitive impairment by Clinical Dementia Rating Scale (CDR) testing exhibit
relatively lower EEG power of TB events. (C) A conceptual illustration of TB temporal and frequency precision “drift” in the coupling of TB events to
high transition frequency SWevents (illustration not to scale). Lower precision in this SW-TB circuit is associated with categorical amyloid
positivity by cerebrospinal fluid (CSF) threshold levels, as well as higher CSF levels of Aβ42/Aβ40, phosphorylated-tau181, and total-tau. (D) A
conceptual illustration of SP temporal and frequency precision “drift” in the coupling of SP events to low transition frequency SWevents
(illustration not to scale). Lower precision in this SW-SP circuit is associated with categorical amyloid positivity by CSF threshold levels, as well as
higher CSF levels of Aβ42/Aβ40. Aβ= amyloid.
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symptoms of mild cognitive impairment, and instead implicates impre-

cision in the timing and frequency characteristics of these oscillatory

events as early signs of neurodegenerative change.

Distinct oscillatory events found within SWA are generated in con-

junction with replay of memory sequences, mirroring wake-like neu-

ronal activity patterns.17–23 Our work builds on previous reports that

have described changes in these events with specific neuropatholo-

gies, including age-related atrophy and AD pathology.4,8,13,37,41–43,53

Notably, prior event coupling studies relied on simple timing metrics,

while our analyses deployed novel signal processing methods to cal-

culate precision as a metric of both time and frequency “drift” in the

underlying SW-SP and SW-TB neural circuits. Our study represents,

to the best of our knowledge, the first formal description of this tech-

nique in sleepEEGanalysis and is also the first study toexpand coupling

analyses to include SW-TB relationships.

The rationale for our approach rests on previously reported cor-

relations between tau43 and amyloid42 PET positivity with SW-SP

timing and on advances in signal processing that differentiated high

versus low transition frequency SW-SP coupling in the context of

aging,44 amyloid positivity,42 and cognitive impairment.42,45 Our anal-

yses corroborate these distinctions between high versus low transi-

tion frequency SW coupling precision both in association with CSF

threshold-based amyloid positivity and in correlative relationships

with Aβ42/Aβ40, p-tau and total tau, suggesting that SW-TB and SW-

SP coupling differ in high versus low transition frequency categories.

Conversely, utilizing a different metric of normalized EEG power in

both high and low transition frequency SW-TB coupling resulted in

similar distinctions among the individuals with mild cognitive impair-

ment, while normalized EEGpower for SW-SP coupling did not differ in

group comparisons. These results suggest that measuring normalized

EEG power versus the precision of event coupling quantify different

neurophysiological processes.

While somewhat speculative, our results are consistent with a

model in which precisionmetricsmay reflect early changes in neuronal

activity that occur in association with elevated molecular biomarkers

prior to cognitive symptoms. Conversely, the loss of normalized EEG

power in SW-coupled TBs was restricted to individuals experiencing

very early symptoms of mild cognitive impairment by CDR scores, sug-

gesting that this metric may be more indicative of neuronal injury and

the progression of neurodegenerative changes. Notably, individuals

with poor precision metrics may experience more subtle impairments

in neuropsychological performance that are not reflected in the CDR,

particularly in tests that are more sensitive to memory impairments,

and future studies may provide additional insights into which cogni-

tive domains might be affected among individuals with poor precision

and/or abnormal normalized EEG powermetrics.

Additional comprehensive studies will also be required to under-

stand how metrics of oscillatory events relate to other aspects of

neurophysiology that have been implicated in neurodegenerative dis-

ease. Several characteristics of SWA and SP physiology are under the

control of homeostatic mechanisms and circadian rhythms,54–58 and

the influence of homeostatic and circadian physiology in the patho-

genesis of AD is a promising area of investigation.59–61 Our analyses

were restricted to examining how oscillatory event coupling relates

to early molecular biomarkers and cognitive assessment by CDR, and

future studies may examine oscillatory event coupling in relation to

temporal, homeostatic, and circadian aspects of sleep to gain broader

neurophysiological insights into the relationships between sleep and

AD. Sleep apnea is also related to the risk of developing neurodegen-

erative disease,62,63 and although we considered the impact of apnea

in our adjusted statistical models, there are limitations inherit to the

use of a single night of at-home apnea data. Relatedly, studies focused

on the interactions between oscillatory events and more robust met-

rics of apnea may yield additional insights to help understand the

neurophysiology of apnea as a risk factor for cognitive decline and

neurodegenerative disease.

Distinctions between SW-TB and SW-SP coupling are apparent in

intracranial recording analyses, wherein the TB events are observed

to initiate SWs and precede hippocampal sharp wave ripples, while

SPs seem to coordinate high frequency gamma activity following the

TB and sharp wave ripple events.25,26,30 Notably, in the wake state,

theta oscillations and sharp wave ripples are mechanistically linked to

hippocampal pattern completion and reinstatement of memory trac-

ings during recall of memory.64,65 Further, theta oscillations appear to

play a similar role in both wake and sleep in coordinating the reacti-

vation of recently learned memory sequences.46 While speculative, it

is possible that the same memory-reinstating theta circuits of wake-

state are responsible for producing TBs during memory replay cycles

withinNREM sleep. This connection betweenwake-statememory per-

formance and sleep-state memory processing may explain why aging

adults within the Aβ+CI group are observed to have lower TB power

in their sleep EEG. Notably, SP precision abnormalities were not statis-

tically different in comparisons between the Aβ+CI group with either

Aβ-CU or Aβ+CU individuals, although the relatively lower number

of CDR positive participants and high variance among this group may

have contributed to lack of statistical significance.

While thedataset utilized for our analyses is significantly larger than

prior studies of SW-SP coupling and AD-related pathology,42,43 limita-

tions in sample size may obscure possible differences between groups

in event counts and sleep stage metrics, particularly in comparisons

with theAβ+CI group. Further, althoughour utilizationof a single chan-
nel of at-homeEEG is highly advantageous for future translation of this

method to inexpensive “wearable” devices, there are potential limita-

tions in this recording technique. Most notable among these technical

constraints is the inability to reliably measure a category of “early-

fast” spindles, as these higher frequency spindles are more prominent

in posterior recording sites.5 In addition, the cross-sectional nature of

this study limits our ability to examine potential longitudinal relation-

ships, and future studieswill be required toexplorepotential predictive

properties of sleep EEG as a biomarker.

Detection of oscillatory events in sleep may provide a clinical appli-

cation as a marker of brain health and in early detection of neurode-

generative processes. This technique requires only a single channel of

EEG in an unsupervised home setting, opening the door for afford-

able and easily self-applied EEG “wearable” headbands for monitoring

brain health, assessing risk of neurodegenerative disease, and tracking
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treatment response. Further, sleep EEG analysis may provide func-

tional information related to memory circuits and is not susceptible to

learning effects or volitional aspects of cognitive testing. Nonetheless,

significant work remains to translate this technique to clinical appli-

cation, including the need to refine the signal processing technique

and more fully account for variance among individuals. Advancements

in event detection and subtyping may provide a means to increase

the precision of this technique. Considerable work also remains to

determine the potential causal relationships between EEG events and

neuropathology. Future studies will be required to catalogue dynamic

changes in theEEGsignals in response to improvement orworsening of

neurophysiological processes that impact sleep’s memory processing

system.

In conclusion, our data demonstrate that the TF spectral properties

of both TB and SP coupling to SWs can be precisely measured from

single-channel EEG and provide information about the integrity of

neural circuits controlling sleep’s memory replay in the early stages

of AD pathogenesis. Changes in the integrity of these hippocampal-

dependent memory circuits occur prior to development of cognitive

symptoms and may serve as an early biomarker of neurodegenerative

processes. Cross-sectional correlations with CSF AD biomarkers fur-

ther suggest that SW-TB and SW-SP coupling are important processes

to consider in the search to identify fundamental neuroprotective

properties of sleep that may serve as targets for novel therapeutic

development.
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