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SUMMARY

Target deconvolution is a crucial but costly and time-consuming task that hinders large-scale 

profiling for drug discovery. We present a matrix-augmented pooling strategy (MAPS) which 

mixes multiple drugs into samples with optimized permutation and delineates targets of each drug 

simultaneously with mathematical processing. We validated this strategy with thermal proteome 

profiling (TPP) testing of 15 drugs concurrently, increasing experimental throughput by 60x while 

maintaining high sensitivity and specificity. Benefiting from the lower cost and higher throughput 

of MAPS, we performed target deconvolution of the 15 drugs across 5 cell lines. Our profiling 

revealed drug-target interactions can differ vastly in targets and binding affinity across cell lines. 
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We further validated BRAF and CSNK2A2 as potential off-targets of bafetinib and abemaciclib, 

respectively. This work represents the largest thermal profiling of structurally diverse drugs across 

multiple cell lines to date.

eTOC Blurb:

Ji et al develop a high-throughput strategy and algorithms for large-scale derivatization-free drug 

target deconvolution. The strategy is validated experimentally on large set of diverse drugs across 

multiple cell lines revealing drug-protein interactions that differ across cell lines.

Graphical Abstract

INTRODUCTION

Bioactive compounds often modulate cellular processes by interacting with proteins whereas 

drug off-targets can contribute to both toxicity and therapeutic effects 1,2. Various cell 

types have their own unique developmental trajectory with specific transcriptional programs 

and respond differently to environmental challenges; as such, drug responses may also 

vary in different cell types 3. Identifying the binding targets of bioactive compounds 

(i.e., target deconvolution) is conventionally addressed by affinity-based and activity-based 

chemical proteomics approaches which often require tedious chemical derivatization which 

in itself may not be feasible depending on synthetic challenges and compound availability. 

Derivatization-free methods with mass spectrometry (MS) readouts like DARTS 4, LiP-

MS5,6, SPROX 7, and TPP (Jafari et al. 2014) are more scalable yet are significantly limited 

in throughput due to instrumentation time.

Thermal proteome profiling (TPP) or MS-based cellular thermal shift assay (CETSA) 8–10 

is a recently developed technique enabling unbiased target identification 11 in relevant 

biological contexts, such as lysates, intact cells 8, cell surface 12, tissue and whole blood 

samples 13 and was recently adapted for protein complex profiling based on thermal 

proximity co-aggregation phenomenon (TPCA) 14. TPP requires multiplexing samples 

processed by serial of denaturing temperatures with isobaric tandem mass tags (TMT) for 

MS analysis. The classic 1D protocol subjects both drug-treated and untreated samples to 
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multiple denaturing temperatures while the 2D protocol introduces additional concentration 

series for each temperature condition 15,16 which further increases demand for MS 

instrumentation time.

Previous efforts to increase throughput reduced the number of samples required for testing 

a single drug, e.g., PISA 17 and iTSA 18. Inspired by pooled coronavirus testing 19,20 where 

samples are mixed for RT-PCR assays, we proposed a Matrix-Augmented Pooling Strategy 

(MAPS) for large-scale proteome-wide profiling of protein-chemical interactions with 

derivatization-free MS-based approaches. In brief, MAPS increases analytical throughput 

by mixing multiple drugs into samples in specific combinations followed by mathematical 

processing to directly delineate the targets of each drug without further profiling; this 

increases throughput by one to two orders of magnitude compared with current experimental 

techniques. Here, we developed MAPS for profiling 15 drugs each time with TPP using 

the iTSA format where a single denaturing temperature is used 12,13. We assessed the 

performance of MAPS-iTSA using the subset of profiled drugs which cognate targets were 

successfully identified by TPP previously. Staurosporine, a broad-spectrum kinase inhibitor, 

was subsequently included among the pooled drugs to increase complexity of data for 

target delineation. We validated that MAPS-iTSA permits 15x and 60x analysis throughput 

over iTSA and the classic 1D TPP respectively, with minimal compromise in sensitivity 

while reducing reagent consumption. MAPS-iTSA identified potential off-targets for 5 

drugs with ambiguous mechanism-of-action; two of them were validated with molecular 

docking, molecular dynamics stimulation, intracellular engagement assays and in vitro 

enzymatic assays. In addition, MAPS-iTSA revealed differentiated targets and responses 

across multiple cell lines. In summary, MAPS is a viable strategy for increasing throughput 

of derivatization-free target deconvolution with mass spectrometry (MS), and offers an 

effective and powerful approach for unveiling new targets and mechanisms of bioactive 

compounds to expediate drug discovery.

RESULTS

Overview of MAPS-iTSA.

The concept and workflow for MAPS were summarized in Fig. 1a while the details of the 

algorithms can be found in methods. First, a binary sensing matrix was derived to guide 

mixing of drugs across samples which was optimized with a genetic algorithm to minimize 

correlation among the mixtures and to increase the information entropy obtained. As a 

proof-of-concept, we applied MAPS to 15 drugs including 10 whose targets were previously 

validated by TPP (termed verification set) and 5 drugs with unclear mechanism-of-action, 

(termed exploratory set, see methods). Drugs in the exploratory set were designed for 

specific targets, but recent studies suggest their effects are due to unconfirmed off-targets 
21,22.

Accordingly, we designed a 9×15 sensing matrix with an in-house script (see and provided 

in supplementary materials, Fig. S1a and Fig. S1b), which means 15 drugs were pooled 

across 9 tubes for target deconvolution (Table S1 and Table S2). Our script dictates each 

drug is found in at least 3 tubes. After mixing of drugs, samples were subjected briefly to 

a denaturing temperature and soluble proteins were quantified by protein mass spectrometry 
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using SISPROT with TMT multiplexing reagents 23,24. Finally, drug-target interactions were 

deconvoluted based on quantified protein abundances and the sensing matrix with a LASSO 

regression algorithm. For every protein detected, the LASSO algorithm computed a LASSO 

path and corresponding LASSO score for each drug. The LASSO score of each drug was 

defined by the regression coefficient when the penalty of LASSO making only k regression 

coefficients was nonzero (Fig. S1c), where k was optimized to three in our experiments 

(see methods and Fig. S1d for details). This MAPS strategy with 9×15 matrix offers a 15x 

throughput compared with iTSA or PISA, which requires a TMT experiment for each drug. 

Compared with the classic temperature-response TPP with four TMT experiments (two 

replicates each for drug and control), it trades some sensitivity (some targets may not exhibit 

shifts at the selected temperature) for 60x throughput (Fig. 1b).

Validation of MAPS-iTSA and LASSO algorithm.

Briefly, MAPS-iTSA was first performed on the K562 cell line with 15 drugs from 

the verification set and exploratory set for preliminary assessment of its sensitivity. 

Subsequently, in an attempt to increase the complexity of data obtained, we elected to 

replace parthenolide in the exploratory set with staurosporine, a broad-spectrum kinase 

inhibitor which were conducted for five different cell lines. Parthenolide is chosen for 

replacement as we failed to detect robust differentiated response for any protein.

First, the performance of MAPS-iTSA with LASSO regression algorithm for delineating 

targets of drugs pooled were evaluated in K562 cell lysate. Encouragingly, eight of nine 

drugs except olaparib in the verification drug set have targets identified within the top 

five hits of each drug, where the targets of six drugs were identified as the top hit. For 

example, for the LASSO path of DHFR, the coefficient trendline of methotrexate is much 

higher than other drugs, implying that DHFR is the target of methotrexate. In contrast, the 

LASSO paths of most proteins are disordered with low LASSO score (Fig. 1a). Univariate 

difference analysis algorithms (e.g., t-Test) can be applied in classical iTSA for target 

identification. However, in MAPS-iTSA, it was observed that the LASSO score performs 

better, especially when multiple drugs share the same target which can be explained by the 

outstanding variable selection characteristic of LASSO. Both panobinostat and fimepinostat 

in the verification set target HDAC1 and HDAC2. The LASSO paths of the two drugs stand 

out significantly for HDAC1/2 indicating that both drugs bind HDAC1/2, which is also 

reflected in the LASSO score in the scatter plots (Fig. 1c). In comparison, t-test performed 

for samples with and without panobinostat or fimepinostat ranks HDAC1 low as a target 

based on p-value (Fig. 1d). In addition, the cognate target(s) of each drug were not identified 

for other drugs profiled indicating there was no “cross-contaminant” of targets (Fig. 2a). 

Thus, MAPS with LASSO algorithm has high sensitivity and high specificity with increased 

experimental throughput. All corresponding scatter plots of LASSO scores against fold 

changes were summarized in Fig. S2.

Staurosporine, a broad-spectrum kinase inhibitor, binds many kinases and ATP-binding 

proteins which also perturbs many downstream substrate proteins. We subsequently included 

staurosporine into our verification drug set to increase data complexity and difficulty in 

the delineation of targets. Encouragingly, cognate targets of all drugs in the verification 
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set, except for olaparib and palbociclib, were identified as top hits (Fig.2b–2f). Palbociclib 

inhibits CDK4 and CDK6 which are also targeted by abemaciclib (exploratory drug set) 

and staurosporine, suggesting that three or more drugs sharing the same targets could lead 

to false negatives. As such, we designed a structure-based target assumption strategy to 

minimize mixing of drugs potentially sharing similar targets (supplementary materials), 

although it may still fail when structurally diverse drugs share the same targets.

Olaparib is the only drug in the verification set that we fail to identify its cognate target, 

PARP1, in the two previous experiments using K562 cells. To investigate the possibility of a 

cell type effect, we repeat the last MAPS-iTSA experiment (with staurosporine) using 293T, 

HCT116, MCF7 and HepG2 cell lysates. Interestingly, PARP1 was revealed as the top hit 

in HepG2 and among the top 5 targets for olaparib in 293T and MCF7 (Fig. 2a). Therefore, 

PARP1 was most likely missed in our earlier experiments due to cell-type specific effect. 

This differential response could be due to post-translational modifications of PARP1 and its 

interactions with metabolites and other proteins in different cell type.

Next, we assumed all kinases and ATP-binding proteins are true targets of staurosporine 

to further evaluate the performance of MAPS-iTSA. Kinases and ATP- binding proteins 

identified in the five different cell types were visualized in Fig. 3a. Generally, over 30 true 

targets were identified for each cell type which account for over 70% of targets identified 

in most cell types (Fig. 3b). As a comparison, MAP-iTSA identified 41 kinase identified 

in 293T cells, comparable to 47 kinases (p-value < 0.05, Fig. S1f) identified by classical 

iTSA performed in this work for staurosporine in 293T cell line, but offering 15x higher 

throughputs.

We observed the identified kinases and ATP-binding proteins vary across cell type. For 

example, only 13 targets were identified across all the five cell types while 25 targets were 

uniquely identified in one cell type only that accounted for 18.6% and 35.8% of all the 

identified kinases and ATP-binding proteins, respectively. This together with our observation 

regarding PARP1 suggests that drug binding can vary substantially in terms of targets and 

affinity across cell type. This may arise from specific proteoforms of targets due to isoforms 

and/or posttranslational modification present in each cell type or cellular state. Altogether, 

70 kinases and ATP-binding proteins were identified. Comparing the identified targets 

among different cell types via a heatmap revealed kinases of the same class generally have 

highly correlated characteristics in various cell types, such as CDK2/3/5 and MAPK8/12/13 

(Fig. 3c).

Off-target exploration.

An exploratory set of 5 drugs namely bafetinib, abemaciclib, CCT137690, belumosudil and 

OTS964, were included in all our experiments across 5 cell lines. The first four drugs have 

very different efficacy from other drugs targeting the same proteins in 578 cancer cell lines 

(Corsello et al. 2020) while the cognate target for otherwise toxic OTS964 is dispensable 

for cancer cell viability (Lin et al. 2019). Our MAPS-iTSA analysis uncovers many new 

potential off-targets of these drugs including several that were observed across multiple 

cell types as well as new targets unique to specific cell types (Fig. 4 and Fig. S3). First, 

we confirmed AURKA as the cognate target of CCT137690, which was identified in all 
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cell types. We also validated CDK11 as an off-target of OTS964 as reported previously 22 

although it was identified only in two out of five cell types profiled (Fig. 4a). On the other 

hand, MAPS-iTSA verified STK3, STK4 and AURKA as targets of belumosudil across cell 

lines profiled but could not identified ROCK1 and ROCK2 as targets of belumosudil in 

any of the cell lines profiled (Fig. 4b). This together with the observed disparity in toxicity 

profile of belumosudil to other ROCK inhibitors (Fig. S4a) suggests the two proteins may 

not be the functional targets of belumosudil (Corsello et al. 2020).

Furthermore, our analysis suggests that bafetinib, an experimental drug targeting BCR-ABL 

and LYN for treatment of lymphocytic leukemia 25, can bind BRAF to different degrees 

in four cell types. (Fig. 4a, 4b). Molecular docking reveals bafetinib could bind BRAF in 

a similar mode as belvarafenib, another BRAF inhibitor 26 (Fig. 5a). Molecular dynamics 

(MD) simulations and MMPBSA free energy analysis 27 on protein-ligand pairs reveals 

that their binding is strong and stable (Fig. 5b). Moreover, the anti-proliferative efficacy 

of bafetinib across 578 cancer cell lines is similar to RAF inhibitors but differs from 

BCR-ABL/LYN inhibitors (Fig. S4a) (Corsello et al. 2020). Thus, our profiling strongly 

supports the notion that BRAF, not BCR-ABL and LYN, is likely the direct and functional 

target of bafetinib.

Intensity and ranking of LASSO scores suggests binding of bafetinib to BRAF is absent 

in K562 but varies in affinity across the other four cell types (Fig. 4a). To validate this, 

we performed isothermal dose-response (ITDR) CETSA in HCT116, 293T and K562, to 

quantify the thermal stability of BRAF against a bafetinib concentration gradient (Fig. 5c). 

We observed a dose-dependent stabilization of BRAF by bafetinib at concentrations slightly 

lower in HCT116 over 293T. On the other hand, stabilization of BRAF in K562 can only 

be observed at 100 μM of bafetinib which is 5x more than the concentration used in our 

MAPS-iTSA experiment. These observations are consistent with the LASSO score and rank 

of BRAF in these cell types. Recent study reveals high KRAS activity possibly enhance 

the engagement between inhibitor and BRAF 2, suggesting the strong stabilization of BRAF 

by bafetinib observed for HCT116 could be due to presence of KRAS harboring activating 

G13D mutation in that cell line.

Abemaciclib, presently in clinical trials for treatment of breast and non-small cell lung 

cancer 28, is an inhibitor of CDK4 and CDK6. Interestingly, we note that GSK3A, GSK3B, 

and CSNK2A2 outrank CDK4 and CDK6 in our analysis. Recent studies have shown 

that abemaciclib can inhibit GSK3A, GSK3B and activate WNT signaling with MIB/MS 

competition assay 29,30. In fact, dose-response curve data had revealed that the binding 

of abemaciclib to GSK3A/3B is stronger than for CDK4/6, which is consistent with our 

analysis. In addition, our analysis further suggests that abemaciclib also targets CSNK2A2 

(Fig. 4a, 4b) which we verified with the MD simulations and MMPBSA analysis (Fig. 5b). 

LASSO scores also suggest abemaciclib binds CSNK2A2 strongly in K562 but relatively 

weakly in HCT116 which we validated with ITDR CETSA. Thus, CSNK2A2 was stabilized 

at very low nanomolar concentrations of abemaciclib in K562, while it was stabilized at 

higher micromolar concentration in HCT116, with the concentration in 239T ranking in 

between. (Fig. 5c). These results are consistent with analysis by MAPS-iTSA which reveals 

that CSNK2A2 is an off-target of abemaciclib with low nanomolar affinity in specific cell 
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types. Thus, ITDR validation of two drugs demonstrated that LASSO score correlates with 

differential drug-target interaction and binding affinity across cell types.

Experimental validation of off-targets.

Next, NanoBRET assays were performed to assess intracellular engagement of bafetinib and 

abemaciclib with BRAF and CSNK2A2 respectively. The NanoBRET signal was measured 

in the presence of increasing concentrations of test drugs. The curve-fit results show a 

concentration-dependent decrease in the NanoBRET signal, indicating a reduction in tracer-

protein interaction in the presence of the bafetinib and abemaciclib for their respective off-

targets (Fig. 5d, observed raw data were summarized in Table S3). The IC50 of abemaciclib 

for CSNK2A2 is calculated as 2.010 μM while that for SGC CK2–1, a known CSNK2 

inhibitore, is 0.016μM. The IC50 of bafetinib for BRAF was calculated as 2.138 μM 

compared to 0.134M for belvarafenib, the known BRAF inhibitor with the similar binding 

site in docking simulation. These results validated the intracellular binding of bafetinib and 

abemaciclib to their respective off-targets identified by MAPS-iTSA. We also performed 

the same assay on BRAF V600E and observed the mutant was engaged more strongly by 

bafetinib (IC50 0.217 μM vs 2.138 μM, Fig. S4b).

Next, plausible inhibitory effect of abemaciclib and bafetinib on the respective kinase 

enzymatic activity of CSNK2A and BRAF were assessed with hotspot target validation 

assay. We observed a dose-dependent reduction in kinase activity of CSNK2A in the 

presence of abemaciclib and the kinase activity of BRAF in the presence of bafetinib 

(Fig. 5e, observed raw data were summarized in Table S4). The calculated IC50 of 

abemaciclib for CSNK2A2 was calculated as 36.40 nM, which is lower than positive control 

staurosporine (500.76 nM). The calculated IC50 of bafetinib for BRAF was calculated as 

41.61 nM, which is at the same magnitude as the known BRAF inhibitor GW5074 (11.66 

nM). Thus, both drugs bind their respective identified off-targets in cells and could inhibit 

their enzymatic activities in vitro, validating that MAP-iTSA could identify off-targets with 

increased experimental throughput.

DISCUSSION

We performed extensive testing of MAPS with iTSA using 15 drugs across 5 cell lines 

of different cell type origin, validating that it is an effective and efficient approach to 

increase the throughput of drug target deconvolution experiments with minimal compromise 

in sensitivity and specificity. Factoring in the cell type effect of olaparib, all drugs in our 

verification set had their cognate targets identified among the first 5 hits, with targets of 

seven drugs consistently identified as top hit across the majority of cell lines profiled. Thus, 

coverage and specificity are high, but we observed sensitivity was compromised for CDK4 

and CDK6 when they were targeted by 3 drugs (palbociclib, abemaciclib and staurosporine) 

in the same test set. This situation can be avoided with increased sample size in large scale 

screening (see supporting information and Fig. S5 for methods and analysis) as well as 

pre-filtering based on potential targets of compounds profiled.

Taking advantage of the increased throughput offered by MAPS, we profiled 15 drugs 

across 5 cell lines. While cognate targets of drugs in our verification set exhibited very 
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consistent signatures across the cell lines profiled, we noticed relatively more variation in 

target profiles of drugs in our exploration set in both the proteins identified and stabilization 

signal. Drugs in the exploration set were chosen as they divert substantially from drugs 

targeting the same proteins in their anti-proliferative activity across a panel of cancerous cell 

lines. For example, ITDR assay validated BRAF and CSNK2A2 as targets of bafetinib and 

abemaciclib, respectively, but also revealed that their interactions can vary by a few orders of 

magnitude in affinity across different cell types. This suggests that target profiling of drugs 

in relevant cell types is needed for better assessment of drug action, efficacy, and potential 

side effects, and should constitute an important consideration in precision medicine.

While we had validated MAPS with iTSA, MAPS strategy is also theoretically suitable 

for other derivatization-free methods to increase experimental throughput. The response 

vector Y in MAPS represents the corresponding response of protein changing caused by the 

mixtures. As long as the response can be measured numerically, continuously and robustly, 

the LASSO analysis should be feasible. Moreover, the throughput could be increased 

further with higher multiplex reagents (e.g., TMT16 or TMT18, see support information 

and Fig. S5) or label-free quantitative MS approaches, enabling large-scale many-vs-many 

chemical-protein interaction screening with endogenous proteins in diverse cellular contexts 

to expediate drug discovery and development.

Limitations of the study

We recognize several limitations in our study that should be acknowledged. Firstly, our 

MAPS method, designed for quick off-target screening, is constrained by its theoretical 

framework. Consequently, it has the potential to generate both false positives and false 

negatives, especially when multiple drugs within a sensing matrix have a shared target. 

Secondly, although we conducted multiple orthogonal experiments to confirm that bafetinib 

and abemaciclib target BRAF and CSNK2A2, respectively, it is crucial to interpret 

these findings cautiously. Further validation is necessary before considering the clinical 

applicability of these results. Another important caveat to note regarding this work is the 

inclusion of staurosporine. Its purpose in this study is to increase the challenge when 

evaluating the performance of MAPS. However, it is not advisable to study drugs with a 

wide range of targets in practical applications of MAPS, as this significantly increases the 

risk of false positives for other drugs.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Chris Tan (christan@sustech.edu.cn).

Materials availability—Antibodies, reagents and cell lines used for biological studies 

were obtained from commercial or internal sources described in the key resources table. 

Where available these may be shared by the lead contact. This study did not generate new 

unique reagents.
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Data and code availability

• All data is available in the main text or the supplementary materials. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the iProX31,33 partner repository with the dataset identifiers 

PXD043882.

• The python script code used to perform the analyses is accessible as a GitHub 

repository at https://github.com/hcji/MAPS-iTSA.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental Model and Study Participant Details

Cell Culture—The five cell lines used in this study were acquired from the National 

Collection of Authenticated Cell Cultures, Chinese Academy of Sciences, and were all 

authenticated using short tandem repeat (STR) analysis. All cell lines were of human origin. 

Among them, K562, MCF7, and HEK 293T cell lines were derived from female donors, 

while HCT116 and HepG2 cell lines were derived from male donors. The culture conditions 

for each cell line were as follows: K562 cells were cultivated in RPMI 1640 medium 

supplemented with 10% fetal bovine serum (FBS) and incubated in a humidified incubator 

at 37°C with 95% humidity and 5% CO2. HEK 293T and MCF7 cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) with 10% FBS, and maintained at 37°C 

with 5% CO2. HCT116 cells were grown in McCoy’s 5A culture medium, while HepG2 

cells were cultured in MEM culture medium, both supplemented with 10% FBS, and both 

maintained at 37°C with 5% CO2.

Cell line Organism Gender Culture medium

Fetal 
bovine 
serum 
(FBS)

Cultivation 
environment

K562 Human Female RPMI 1640 medium

HEK 293T Human Female Dulbecco’s Modified Eagle 
Medium (DMEM)

MCF7 Human Female Dulbecco’s Modified Eagle 
Medium (DMEM) 10% 37°C with 95 % humidity 

and 5 % CO2

HCT116 Human Male McCoy’s 5A

HepG2 Human Male Minimum Eagle’s Medium MEM

METHOD DETAILS

Selection of exploratory drugs—Drugs in exploratory set have high probabilities of 

off-targets based on published works. Most of these drugs are selected based on Corsello’s 

work 21, which measured the antiproliferative profiles of 4518 oncology and non-oncology 

drugs across 578 cancerous cell lines, which constituted a 4518×578 numeric matrix. 

Whereafter, u-map algorithm is used for dimensionality reduction and visualization (Fig. 

S4a). Each point in the scatter plots represent a kind of drug, and the proximity between 
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two points reflect the similar antiproliferative profiles of cell lines. We selected five drugs 

with dissimilar profiles to majority of drugs targeting the same designed targets, which 

suggests that their anti-cancer effect could be due to off-target effects. In addition, OTS964, 

an inhibitor designed for TOPK, was included as CDK11 was recently revealed to be the 

functional target of the experimental drug 22.

Sensing matrix generation—Sensing matrix is designed to guide the mixing of drugs 

into each sample. The sensing matrix design is a combinatorial optimization problem, of 

which the objective is to ensure reliable and robust deconvolution. Supposing the task is 

testing 15 drugs with a TMT-11 experiment, the shape of the sensing matrix should be 

9×15 (with two TMT channels for 37°C control sample). Each row represents a pool, and 

each column represents a drug. If a drug is added to a pool, the value of the corresponding 

coordinate is 1, otherwise the value is 0. The correlation among vectors of drugs will affect 

target deconvolution. For example, if the correlation between the vector of two drugs is 1, 

it means the two drugs are found in the same set of samples, and it will be impossible 

to distinguish the proteins targeted by each drug. On the contrary, if their correlation is 0, 

the distinction between them will be simple. The goal of optimizing the sensing matrix is 

to attain minimal correlation between the vectors of any two drugs in a test set. Since it 

is time-consuming to use an exhaustive method for this, we adopted a genetic algorithm 

approach (Fig. S1a).

First, we appoint the immutable parameter a = 3, which indicates that each drug has to exist 

in at least three samples. Then, the adapting matrix A  is randomly initialized with values 

between 0 and 1. The dimension of A is the same as the sensing matrix S . The criterion 

which transforms A to S is to change the top a values of each column to 1, and change 

the other values to 0. Next, a genetic algorithm approach is used to optimize A, in order to 

minimum L in the following equation:

L = Sum S ⋅ ST − I + Sum(RS − Mean(RS))2

(1)

where S is the sensing matrix transformed from A, S ⋅ ST  is used for calculating the pairwise 

correlation of the rows (drugs). I is the identity matrix (a square matrix such that all the 

entries in the main diagonal are 1, and the rest of the entries are all 0), which is used to 

remove the self-correlation values. RS is the sum values of each row of S. The formal item, 

(S ⋅ ST − I), is used to minimize the correlation between the vectors, while the latter item, 

Sum(RS − Mean(RS))2, is used to ensure each sample shares the same number of drugs. 

Lastly, the final sensing matrix is obtained by the transformation of the optimized A. The 

optimization in this work was performed through genetic algorithm with 500 iterations, 

which was visualized in Fig. S1b.

Preparation of cell lysate—K562 cells were harvested in 50 ml centrifuge tube, washed 

twice with ice-cold PBS where supernatant was discarded after centrifugation at 900 rpm 

for 5 min. HEK293T, HCT116, MCF7, HepG2 cells were washed twice with ice-cold PBS 
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in 15 cm dish, and the cells were collected with a scraper and washed again with ice-cold 

PBS. All cells were washed with ice-cold PBS before lysed in a lysis buffer containing 50 

mM HEPES, pH 7.5, 5 mM β-glycerohosphate, 0.1 mM activated Na3VO4, 10 mM MgCl2, 

and 1 mM TCEP, with EDTA-free protease inhibitors added freshly to the lysis buffer before 

use. Cells were freeze-thaw three times by alternating the immersion of tubes between liquid 

nitrogen and a 37°C water bath. The cell mixture was then pulled through a needle (25” 

gauge needle, 1ml volume) 10 times to facilitate cell lysis by mechanical crushing. Next, 

centrifugation is performed at 21000 rcf at 4°C for 20 minutes to collect the supernatant and 

protein concentration is determined with BCA reagent.

TMT-labeled proteomics analysis—The compounds were purchased from MCE 

company, and each compound is dissolved in DMSO at 10 mM and stored in −80°C 

refrigerator. Prior experiment, each compound was diluted to 400 μM using ultra-pure 

water with ultrasound treatment to facilitate dissolution 32. According to the sensing matrix, 

e.g.,9*15 matrix, there are five drugs mixed in each TMT label samples. 10 μL for each drug 

(400 μM) was mixed into PCR tubes, each of which were added 50 μL diluent buffer. Each 

PCR tube was then topped up with diluent buffer to 100 μL attaining a concentration of 40 

μM for each drug in a pool. The control samples did not contain any drugs but with 2% 

DMSO identical to other samples.

We had performed extensive testing of MAPS with iTSA using 15 drugs across 5 cell lines 

of different cell type origins. An equal volume of cell lysate and drug mixture was mixed 

and incubated at room temperature for 10 minutes, then heated at 52°C for 3 minutes before 

cooled rapidly to 4°C on a PCR machine. The control samples were subjected to same 

treatment but heated at 37 °C for 3 minutes instead. We have nine PCR tubes heated at 52°C 

and two tubes heated at 37°C as controls. The samples were centrifuged at 21,000 rcf for 20 

minutes at 4°C and the supernatant was collected.

We used the SISPROT workflow 24 to prepare collected samples for MS analysis. Proteins 

were denatured in a solution of 0.1% formic acid (FA) to acidify the sample. The SISPROT 

digestion device was filled with C18 disk (3 M Empore) and SCX/SAX mixed beads (1 

mg, SCX: SAX = 1:1, Biosystems) into a standard 200 μL pipet tip 34. SISPROT tip was 

washed with methanol and 100 mM PCB potassium citrate buffer (pH 3) with 10 mM PCB 

to balance the tip. We processed 10 μg of protein from 37°C sample but obtained same 

volume (as the 37°C sample) of drug-treated samples for processing with acidification (final 

concentration is 0.1% (v/v) formic acid) and then loaded each sample on a SISPROT tip. 

Each tip was washed with 20% (v/v) acetonitrile (ACN) in 8 mM potassium citrate buffer 

(pH 3) and ACN and incubate with 10 mM Tris(2-carboxyethyl) phosphine hydrochloride 

(TCEP) for 15 min at room temperature. The tips were then washed with 50 mM Tris-HCl, 

pH 8, and digestion solution (0.1 μg/μL trypsin (Promega) in 10 mM iodoacetamide, 100 

mM Tris-HCl, pH 8) was added with incubation at 37°C for 60 min. After digestion, 

peptides were washed with 500 mM NaCl from mixed beads to C18 before TMT-11 labeling 

for 30–60 min. After labeling, 1% (v/v) FA was added and the peptides were washed with 80 

% (v/v) ACN, 0.5% (v/v) acetic acid for collection. All labeled peptide samples were mixed 

and lyophilized.
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Peptide fractionation was performed after mixing of 11 samples labelled with TMT reagents. 

We used a 200 μL pipette tip filled with C18 membrane as a carrier for fractionation. 

The C18 device was activated with methanol and 80 % (v/v) ACN, 0.5% (v/v) acetic 

acid, followed by 1% (v/v) FA to wash off the excess methanol solution. The lyophilized 

samples were diluted with 1% (v/v) FA and loaded onto a C18 apparatus. The C18 device 

was washed with 1% (v/v) FA solution and 5 mM ammonium formate, respectively. The 

collection bottles were then replaced with the collection devices with (3%, 5%, 7%, 9%, 

11%, 13%, 15 %, 17%, 19%, 21%, 23%, 24%, 26%, 28%, 30%, 35%, 40%, 80%) ACN in 

5 mM ammonium formate, pH 10. The effluent collected from 18 peptide fractions are (3%, 

15%, 26%), (5%, 17%, 28%), (7%, 19%, 30%), (9%, 21%, 35%), (11%, 23%, 40%), (13%, 

24%, 80%) ACN, which were then mixed together to get 6 fractions. Finally, the 6 fractions 

were lyophilized to dryness for MS analysis.

Each sample was diluted with 10 μL 0.1% (v/v) FA, and ultrasound-treated to improve 

solubility of peptide. The samples were centrifuged at 14000 rcf 4°C for 5 min, and 9 

μL of each sample was taken and placed in the injection vial of the mass spectrometer, 

for analysis by mass spectrometry. Samples were analyzed by LC–MS/MS (LC: Thermo 

Fisher Scientific U3000 HPLC system; MS: Thermo Fisher Scientific Orbitrap Exploris™ 

480). The analytical condition were LC: column: integrated spray tip (100 μm i.d. × 20 cm) 

packed with 1.9 μm/120 Å ReproSil-Pur C18 beads (Dr. Maisch GmbH); solvent system: 

solvent A (0.1% formic acid in water) and solvent B (80% ACN, 0.1 % formic acid in 

water); gradient program: A 135 min gradient separation was configured as: 4%–8% buffer 

B in 2 min, 8%–25% buffer B for 105 min, 25%–40% buffer B for 15 min, 40%–100% 

buffer B in 6 min, followed by a 7 min wash with 1% buffer B; flow rate: 0.5 μL min−1 

at 0–123 min, 0.7 μL min−1 at 123–128 min, 0.7 μL min−1 at 128–135. MS detection: scan 

mode: DDA (data-dependent acquisition); resolution MS1 scan resolution was 60,000 and 

MS/MS scan resolution was 30000 with turbo-TMT option. Full scan and top 50 MS/MS 

scans were acquired per cycle; Scan range: 350(m/z)-1200(m/z); Maximum Injection Time: 

45ms; Exclusion duration: 45s; Isolation window: 0.7(m/z); HCD Collision Energy: 36%.

Obtained raw data files were analyzed with Proteome Discoverer (PD, version 2.4, Thermo 

Fisher Scientific). Software parameter setting: Human FASTA database from UniProt 

(reviewed database entries, downloaded on March 22, 2021); Mass tolerances for precursor 

was set at 20 ppm; fragment ions: 0.6 Da; Maximum missed cleavage for trypsin digestion: 

2 missed cleavage; Methionine oxidation, asparagine and glutamine deamidation were set 

as variable modification and carbamoylmethylation was set as fixed modification. FDR 

control is set to 1% at the PSM and peptide levels. The co-isolation threshold for report ion 

quantification is set to 50%.

Statistical analysis with LASSO algorithm—Let A = a1, a2, …, am − 1, am  be the vector 

for intensity of a detected protein across m samples obtained from MS analysis and 

Y = A/max A  as the vector of relative abundances of a given protein obtained by dividing 

the intensity value of the protein in each sample by the maximum value in A. Given S as the 

m × n sensing matrix for m samples and n drugs, let β = β1, β2, …, βn − 1, βn  as the coefficient 

vector for n drugs, and R is the residual vector for m samples such that
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Y = S ⋅ β + R

(2)

Accordingly,

Y i = ∑
j = 1

n
Si, jβj + Ri

(3)

Since S is a matrix with binary values, if a drug contributes to the increase in Y , the 

corresponding βj value will be positive. Otherwise, the value will be close to zero. In order to 

solve β, the non-negative LASSO algorithm is used with the equation as follow:

β = argmin
β

∑
i = 1

m
Y i − ∑

j = 1

n
Sijβj

2
+ λ ∑

j = 1

n
βj

(4)

where i and j are the index of matrix S, i.e., the index of samples and drugs, respectively; 

λ is the penalty which serves to shrink coefficients reducing the coefficients of some drugs 

to zero, where larger λ forces more coefficients to zero. In other words, the non-negative 

LASSO algorithm selects highly-correlated coefficients and compress the rest to zero, 

removing coefficients of drugs not related to the abundance of protein. It conforms to the 

theoretical requirement and practical situation of MAPS-iTSA experiments where only a 

maximum of one or two drugs could interact with each protein.

A series of increasing λ values are selected to gradually reduce the coefficient of each 

drug. The progression of these values is known as the LASSO path. As the LASSO path 

progresses, the coefficient for each drug will eventually decrease to zero. For each protein, 

we select λ value in the LASSO path giving k non-zero coefficients, and the corresponding 

coefficient for each drug is defined as the LASSO score for the protein (Fig. S1c):

LASSO Scorej = βj witℎ λ wℎere k values in β are nonzero

(5)

where j is the index of the drug. The k is optimized to 3 based on the number and true 

positive rate of identified targets of staurosporine in HegG2 cell line (Fig. S1d). The LASSO 

score threshold of significant is optimized to 0.15 based on the same criterion (Fig. S1e). 

These two parameters can be adjusted according to the need for different experiments for 

a balance of precision and recall rates. Each protein detected in our MS analysis will have 

a score from the LASSO analysis. For each drug, all the proteins can be ranked by their 

LASSO scores of that drug where high-scoring proteins are potential targets.
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Western blot—We performed isothermal dose-response (ITDR) CETSA in HCT116, 293T 

and K562. BRAF (bafetinib), CSNK2A2(abemaciclib) and GAPDH proteins were detected 

by Western blot. 10 drug concentrations were prepared with 4-fold serial dilution (starting 

from 200 μM) that were mixed with equal volume of cell lysate for 10 minutes prior 

heating. Subsequently, the samples underwent heating at specific temperatures: 52°C for 

3 minutes in a PCR machine for the BRAF-bafetinib group, and 50°C for 3 minutes in 

a PCR machine for the CSNK2A2-abemaciclib group. Following the heating step, the 

samples were rapidly cooled to 4°C. The concentration of supernatant was determined 

using BCA protein quantitation kit (Thermo Scientific, USA). Equal volumes of protein 

were subjected to 10% SDS-PAGE and transferred to polyvinylidene difluoride membranes 

(PVDF) (Millipore, USA). After being blocked in 5% (W/V) BSA dissolved by 1xTBST 

buffer at room temperature for 2h, the membranes were incubated with BRAF, CSNK2A2 

and GAPDH antibody at 4°C overnight, and the corresponding horseradish peroxidase-

conjugated secondary antibodies were incubated at 4°C for 2h. Finally, western blot analysis 

was performed by enhanced chemiluminescence (ECL) (BIO-RAD, USA).

Molecular docking and dynamics simulation—All protein structure files were 

obtained from Protein Data Bank (PDB), including LYN (PDB ID: 5XY1), BRAF (6XFP), 

CDK2 (1B39), CDK4 (2W96), CDK6 (5L2S), CSNK2A2 (6QY9), and DHFR (4KEB). 

The missing loops of CDK2, CDK4, CDK6 and LYN were modeled using Modeller 

v9.2435. The structure files of bafetinib and abemaciclib were obtained from PDB entries 

2E2B and 5L2S, respectively. The protein-ligand complex structure of positive controls 

for each ligand (LYN for bafetinib, CDK4 and CDK6 for abemaciclib) were prepared by 

aligning the proteins to their homologous proteins in PDB entries 2E2B and 5L2S. Other 

protein-ligand complex structures were obtained through unbiased molecular docking with 

the entire protein contained in the search box using AutoDock Vina v1.2.336. The search 

exhaustiveness was set to 10,000 to sufficiently sample ligand binding modes. The binding 

modes with the highest score were selected for MD simulations.

All MD simulations and preparations were conducted using the Amber 21 program suite37. 

The ff19SB force field was used for protein parameterizations38. The parameters of 

ligands were prepared using the AM1-BCC method39 and the gaff2 force field40. Missing 

parameters were obtained using the Amber/parmchk2 program. Topology and coordinate 

files for the protein-ligand complexes were prepared using the Amber/tleap program, with 

protein-ligand complexes solvated in an octahedral box of OPC water molecules41 with 

thickness extending 8 Å from the protein surface. The complexes were neutralized by adding 

Na+ or Cl− counter ions.

The Amber/pmemd.cuda program was used for all MD simulations42. A 10 Å cutoff 

was used for nonbonded interactions and short-range electrostatic corrections. Long-range 

electrostatic interactions were handled by the particle mesh Ewald (PME) method. The 

hydrogen atom 43 bond lengths were fixed with the SHAKE algorithm. Minimization was 

performed in two steps to relieve any possible atomic overlaps. The first step involved 

relaxing only water molecules, while the second step minimized the whole system. Langevin 

dynamics with a 1 ps−1 collision frequency were used to gradually increase the system 

temperature from 0 to 300 K over 200 ps. The systems were first equilibrated for 100 
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ns under constant pressure and temperature (NPT) to adjust the system density; then, 

an additional 100 ns simulations were performed under constant volume and temperature 

(NVT) conditions. Each simulation was repeated three times with a different random seed, 

starting from identical minimized structures. A 2-fs integration time step was utilized with 

trajectory snapshots extracted every 1 ns.

All simulation trajectories were visualized using the MD Movie feature of UCSF Chimera 

v1.1444. Protein and ligand RMSD with reference to the minimized structure were 

calculated using the rmsd command of the Amber/cpptraj program45. A modified version 

stability score based on the score used in previous studies was applied to determine the 

binding stability of the protein-ligand pairs during simulation46. The equilibrated contact 

pairs are defined as the heavy atom pairs within protein and ligand that are within the 

distance of 7 Å in the average structure of the last 150 ns of the simulation trajectory, which 

are obtained using the nativecontacts command of the Amber/cpptraj program. The stability 

score of the ith frame SSi is the fraction of the total amount of equilibrated contact pairs that 

remain within 7 Å distances.

The Amber/MMPBSA.py program was used to calculate the binding free energies (ΔG) of 

protein-ligand pairs47. MMPBSA calculations were conducted on the last 150 ns of each 

simulation trajectory. The ionic strength was set at 0.100 M. Because both bafetinib and 

abemaciclib are highly charged molecules, the internal dielectric constant was set to 4, 

which is suitable for charged protein-ligand complex systems. Entropy was not taken into 

consideration in MMPBSA calculations.

NanoBRET target engagment assay—The NanoBRET target engagement assay 

was performed according to the manufacturer’s instructions 48. In brief, HEK293 cells 

were transfected with C-terminally tagged CSNK2A2 NanoLuc fusion vector (#NV1191, 

Promega) and BRAF NanoLuc fusion vectors (created by the Company). After 24 h cells 

were counted and diluted to 2×105 cells/mL in assay medium (Optimem + 4 % FBS). 

K-05 kinase tracer (#N2482, Promega) for CSNK2A2, K-10 kinase tracer for BRAF were 

added to cells in a final concentration of 1 μM before 40 μL/well were added to a 384 well 

plate containing pre-plated compounds in triplicates. After 2 h incubation 20 μL/well of 

substrate and extracellular NanoLuc inhibitor mix (1:166, 1:500 in Optimem) were added. 

Donor (460 nm) and acceptor (610 nm) signals were measured after 10 min incubation at 

room temperature with a PheraSTAR FSX plate reader. Data were analysed by calculating 

the ratio of acceptor to donor signal and subtracting the background (transfected cells w/o 

tracer). Data were then normalised to DMSO and fitted with a three-parameter nonlinear 

regression model in Prism.

Kinase hotspot assay—Reaction Biology Corporation performed BRAF and 

CNS2K2A2 kinase panels using their “HotSpot” assay platform 49. A reaction buffer 

containing specific kinase/substrate pairs and cofactors was prepared in 20 mM Hepes pH 

7.5, 10 mM MgCl2, 1 mM EGTA, 0.02% Brij35, 0.02 mg/ml BSA, 0.1 mM Na3VO4, 

2 mM DTT, 1% DMSO. (For detailed information about individual components of the 

kinase reaction, see Supplementary Table). Compounds were delivered into the reaction, 

followed ~20 min later by addition of a mixture of ATP (MCE) and 33P ATP (PerkinElmer) 
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to a final concentration of 10 μM. The reactions were carried out at 25°C for 120 

minutes, following which they were spotted onto P81 ion exchange filter paper (Whatman). 

Filters were extensively washed in 0.75% phosphoric acid to remove unbound phosphate. 

Using background data subtracted from inactive control reactions, the kinase activity was 

calculated based on the percent remaining kinase activity in the test samples and the 

dimethyl sulfoxide reaction as a control.

CAT# HGNC Substrates Compounds

BRAF BRAF MEK1 (K97R), 3 μM ATP 10 μM  Bafetinib

CK2a2 CSNK2A2 Peptide substrate, [RRRDDDSDDD], 20 μMATP 10 μM Abemaciclib

Drug grouping for sensing matrix generation—The advantage of MAPS-iTSA is 

reduced time and cost to increase the throughput of drug target deconvolution experiment. 

However, multiple drugs within a TMT experiment targeting same protein could decrease 

the sensitivity of the strategy. One solution is distributed for drugs that potentially share 

similar target into different experimental batches or TMT experiments. Hereby, we introduce 

an enhanced pooled strategy using in-silico drug target prediction algorithm to further 

optimize grouping of drugs (Fig. S5a). The results indicate this strategy can reduce the 

co-targets of drugs within the same group (Fig. S5b).

In this work, we only tested 15 drugs so this procedure is not involved. But it would be 

useful if anyone applies MAPS-iTSA on more drugs in the future. MAPS-iTSA/iTSA uses a 

similarity-based method for predicting the potential targets of the test drugs, which is based 

on the observation that structurally similar bioactive molecules are more likely to share 

similar targets. The drug target interaction data from DrugBank is used as reference. The 

prediction methods are as follow: First, Morgan fingerprints of the test drugs and the other 

drugs recorded in DrugBank are calculated with RDKit package. Then, the structural related 

drugs of each testing drug are retrieved from the database. The similarity is calculated by the 

dice function:

DiceX, Y = 2 × A ∩ B
A + B

(6)

where A and B are the molecular fingerprints of two drugs. The threshold is set as 0.6. 

Finally, all the targets of the structurally related drugs are treated as the potential targets 

of the test drug (Fig. S5a). This relaxed criterion aims to reduce the false negative error, 

because false positive error has less influence on the drug grouping.

MAPS-iTSA/iTSA uses the predicted targets of the test drugs to group them into different 

experimental batches. The goal of the optimization is to minimize the probability that the 

drugs in a group share the same targets. Here we define the optimizing function as equation 

3
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fG = ∑
i = 0

j = i + 1

k − 1
Jaccard Gi, Gj

(7)

F = ∑ fG

(8)

where G is a set of drugs in the group, k is the number of drugs in each group, Gi is the set of 

predicted targets of the itℎ drug in the group, and J is the Jaccard function defined by:

JaccardX, Y = X ∩ Y
X ∪ Y

(9)

Genetic algorithm is used for achieving this goal. Suppose that the number of drugs is n, 

and the number of experimental batches is k. First, the drugs tested are randomly permuted. 

Second, the drugs located at 1 − k are assigned to group 1, and the drugs located at k + 1
to 2k are assigned to group 2, and so on. Then, F  is calculated by the equation 7. Finally, 

minor adjustments are given to the drug permutation for obtaining a better F . The iteration is 

proceeding until a local minimum is achieved. The final grouping manner should be used for 

MAPS-iTSA/iTSA workflow (Fig. S5c).

We tested this drug grouping strategy with 180 randomly picked drugs from DrugBank 

database. Their targets are predicted by the proposed method with leave-one-out test. Then, 

the drugs were grouped into 12 groups optimally, and each group consists of 15 drugs 

where a 9×15 sensing matrix is applied. The optimized curve is shown in Fig. S5d. We 

calculated the number of the co-targets in each group with the true targeted recorded in 

the database, and compare it with 1,000 times randomly placing of the drugs. Fig. S5b is 

the distribution plot of the number of the total co-targets of the randomly placing, and the 

red line indicates the optimized permutation, which is less than most of the randomized 

permutation. Considering the optimization was based on the predicted targets instead of the 

true targets, the grouping strategy is effective for reducing the co-targets.

Extended feasibility analysis with TMT16 and TMT18—We present the MAPS-

iTSA scheme for 9 pools×15 drugs as example in this work. However, this strategy 

should also feasible for deconvolving the targets of more drugs with TMT16 and TMT18. 

Therefore, it would be helpful to estimate the theoretical maximum number of drugs that 

could be deconvolved by MAPS.

The core restricted criterion of the number of test drugs is: How many pools of a drug 

shared with another drug. For example, drug A in the sensing matrix is put into three pools. 

If drug B shares one of the pools with t drug A, it may cause very small effect on target 
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deconvolution of both drugs. If drug B share two of the pools with drug A, it increases the 

false positive rate. If drug B shares all the three pools with drug A, target deconvolution will 

be impossible. Therefore, we calculate the average shared pools and the maximum shared 

pools between each pair of drugs, along with the number of test drugs. Since the sensing 

matrix generation is based on GA, a algorithm with stochasticity, each point of the scatter 

is the average value with 10-replicates computation. From the scatter plots, the maximum 

shared pools of 9-pools-15-drugs is around 1.75. From our results, MAPS-iTSA works well 

in this condition. Taking this criterion, the number of test drugs of TMT-16 should be greater 

than 32, and the number of test drugs of TMT-18 should be greater than 40 (Fig. S5e). 

However, the inference will be confirmed with experimental verification in the future.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed using python. All results can be reproduced with the provided 

data and scripts. All relevant statistical details are included in the figure captions, and text. 

Additional details for each experiment type are included in the Method Details section of the 

STAR Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. MAPS strategy boosts throughput of derivatization-free target deconvolution 

by 15x.

2. MAPS profiling across multiple cell lines reveals cell-specific drug targets.

3. BRAF and CSNK2A2 were validated as target of bafetinib and abemaciclib 

respectively.
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SIGNIFICANCE

Derivatization-free drug target deconvolution methods generally require more MS 

instrumentation time to survey the entire proteome compared to both affinity-based and 

activity-based techniques that enrich proteins for MS analysis. Approaches that avoid 

time-consuming derivatization, applicable to most chemicals while being lean on MS 

instrument time could enable large-scale target deconvolution studies. To circumvent 

the current high demand for MS instrument time of derivatization-free techniques, we 

(1) proposed an unprecedented strategy in derivatization-free proteome-wide methods 

to increase their throughput, (2) developed the necessary enabling algorithms and (3) 

validated the concept experimentally with thermal proteome profiling of 15 drugs 

simultaneously across 5 cell lines. Our current setup has a 60x throughput compared 

to classical TPP and a 15x throughput compared to the current fastest format reported 

while maintaining similar performance. We subsequently performed cell type specific 

target deconvolution of 15 drugs with MAPS-based TPP assay. Our results revealed 

drug-target interactions can differ vastly across different cell lines in term of proteins and 

binding affinity. Furthermore, we uncovered potential off-targets for five drugs previously 

uncharacterized by TPP and validated the off-targets for two of them. This work presents 

the largest target profiling of structurally diverse drugs across multiple cell lines to date.
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Fig. 1. Workflow and effective verification of MAPS-iTSA.
a. Illustrative application of the MAPS-iTSA workflow involves target deconvolution. 

The 9×15 binary sensing matrix is optimized for mixing the testing drugs. The value of 

1 means put the corresponding drug into the tube containing cell lysate. Subsequently, 

the mixtures are incubated under specific temperature (e.g., 52 °C) followed by protein 

extraction, labelling and quantification. The normalized vector of the concentrations of the 

target protein is used for the LASSO analysis. Through LASSO analysis, the coefficient 

values quantify the contributions of the drugs to the variation in thermal stability of the 

protein. By increasing the penalty, the coefficients computed for the various drugs will 

progressively decrease to zero. For each protein, the LASSO score of each drug is defined as 

the corresponding coefficient value when only three non-zero values remained. b. Bar charts 

comparing the number of drugs that can be analyzed by a TMT experiment for TPP-TR, 

TPP-CCR, iTSA, PISA and pooled TPP/iTSA. c. LASSO score calculated from the path of 

coefficients compared with the fold changes reveal that HDAC1 and HDAC2 are the targets 

of panobinostat and fimepinostat. d. Scatter plots of the p-values and the ranking of the true 

targets indicate t-test cannot handle two drugs share the same targets.

Ji et al. Page 24

Cell Chem Biol. Author manuscript; available in PMC 2024 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Cell type specific drug target verification.
In each subplot, the x-axis represents the drugs, the y-axis represents the targets, and the 

color of the points represent the ranking of the target deconvolution based on LASSO score.
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Fig. 3. Target deconvolution result of staurosporine.
a. Bar charts of the number of identified targets in different cell types. b. Venn plot of the 

identified kinases or ATP binding proteins of the different cell types. c. Correlation based 

heatmap of the identified kinases or ATP binding proteins, the color scale indicates the 

LASSO score.
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Fig. 4. Cell type specific off target exploration.
a. Bar charts of LASSO score accompanied ranks of the drug-target pairs. The horizontal 

dotted line indicates the threshold. The labels are the ranks of the target of all identified 

significant proteins. NA means the LASSO score is below the threshold. b. Targets of the 

exploratory drugs identified in multiple cell types.
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Fig. 5. Off target explanation and validation.
a. Binding mode comparison between bafetinib and belvarafenib in complex with BRAF. 

The structure closest to the average structure (measured by RMSD) of bafetinib-BRAF MD 

simulations is displayed in brown; The co-crystal structure of belvarafenib-BRAF (PDB ID: 

6XFP) is displayed in cyan. b. Comparison of binding stability scores (left) and MMPBSA 

binding free energies (right) of the last 150 ns of MD simulation trajectories (frame interval 

is 1 ns). Positive controls are displayed in green; Negative controls are displayed in red; 

Identified off-targets are displayed in blue. Significance levels of z-tests: ***, p <= 0.001; 

****, p <= 0.0001. c. Western blot of dose-dependent CETSA of abemaciclib-CSNK2A2 

and bafetinib-BRAF. The changing of blots is consistent to the LASSO score of MAPS-

iTSA. d. Dose-response curve for NanoBERT in-vitro off-target validation of bafetinib-

BRAF and abemaciclib-CSNK2A2. Known inhibitors are taken as positive control while 

their cross matching is taken as negative control. e. Dose-response curve for kinase hotpots 

in-vitro off-target validation of bafetinib-BRAF and abemaciclib-CSNK2A2. Relative kinase 

activities are obtained by normalization based on blank controls.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-rabbit antibodies Beyotime Cat# A0208

Rabbit Monoclonal [SU3404] to B-Raf GXP Cat# GXP 52349

Anti-CSNK2A2 Antibody GXP GXP123212

GAPDH antibody Proteintech Cat# 10494-1-AP

Chemicals, peptides, and recombinant proteins

Palbociclib MCE HY-50767

Panobinostat SANTA SC-208148

Raltitrexed MCE HY-10821

Methotrexate Sigma-Aldrich M8407-100MG

Vemurafenib MCE HY-12057

Fimepinostat MCE HY-13522

Olaparib MCE HY-15307

Bafetinib MCE HY-50868

SCIO-469 GLPBIO GC34072

OTS964 MCE HY-12467

SL-327 APExBIO A1894

Abemaciclib MCE HY-16297A

CCT137690 MCE HY-10804

Belumosudil MCE HY-15307

Staurosporine MCE HY-15141

Experimental models: Cell lines

K562 National Collection of Authenticated Cell Cultures TCHu191

HEK 293T National Collection of Authenticated Cell Cultures GNHu17

MCF7 National Collection of Authenticated Cell Cultures TCHu74

HCT116 National Collection of Authenticated Cell Cultures TCHu99

HepG2 National Collection of Authenticated Cell Cultures TCHu72

Deposited data

Proteome experimental data ProteomeXchange PXD043882

Software and algorithms

Proteome Discoverer Thermo Fisher Scientific v2.4

AutoDock Vina The Scripps Research Institute v1.2.3

Amber UC San Francisco v2021

UCSF Chimera UC San Francisco v1.14

Python script: MAPS-iTSA workflow github.com/hcji/MAPS-iTSA v1.0
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