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Abstract

Objective: Cortisol is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal 

axis that is regularly assessed in modern human and non-human populations in saliva, blood, 

and hair as a measure of stress exposure and stress reactivity. While recent research has detected 

cortisol concentrations in modern and archaeological permanent dental tissues, the present study 

assessed human primary (deciduous) teeth for cortisol concentrations.

Materials and Methods: Fifty-one dentine and enamel samples from nine modern and 10 

archaeological deciduous teeth were analyzed for cortisol concentrations via enzyme-linked 

immunosorbent assay (ELISA).

Results: Detectable concentrations of cortisol were identified in 15 (of 32) dentine and 8 (of 19) 

enamel samples coming from modern and archaeological deciduous teeth.

Conclusions: This study is the first known analysis of cortisol from deciduous dental tissues, 

demonstrating the potential to identify measurable concentrations.
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Significance: The ability to analyze deciduous teeth is integral to developing dental cortisol 

methods with multiple potential future applications, including research on the biological 

embedding of stress in the skeleton. This study marks a key step in a larger research program 

to study stress in primary dentition from living and archaeological populations.

Limitations: Multiple samples generated cortisol values that were not detectable with ELISA. 

Minimum quantities of tissue may be required to generate detectable levels of cortisol.

Suggestions for Further Research: Future research should include larger sample sizes and 

consideration of intrinsic biological and extrinsic preservation factors on dental cortisol. Further 

method validation and alternative methods for assessing dental cortisol are needed.
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1. Introduction

The influence of stress on health and well-being is an integral research theme in 

palaeopathology, as well as clinical, biological, and health sciences, often forming the 

foundation of investigations into the detrimental impact of social inequalities (Ford et al., 

2016; Goodman et al., 1984; Goodman and Leatherman, 1998; Larsen, 1997; McDade, 

2002; Reitsema and McIlvaine, 2014; Schreier and Evans, 2003; Temple and Goodman, 

2014). Cortisol is a key biomarker of stress, being one of the primary hormones produced 

in response to psychosocial, physiological, and environmental stressors (Charmandari et al., 

2005). Cortisol concentrations from bodily fluids (e.g., saliva, blood) and hair are regularly 

tested in modern human and animal populations as a measure of stress levels (Bozovic 

et al., 2013; Fischer et al., 2017; Gow et al., 2010; Kambalimath et al., 2010; Lee et al., 

2015; Novak et al., 2013; Preis et al., 2019; Šušoliaková et al., 2018; Van Uum et al., 

2008). However, studies of stress in past populations and across time have been limited by 

methodological constraints. For example, in archaeological settings, often only skeletonized 

individuals are available for analysis. In living populations, retrospective analysis of cortisol 

is restricted to hair, which may be limited by sample availability and length (Ford et al., 

2016; Romero-Gonzalez et al., 2021).

Recently, cortisol concentrations were obtained from permanent tooth structures from 

modern (Nejad et al., 2016) and archaeological contexts (Quade et al., 2021). However, 

further investigation is necessary to develop this new methodology and appropriately 

interpret dental cortisol concentrations. Although as yet untested, there are many potential 

benefits to examining cortisol in deciduous teeth. Deciduous dental cortisol (DDC) from 

archaeological contexts could provide productive comparisons with other skeletal stress 

markers (e.g., dental enamel hypoplasia), or reveal differences in stress experience and 

frailty not currently accessible through non-destructive methods (Aucott et al., 2008; Baylis 

et al., 2013; Temple and Goodman, 2014; Wood et al., 1992). Because free cortisol in 

the bloodstream is hypothesized to be incorporated into tooth structures during tissue 

development (Balíková, 2005; Camann et al., 2013; Cattaneo et al., 2003; Cippitelli et al., 

2018; Gow et al., 2010; Sharpley et al., 2012), DDC could reflect stress exposure during 

Quade et al. Page 2

Int J Paleopathol. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the intrauterine period and early infancy, a critical and sensitive period in development 

(AlQahtani et al., 2010; Brickley et al., 2020; Camann et al., 2013; Davis et al., 2020; Dunn 

et al., 2022). Further, DDC has the potential to link paleopathology with studies of stress 

in living populations, providing new ways to understand the skeletal embodiment of stress. 

Deciduous teeth from living populations are comparatively abundant and can be ethically 

sourced (Buikstra et al., 2022; Squires et al., 2022, 2019) from willing and informed donors. 

Access to larger numbers of teeth permits further testing and validation of the method, which 

are crucial for advancing the technique. Additionally, living donors can provide relevant 

demographic and contextual information, including histories of stressful life events.

In this pilot study, we assess human deciduous teeth from living and archaeological 

populations for cortisol concentrations for the first time, using methods previously applied 

to permanent teeth (Quade et al., 2021). Our primary aim is to identify if it is possible to 

detect cortisol concentrations from deciduous teeth, establishing the groundwork for future 

research.

2. Materials and Methods

2.1. Materials

Six living individuals from the Czech Republic donated nine deciduous teeth. Three 

individuals provided two teeth each, which were used to test intraindividual differences 

in DDC concentrations (Table 1). Archaeological teeth came from the 11th-12th century 

cemetery known as ‘Brno-Vídeňská Street’ (modern Czech Republic) (Černá and 

Sedláčková, 2016) because of the relatively high number of non-adults with deciduous 

teeth available for analysis. Ten deciduous teeth were selected from nine non-adults. Skeletal 

sex was not estimated. In one individual (5813), two teeth were selected for analysis. For 

individual 4890, the extracted enamel was divided into two samples as a preliminary test for 

consistency in detection methods.

This research was conducted in accordance with the Helsinki Declaration. Living 

participants provided written informed consent for their teeth to be used in these analyses 

and all data were stored in compliance with General Data Protection Regulation standards 

(Masaryk University Research Ethics committee reference number EKV-2021–103).

2.2. Methods

2.2.1. Tooth sampling—Dentine (D) and enamel (E) samples were extracted from 

19 teeth, coming from 15 individuals (Table 1). Circumpulpal dentine (CD) (dentine 

immediately surrounding the pulp chamber) (Montgomery, 2002) was also extracted 

and tested for cortisol concentrations (13 samples). It was not always possible to test 

all tissue types from each tooth due to insufficient or unsuitable sample quality. Each 

tooth was assessed macroscopically for stage of mineralization (AlQahtani et al., 2010) 

and signs of pathology (Brothwell, 1981; Hillson, 1996). Only teeth free from visible 

pathological lesions or wear that exposed the dentine were selected. The entire crown of 

each selected tooth was utilized, yielding the maximum possible tissue mass, and ensuring 

the highest likelihood of generating detectable levels of cortisol. The utilization of tissues 
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from different tooth types resulted in variable sample masses, ranging from 2.3 to 297.2 

milligrams. Results are reported as initial calculated cortisol concentrations (μg/dL) and 

as concentrations divided by the respective sample mass to account for these differences, 

rendering the data comparable.

Selected teeth were photographed (BABAO Working Group for Ethics and Practice, 

2019) (Fig. 1), chemically and mechanically cleaned before bisection from crown to root 

apices. Dental tissues were sequentially removed using a micromotor drill, beginning 

with circumpulpal dentine, represented by a layer of approximately 0.5 mm of dentine 

surrounding the crown pulp chamber, followed by dentine and enamel. All tools and surfaces 

were cleaned between sample preparation to prevent cross contamination (Quade et al., 

2021). Each sampled tissue was ground into a powder and placed in 1 mL of methanol for 

24 hours to extract the cortisol. After extraction, the samples were dehydrated and frozen 

until the day of analysis via ELISA.

2.2.2. Cortisol Analysis—Two competitive ELISA salivary cortisol kits by Salimetrics 

(USA) were used to quantify the cortisol concentrations in the tooth dentine and enamel. 

Although no kit has been manufactured to test cortisol in mineralized tissues, salivary kits 

have been successfully used in modern and archaeological hair and permanent teeth. Future 

research is needed to investigate any potential error this may introduce. The ELISA kit was 

run according to the manufacturer’s instructions and wells were read in a Tecan Sunrise™ 

ELISA plate reader at 450 nm with a secondary filter correction at 490 nm. A standard curve 

was generated for each kit based on standards and controls, and fourth order polynomial 

curve fit regressions were produced to define the cortisol concentrations within each sample.

3. Results

Detectable concentrations of cortisol were identified in 23 out of 51 samples (45%), 

with measurable results coming from both modern and archaeological deciduous tooth 

tissues (Figs. 2–3; Tables 2–3). The remaining 28 samples generated cortisol values below 

the ELISA kit’s minimum detection threshold (0.007μg/dL), meaning they could not be 

quantified within the parameters of the assay.

A larger percentage of archaeological samples generated results with detectable levels 

of cortisol than modern samples (63% versus 25%)(Fig. 2). When detectable in modern 

samples, cortisol concentrations were more variable, especially in relation to sample mass 

(Fig. 3).

Cortisol was detected in 17 archaeological samples (CD-5; D-5; E-7), coming from different 

individuals and teeth. Six modern samples (CD-2; D-3; E-1) generated results detectable 

within the assay (Table 2)1. Differences between circumpulpal dentine, dentine, and enamel 

cortisol concentrations were not formally evaluated due to small sample sizes.

1In archaeological samples, the lowest sample masses to yield detectable cortisol concentrations were CD=15.7 mg, D=80.5 mg; E=29 
mg. In modern teeth, samples as low as CD=6.1 mg, D=12.5 mg; E=13.2 mg yielded detectable cortisol concentrations.
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In individual 4890, whose enamel was divided into two separately tested samples, there was 

consistency in the calculated cortisol concentrations (0.00026; 0.00023 μg/dL/Sample Mass) 

(Table 3). Four of the detectable modern samples came from individual 3937 in multiple 

tissues, where cortisol concentrations ranged from 0.00028 (D) to 0.00709 (E).

4. Discussion

This study demonstrates that it is possible to detect cortisol from deciduous dental tissues 

in some individuals using methods previously tested in permanent teeth. Archaeological 

teeth more consistently yielded detectable cortisol results than modern teeth, though cortisol 

values were higher overall in modern samples. Future studies, particularly with directly 

comparable datasets and life history measures, can help reveal the full extent to which 

deciduous teeth record cortisol exposure. To that end, we interpret our results and encourage 

research in several specific areas.

First, baseline levels of cortisol within dental tissues are unknown. Although cortisol can/

should reach every tissue (Beisel et al., 1964; Dallman and Hellhammer, 2011; Kudielka and 

Kirschbaum, 2005), cortisol may only be detectable in teeth when a person is exposed 

to a certain degree of stress. This hypothesis may explain why multiple modern and 

archaeological deciduous teeth had sub-detection levels of cortisol in all tested tissues; and 

could suggest why several modern individuals, presumably exposed to fewer stressors, had 

no detectable DDC. In analyses of permanent teeth, not all samples yielded detectable 

results either (Quade et al., 2021). Therefore, determining ‘expected’ dental cortisol 

concentrations represents an opportunity for future research.

Second, intrinsic biological factors such as sex or age-related maturational events (Goldstein 

et al., 2016; Greaves et al., 2014; Kirschbaum et al., 1992; Panagiotakopoulos and Neigh, 

2014) may influence DDC. Of the living individuals, only females had detectable DDC, 

although sample sizes are small, and sex was not estimated for archaeological individuals. 

Additionally, taphonomic, or diagenetic factors could affect DDC (Cappellini et al., 2018; 

Hollund et al., 2015; Kendall et al., 2018; Schmidt et al., 2017; Turner-Walker, 2008). 

Cortisol is thought to be fairly resistant to degradation (Hamel et al., 2011), but can 

be affected by long-term exposure to temperatures above 37°C (Khonmee et al., 2020). 

Although diagenesis in the archaeological teeth was anticipated, those individuals died and 

were buried with their teeth intact, anchored within the jaw. In contrast, when modern 

deciduous teeth are exfoliated, they can be conserved in different ways, including boiling 

or disinfecting teeth. Data related to the storage of modern teeth prior to donation were not 

collected. This represents a potential problem and future studies will need to explore this 

hypothesis.2

Third, the current methods may need additional optimization to capture cortisol from dental 

tissues. As one example: although ELISA kits are extensively tested for cross-reactivity, 

sensitivity and linearity by kit manufacturers and through independent research (Russell et 

2Modern individual 3937 provided two teeth for analysis, where one (uli1) was processed very shortly after receipt and the second 
(uri1) several months later. DDC differed between the two teeth, possibly indicating that storage of teeth is an important factor
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al., 2015; Slominski et al., 2015), some studies have noted problems and inconsistencies 

with the comparability and quantification processes (Hendy, 2021). Ultimately, other 

methods and technologies (e.g., mass spectrometry) may be preferable.

Several limitations of the study are noted. Eleven samples had very small quantities of 

tissue available for analysis; these samples may have been too small to generate detectable 

results. Additionally, three living individuals donated multiple teeth, comprising the majority 

of modern tooth samples (17/24, 71%). Therefore, their teeth could be exerting an undue 

influence on this analysis.

4.1. Conclusions

This study is the first known analysis of cortisol derived from deciduous dental tissues, 

acting as a proof of concept for future research. The ability to detect cortisol from 

deciduous teeth is integral to expanding and developing techniques to assess early life 

stress, facilitating research on the biological embedding of stress in the skeleton, new 

methodological approaches, and comparisons with alternative forms of stress evidence from 

living and archaeological populations.
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Fig.1. 
A. Individual 4813, Brno-Vídeňská Street. Five surfaces of the 1st left mandibular deciduous 

molar; B. Individual 9738, Modern. Five surfaces of the 1st left mandibular deciduous molar
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Fig. 2. 
Samples with detectable levels of cortisol
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Fig. 3. 
Box and whisker plot of samples with detectable levels of cortisol, adjusting for different 

sample mass. The line in this plot is the sample median, the box represents the second and 

third quartiles, and whiskers are the maximum and minimum values, not including outliers. 

Additional dots are outliers.
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Table 1.

Number of individuals, teeth, and tissue samples included in this analysis

Site Dating Individuals Teeth Circumpulpal Dentine 
Samples

Dentine 
Samples

Enamel 
samples

Total samples

Brno-Vídeňská 
Street

11th–12th c. 9 10 7 10 10 27

Modern - 6 9 6 9 9 24

Total - 15 19 13 19 19 51
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Table 2.

Dental cortisol concentration results

Site Ind. Sex Tooth Circumpulpal Dentine (CD) Dentine (D) Enamel (E)

Smp 
Mass 
mg

Cortisol 
μg/dL

Cortisol 
μ
g/dL/S
mp 
Mass

Smp 
Mass 
mg

Cortisol 
μg/dL

Cortisol 
μ
g/dL/S
mp 
Mass

Smp 
Mass 
mg

Cortisol 
μg/dL

Cortisol 
μ
g/dL/S
mp 
Mass

Brno-
Vídeňská

3000 ulm2 
(65)

12.5 ND+ - 122.4 0.0336 0.00027 147.4 0.0398 0.00027

Brno-
Vídeňská

4813 llm1 
(74)

- - 80.5 0.0281 0.00035 120.6 0.0250 0.00021

Brno-

Vídeňská*
4890 urm2 

(55)
32.8 0.0405 0.00124 156.9 0.0223 0.00014 145.8 0.0379 0.00026

- - - - - 104.0 0.0236 0.00023

Brno-
Vídeňská

4892 urm2 
(55)

15.7 0.0241 0.00153 168.6 ND - 173.8 ND -

Brno-
Vídeňská

4895 ulm2 
(65)

36.5 0.0432 0.00118 138.1 0.0437 0.00032 242.5 0.0090 0.00004

Brno-
Vídeňská

4897 urm2 
(55)

19.8 0.0182 0.00092 151.1 0.0035 0.00002 221.1 0.0214 0.00010

Brno-
Vídeňská

5802 uli1 
(61)

2.3 ND+ - 26.1 ND+ - - - -

Brno-
Videnska

5804 uli1 
(61)

- - 67.3 ND+ - 45.5 ND+ -

Brno-
Vídeňská

5813 urm2 
(55)

31.1 0.0282 0.00091 117.7 ND - 126.4 ND -

Brno-
Vídeňská

5813 uri1 
(51)

- - - 52.4 ND+ - 29 0.0171 0.00059

Detectable 5 5 7

Total 9 10 7 10 10

Modern 3881 F lrc 
(83)

- - - 69.1 0.0499 0.00072 48.9 ND+ -

Modern 3937 F uli1 
(61)

6.1 0.0214 0.00350 12.5 0.0855 0.00684 13.2 0.0935 0.00709

Modern 3937 F uri1 
(51)

- - - 80.1 0.0227 0.00028 74.3 ND+ -

Modern 7650 M ulm1 
(64)

- - - 94 ND+ - 116.1 ND -

Modern 9024 F urm2 
(55)

16.1 ND+ - 134.7 ND - 288.4 ND -

Modern 9024 F lrm2 
(85)

19.8 ND+ - 112.3 ND - 297.2 ND -

Modern 9117 M lrm2 
(85)

15.4 ND - 166.3 ND - 148.6 ND -

Modern 9117 M urm2 
(55)

31.1 ND - 118.2 ND - 204 ND -

Modern 9748 F llm1 
(74)

16.9 0.0222 0.00131 82.4 ND+ - 120.1 ND -

Detectable 2 3 1

Total 6 9 6 9 9
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Ind=Individual; ND= Not Detectable; Tooth types are abbreviated where the first letter= upper (maxillary) or lower (mandibular), the second letter= 

side (right or left); the 3rd letter= tooth type (incisor, canine, molar); the 4th character= tooth position number; numbers in parentheses refer to the 
FDI tooth notation system (FDI, 1971);

‘-’
denotes sample not tested due to insufficient or unsuitable material;

*
enamel tissue homogenized and split into two samples to test broad consistency;

+
indicates samples that did not have detectable levels of cortisol, but which also have notably low sample mass
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Table 3.

Dental cortisol concentrations from intraindividual and intra-tooth analyses. Cortisol concentrations are 

presented as μg/dL divided by sample mass

Brno-Vídeňská Modern

Individual 4890 5813 3937 9024 9117

Tooth urm2 
(55)*

urm2 
(55)*

urm2 (55) uri1 (51) uli1 (61) uri1 (51) urm2 
(55)

lrm2 
(85)

lrm2 
(85)

urm2 
(55)

Circumpulpal 
Dentine

- - 0.00091 - 0.00350 - ND+ ND+ ND ND

Dentine - - ND ND+ 0.00684 0.00028 ND ND ND ND

Enamel 0.00026 0.00023 ND 0.00059 0.00709 ND+ ND ND ND ND

ND= Not Detectable; Tooth types are abbreviated where the first letter= upper (maxillary) or lower (mandibular), the second letter= side (right or 

left); the 3rd letter= tooth type (incisor, canine, molar); the 4th character= tooth position number; numbers in parentheses refer to the FDI tooth 
notation system (FDI, 1971);

‘-’
denotes sample not tested due to insufficient or unsuitable material;

*
enamel tissue homogenized and split into two samples to test broad consistency;

+
indicates samples that did not have detectable levels of cortisol, but which also have notably low sample mass
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