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Abstract

Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes 

and play a wide variety of essential roles. Instead of folding into a single stable structure, 

IDRs exist in an ensemble of interconverting conformations whose structure is biased by 

sequence-dependent interactions. The absence of a fixed 3D structure, combined with high solvent 

accessibility, means that IDR conformational biases are inherently sensitive to changes in their 

environment. Here we argue that IDRs are ideally poised to act as sensors and actuators of cellular 

physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular 

mechanisms that translate this sensitivity to function, and recent studies where environmental 

sensing by IDRs may play a key role in their downstream function.
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INTRINSICALLY DISORDERED REGIONS AND THEIR CONFORMATIONAL 

BIASES

Intrinsically disordered regions (IDRs) (see Glossary) make up around a third of most 

eukaryotic proteomes and play critical roles in various cellular functions [1]. Unlike folded 

domains, IDRs lack a fixed folded structure and instead exist in a set of interconverting 
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conformations known as an ensemble (see Box 1, Fig. 1A). While IDRs are characterized 

as disordered, they are not “unstructured.” Instead, IDRs possess conformational biases 
(Box 1) that are dependent on their amino acid sequence [2–4]. These conformational 

biases may be driven by polar, hydrophobic, electrostatic, cation-pi, or pi-pi interactions 

between amino acid side chains that lead to attraction or repulsion between distal regions 

of an IDR [5–12]. Such interactions tune intramolecular distance distributions and ensemble-

average global dimensions. As an example, long-range electrostatic interactions driven by 

clusters of oppositely charged residues can tune IDR global dimensions [13–15], as in the 

case of the cell cycle inhibitor protein p27Kip1 [14]. Alternatively, short-range transient 

secondary structure can manifest as specific conformational states that appear as distinct 

subpopulations within the overall ensemble [16], e.g., transient helicity within specific 

subregions of IDRs, as seen in the RNA binding protein TDP-43 or the transcription factor 

p53 [17,18]. For any given IDR, the emergent combination of sequence-encoded attractive 

and repulsive molecular interactions will dictate its conformational biases.

Besides amino acid sequence, another factor that influences IDR conformational biases, 

and therefore ensemble properties, is their physicochemical environment [19,20]. Folded 

domains benefit from a network of intramolecular non-covalent bonds that determine a 

consistent molecular topology. In IDRs, the lack of such a network has two implications. 

First, the designation of “buried” and “surface-exposed” residues commonly made in 

reference to folded proteins is not applicable (Fig. 1A). In general, all residues in an IDR 

will be at least transiently solvent-exposed. Thus, the entire sequence is in direct interaction 

with the solution and can sense any change in surrounding chemistry. A second implication 

is that the sparse interactions that exist in an IDR are often too weak to resist the push 

and pull of the chain’s interactions with its surrounding solution. For example, interactions 

with denaturants like urea can pull apart the non-covalent bonds that maintain a protein’s 

structure. However, denaturation of a folded protein often requires a high urea concentration 

(6–8 M as a standard) because a network of intramolecular bonds resists this pull. IDRs, on 

the other hand, can be dramatically extended even by urea concentrations that are almost an 

order of magnitude smaller (< 1 M) [19–22].

Why do IDR conformational biases matter? The sequence-ensemble-function paradigm 

posits that IDR function is at least partly dependent on an ensemble’s conformational 

biases [2,16]. Conformational biases can prime IDRs for molecular recognition that involves 

folding upon binding [18,23,24]. Alternatively, they can tune global dimensions or facilitate 

the formation of fuzzy complexes, where a bound structure lacks a defined 3D orientation 

[24–26]. Specific examples of the sequence-ensemble-function relationship include regions 

that form binding motifs when they exist as a transient helix [18], global dimensions tuning 

motif binding accessibility [27], and tuning of interactions by changing the overall volume 

occupied by the ensemble [28,29]. Additionally, IDRs can themselves play key functional 

roles without directly interacting with partners. For example, when two globular domains 

are tethered by an intervening IDR, the “effective concentration” of the two domains 

with respect to each other, and therefore the extent of their interactions, can be tuned by 

changing the end-to-end distance of the IDR tether [30,31]. Recent work has highlighted 

the importance of effective concentration to function by revealing that IDR dimensions 
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– without conservation of a specific amino acid sequence – can be under evolutionary 

selection to ensure optimal linker lengths in a model termed “conformational buffering” 

[32]. In short, the relationship between sequence and ensemble can be critical for the 

biological function of IDRs.

The importance of conformational ensembles to IDR function, coupled to the inherent 

sensitivity of IDRs to their physicochemical environment, gives rise to the possibility 

of IDRs acting as molecular sensors of their surrounding physicochemical environment 

(Box 1). The broad palette of chemistry available through the twenty natural amino acids 

(plus their post-translational modifications) makes possible the evolution of chemically 
orthogonal IDRs that are differentially sensitive to a variety of distinct physicochemical 

changes [19,20,33,34]. Sensing based on IDR ensemble changes would bring obvious 

advantages to the cell. In contrast to, for example, kinase signaling, IDR ensemble changes 

require no expenditure of ATP. Also, given that IDRs undergo conformational rearrangement 

on timescales of 50–200 ns, sensing based on IDR ensemble changes could occur extremely 

rapidly [35]. These features position IDRs to be exceptionally efficient protein-based 

sensors.

This perspective focuses on the molecular mechanisms governing how IDRs sense and 

respond to changes in their physicochemical environment and on biomolecular systems 

where IDR sensitivity could be the mechanism underlying regulation and function. We 

will first discuss the conceptual and biophysical determinants of IDR sensing. Following 

this brief overview, we will consider how sensing can be measured, followed by examples 

where IDRs have been identified as playing a putative or demonstrable role in sensing their 

physicochemical environment.

THE MOLECULAR BASIS OF PHYSICOCHEMICAL SENSING

For an IDR to act as a physicochemical sensor, it must reproducibly respond to changes 

in its physicochemical environment (Fig. 1B). These responses may take the form of global 

changes in ensemble conformations or changes in local transient structure. Although these 

are often coupled, for simplicity we will consider them independently in our discussion 

below.

THE SOLUTION DEPENDENCE OF GLOBAL CONFORMATIONAL BIASES IN IDRS

Changes in global IDR dimensions can be viewed through the lens of polymer physics 

[3,36]. If we represent an IDR as a homopolymer, its global dimensions depend on the 

balance between attractive and repulsive intramolecular interactions. This balance can 

be quantified as a single interaction energy that reflects the average overall attraction 

(or repulsion) of the polymer units (monomers) for one another, i.e., the mean-field self-

interaction energy (ε) (Fig. 2A).

The mean-field self-interaction energy is inherently dependent on the solution environment. 

In a solution of polymer and solvent, increasing solvent:monomer repulsion is equivalent, in 

a mean-field sense, to increasing monomer:monomer attraction. Moving from a solution in 

which the mean-field self-interaction is repulsive to one in which it is attractive can manifest 
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as a coil-to-globule transition [36] (Fig. 2B). The sharpness of this transition depends on 

the chain length and the magnitude of the change in self-interaction energy.

For homopolymers, only a single type of monomer unit is present, so there exists only 

a single type of pairwise interaction energy εi,i  (Fig. 2A). For heteropolymers (like 

IDRs), chemically distinct monomers give rise to a matrix of pairwise interaction strengths 

E ≡ εi,i, εi, j, …,εk,n  (Fig. 2C, 2D). A key concept in IDR sensitivity is that each of these 

individual pairwise interaction strengths may be modulated differently by changes in the 

physicochemical environment; that is, they may be chemically orthogonal (Fig. 2D). As a 

specific example, attractive pairwise interactions driven by electrostatics may be sensitive 

to salt, while attractive pairwise interactions driven by hydrogen bonding may not (Fig. 2D, 

2E).

Two central conclusions emerge from this framework. First, IDR global dimensions must 

depend on amino acid sequence, as has been established by prior work [2,3,7,9,10,12,22,37]. 

Second, an IDR’s sensitivity – that is, how much global dimensions change as a function of 

the changing physicochemical environment – depends on (a) the underlying IDR sequence, 

i.e., where on the coil-to-globule curve an ensemble begins (Fig. 2E); and (b) how the 

intramolecular interactions encoded in this sequence respond to their environment, i.e., 

how much the overall mean-field pairwise interaction energy changes in response to 

physicochemical changes [19] (Fig. 3A).

For IDR ensembles that begin near one of the baselines (either coil or globule), large 

changes in the mean-field energy can have a relatively small impact on chain dimensions, 

making them less sensitive (Fig. 3A, left) [19]. Analogously, for ensembles that begin 

in the middle of the coil-to-globule transition, relatively small changes in the mean-field 

interaction energy drive large changes in global dimensions, making them more sensitive 

(Fig. 3A, right). One could consider folded domains to be at the globular extreme of this 

transition, illustrating their lack of solution sensitivity. The upshot of this is that chain 

sensitivity peaks at the midpoint of the coil-to-globule transition (Fig. 3B). Indeed, prior 

work has shown that this conceptual framework is able to quantitatively normalize the 

solution dependence of IDRs across a wide range of different cosolutes (Fig. 3C) [19].

In short, baseline conformational behavior and sensitivity to environmental change, both of 

which depend on sequence, combine to determine an IDR’s global dimensions (Fig. 2E). 

Together, these two features offer a quantitative framework through which IDR sensitivity 

can be interpreted and, looking forward, used as a design principle for the development of 

novel sensors.

THE SOLUTION DEPENDENCE OF LOCAL CONFORMATIONAL BIASES IN IDRS

Local conformational biases, such as the gain or loss of transient secondary structure 

(especially transient helicity), can also be tuned by the environment [38,39] (Fig. 4). 

Importantly, the ability of ensemble conformations to change locally and not just globally 

means that ensembles can have different structural features even though global dimensions 

are the same [12,40,41]. This poses an additional challenge to experiments which often 

measure only a single global dimension, as discussed below.
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CELLULAR SENSING THROUGH IDR-MEDIATED PHASE TRANSITIONS

IDRs can also contribute to the formation of biomolecular condensates through intracellular 

phase transitions, although we emphasize that IDRs are not necessary for phase transition 

to occur [10,42]. The same physical and chemical logic ascribed to IDR coil-to-globule 

transitions can and will tune phase behavior, meaning that changes in solution conditions 

can enhance or suppress biomolecular condensate formation [37,43–46].

Yoo et al. have made a compelling case that intracellular phase transitions offer a general 

class of sensing that benefits from the sharpness of a first-order phase transition [47]. 

Whereas coil-to-globule transitions of real chains are finitely-cooperative transitions with 

cooperativity dependent on sequence and solution (Fig. 2), first-order phase transitions are 

infinitely cooperative. This means phase transitions offer digital (on/off) sensors, while 

individual IDRs provide analog (dimmer switch) sensors. Depending on the scenario, digital 

or analog sensing may be preferable.

MEASURING IDR SENSITIVITY

In folded domains, chemical sensing can be facilitated through specific, evolutionarily 

optimized binding sites that enable picomolar-affinity binding to small molecules. IDRs, 

in contrast, cannot form well-defined binding pockets in their disordered state but instead 

can sense the chemical environment through changes in IDR:solvent interactions (Fig. 1). 

Because of this, sensing low concentrations (nM and below) of specific small molecules 

can be difficult to achieve unless IDRs engage in coupled folding-upon-binding with a 

ligand. Instead, IDRs sense the average physicochemical environment of their surroundings 

and respond with changes in ensemble structure – a holistic, integrated response to 

the environment that is difficult for well-folded proteins to achieve. Here we highlight 

experimental methods that probe how IDRs act as physicochemical sensors.

IN VITRO MEASUREMENTS OF IDR ENSEMBLE SENSITIVITY

Small-angle X-ray scattering (SAXS), single-molecule Förster Resonance Energy Transfer 

(FRET), nuclear magnetic resonance (NMR), and other biophysical methods provide a rich 

toolkit with which to study IDR ensembles in vitro. Such studies can measure the sensitivity 

of IDRs through changes in ensemble-average properties as a function of changes in solution 

physicochemistry [19,34,48].

Several groups have used changes in solution chemistry to elicit a structural response 

from IDRs. Perhaps the most well-studied examples are denaturants, which by weakening 

intramolecular interactions drive ensemble expansion [21,22,41,49]. To broadly explore the 

relationship between IDR sequence sensitivity and solution chemistry, recent work applied 

so-called solutionspace scanning to assess how different IDRs respond to a panel of different 

cosolutes. In this approach, an IDR of interest is sandwiched between a FRET pair, and 

the IDR’s dimensions as a function of osmolyte concentration and identity can be recorded 

[19]. This work showed that IDR sensitivity in vitro depends on the amino acid sequence 

and the specific changes in the physicochemical environment, strengthening the argument 

for IDRs as sensors and actuators of the cellular environment [19]. The importance of 
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sequence to sensitivity was highlighted by the finding that an ensemble can be made more or 

less sensitive by scrambling its sequence while retaining the same amino acid composition, 

further supporting the idea that IDRs may be finely tuned to respond to environmental 

changes [34].

Solution-dependent changes in IDR dimensions have been examined in additional contexts. 

IDRs linked to desiccation tolerance undergo structural rearrangement upon dehydration 

and/or changes in solution composition [50–54]. IDR ensembles and their intermolecular 

interactions can also be tuned by ion concentration and identity [39,55,56]. Macromolecular 

crowding also modulates IDR ensembles, with the size and concentration of a crowding 

molecule key determinants of its ability to compact IDR ensembles [57,58]. In summary, in 

almost all in vitro systems examined, with a few notable exceptions, IDRs appear responsive 

to their environment, albeit to different degrees [12].

IN-CELL MEASUREMENTS OF IDR SENSITIVITY

In contrast to aqueous buffers, the cellular environment is constantly changing, causing 

spatial and temporal variations in crowding, pH, ion and osmolyte concentrations, and other 

solution properties [59]. These changes occur during routine cellular events such as cell 

cycle progression (e.g., entry into mitosis), due to external stress such as osmotic pressure 

or starvation, or due to pathology (e.g., the Warburg effect in most cancer cells) [60–63]. 

Given the sensitivity of IDRs, intracellular solution dynamics may be expected to alter IDR 

ensembles more than what is observed in vitro. To assess this, several methods, including 

NMR [64,65] and single-molecule FRET [48], have been used to study IDR ensembles 

in live cells. Despite some outliers that are more structured in the cell than in vitro [66], 

all IDRs studied to date remain disordered in the cell [34,65,67,68]. Despite the great 

differences between an aqueous buffer solution and the cellular environment, recent work 

has shown that conformational biases observed in vitro tend to persist in the cell [34,68].

Measuring IDR sensitivity in cells requires the ability to precisely and reproducibly change 

the cellular environment and measure the resulting response of the IDR ensemble. This 

makes in-cell experiments tricky to interpret: cells have well-established active mechanisms 

to maintain homeostasis and mitigate physicochemical perturbations. As a result, induced 

ensemble changes must be distinguished from changes driven by cellular pathways [69]. 

Rapid, laser-induced temperature jumps offer one route to produce high-speed perturbations, 

an approach that has been used to measure intracellular IDR dimensions as a function of 

temperature [70]. Several groups also have used rapid osmotic perturbations that occur in a 

matter of seconds. When studied using in-cell single-molecule FRET, the fully-disordered 

protein prothymosin alpha was found to compact under hyperosmotic stress, an effect 

quantitatively explained by changes in molecular crowding [48]. More recently, ensemble 

FRET measurements revealed that the osmotic sensitivity of IDRs inside the cell is often 

dramatically different from what is measured in vitro [34]. This highlights the ability to 

elicit different structural responses from the same IDR to the same perturbation depending 

on the IDR’s surroundings.
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IDRS AS PHYSICOCHEMICAL AND BIOLOGICAL SENSORS

Recognition that proteins exist in a complex, spatially and temporally dynamic cellular 

environment has driven research into how cellular perturbations influence protein structure 

and function [71]. While folded domains are often robust to small physicochemical 

perturbations, IDRs can be much more sensitive to these changes [33,72]. The inherent 

flexibility of IDRs, together with the exposure of their residues to the surrounding 

environment, makes them ideal candidates to serve as sensors and actuators of 

physicochemical changes in the cellular environment [39,57,73]. However, whether this 

physicochemical sensing modality elicits a function can be hard to verify. An IDR is only 

a genuine biological sensor if it responds to a stimulus and then elicits a downstream 

biological response. Presented below and in Table 1 are examples of IDRs that mediate 

downstream function when exposed to physicochemical changes in the cellular environment. 

Despite clear links between IDR sensitivity and downstream function, whether this 

function is achieved through environmentally-mediated changes to ensemble or some other 

mechanism (e.g., post-translational modification or binding to other proteins) remains to be 

tested. Nonetheless, we expect that, at least for some of these examples, mechanistic studies 

will point to environmentally-mediated ensemble changes as underlying the production of 

downstream function.

CHEMICAL PERTURBATIONS

Early studies exploring the relationship between IDR:solvent interactions and IDR 

dimensions focused on the impact of denaturants [21,41,49]. Following this, a corpus of 

work showed that highly-charged IDRs could be extremely sensitive to changes in salt 

conditions, further illustrating how the solution environment can tune ensemble dimensions 

[7,56,57,74,75]. This work has paved the way for a growing appreciation that IDRs can and 

do respond to their chemical environment.

IDRS AS SENSORS OF CELLULAR CHEMISTRY

If IDRs can sense their environment, are there examples where this enables biological 

regulation? One such example is CO2 sensing enabled by a large IDR within the Ptc2 

phosphatase in Candida albicans [76]. Here, a serine-rich IDR enables CO2 sensing by 

driving the formation of biomolecular condensates upon elevated CO2 levels, which in 

turn drives phenotypic (white-opaque) switching. Although CO2 sensing is conserved in 

functionally orthologous PP2C-family phosphatase IDRs, the primary sequence of the CO2-

sensing IDR varies substantially across species. Conservation of function, even with poor 

sequence conservation, is gaining attention as a distinctive feature of IDRs, as highlighted in 

recent work across a range of organisms [32,77,78].

IDRs have also emerged as important participants in pH sensing [79,80]. Considering 

that pH changes can alter the ionization states of titratable side chains, and given the 

important role charged residues play in IDR ensembles, IDRs are well-poised to function 

as pH sensors [81,82]. In budding yeast, a glutamine-rich low-complexity domain in 

the transcriptional regulator Snf5 possesses a handful of histidine residues that enable 

large-scale pH-dependent transcriptional rewiring [80]. For Snf5, simulations predict that 
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histidine protonation leads to an increase in IDR global dimensions. Similar IDR-based 

pH sensing in yeast has also been reported in HSF1 and Sup35, where the local sequence 

context may tune local pKa values into the physiological range [45,83–85]. These insights 

also offer a mechanistic explanation for the pH-dependent conformational rearrangement 

observed in G3BP1, a highly disordered mammalian protein essential for mammalian stress 

granule formation [86]. Taken together, pH-dependent conformational switching offers a 

mechanism through which IDRs can respond to intracellular changes or enable context-

specific functionality.

Another situation in which large-scale intracellular physicochemical changes arise is 

desiccation. Responding to changing water availability is crucial, especially for sedentary 

or single-cell organisms. The precise physicochemical cues being sensed in response 

to changing water availability are unavoidably a convolution of many different factors 

(including dielectric constant, osmolyte concentrations, water potential, oxidative stress, 

etc.). However, organisms from all branches of the tree of life have evolved IDRs that can 

sense and/or protect them from water stress, highlighting the generality of this phenomenon 

[87]. The quintessential family of such protectants are hydrophilins – a family of largely 

disordered proteins that are accumulated under water deficit in bacteria, archaea, and 

eukaryotes [88]. Biophysical studies of sub-families, including the late-embryogenesis 

abundant (LEA) and the tardigrade-specific CAHS proteins, show that these proteins 

undergo ensemble-wide change upon exposure to water stress, often adopting a helical 

conformation [51–53,89]. This observation has enabled the design of novel water-sensing 

proteins, demonstrating the power of a biophysical understanding of IDR sensitivity [33]. 

Recent studies also highlight the role of condensate formation by IDRs under water stress. 

The highly disordered protein FLOE1 in Arabidopsis thaliana seeds reversibly undergoes 

phase separation under hydration, and the biophysical states of FLOE1 condensates signal 

the plant to suppress germination when the environment becomes unfavorable [90]. IDR-

dependent condensation of another Arabidopsis protein, SEUSS, drives localization to 

condensates in response to hyperosmotic conditions and is indispensable for water stress 

tolerance [91]. Indeed, the ability of IDRs to sense osmotic challenges and respond through 

condensation has been highlighted as a common feature and observed in other systems 

[37,92,93].

Cellular redox state is another facet of the intracellular environment that can change 

substantially [94]. Sensing and responding to changes in redox states is vital for normal 

cellular function. However, like desiccation, changes in redox state often coincide with 

additional changes such that it may be impossible to deconvolve the relative contributions 

of related physicochemical changes. Nevertheless, recent studies have implicated IDRs as 

redox sensors in several different systems. In the context of CO2 assimilation in algae, 

redox-dependent conditional disorder in chloroplast protein of 12 kDa (CP12) regulates 

the Calvin-Benson-Bassham cycle in a redox- and light-dependent manner [95]. In plants, 

cell survival during pathogen response depends on three cysteine-containing redox-sensitive 

IDRs in NPR1, which regulate the ubiquitylation of stress response machinery through 

biomolecular condensates [96]. Similarly, in plant shoot apical meristems, the production 

of reactive oxygen species promotes phase separation of transcription factor Terminating 

Flower (TMF). Cysteine oxidation paired with the cooperation of N- and C-terminal IDRs 
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in TMF enables redox-tunable transcriptional condensation and direct gene control during 

flower development in plants [97]. In humans, evolutionarily conserved methionine-rich 

IDRs in TAR DNA-binding protein 43 (TDP-43) and Ataxin-2 have been proposed to 

function as intracellular redox sensors [98,99]. Both TDP-43 and Ataxin-2 undergo self-

assembly into redox-sensitive gel-like condensates, with implications for the dysregulation 

of redox homeostasis in human disease.

Ions and metals can influence IDR conformational biases in various ways. Changes in 

monovalent salt concentrations may screen attractive or repulsive electrostatic interactions, 

rewiring intramolecular and intermolecular interactions [22,74]. Beyond nonspecific 

electrostatic screening, direct binding of ions, metals, and even small organic molecules also 

represents a key mechanism by which IDRs can act as sensors [7,22,39]. As an example, a 

disorder-to-order transition upon Ca2+ binding may couple calcium sensing and ion channel 

opening in smallconductance calcium-activated potassium channels [100]. More generally, a 

growing number of IDRs appear to possess calcium-binding motifs, which may enable Ca2+ 

sequestration and Ca2+-dependent changes in ensemble behavior [101]. Beyond calcium, 

IDRs have been found to bind copper (PrPC, granulins), zinc (ProTα), silver (SilE), and 

ferric iron (Mms6) [102–106]. Ions can also tune IDR-mediated assembly with anion- and 

cation-specificity driven by charge density, ion solvation effects, and preferential interaction 

coefficients [107]. Regulatory logic involving ion-dependent changes in IDR properties 

(e.g., in developmental biology during calcium waves or neuronal action potentials) offers a 

potential mechanism for adaptive intracellular function. While the cellular consequences of 

metal binding are often unclear, these studies suggest that IDRs are poised to enable specific 

and tunable metal sensing.

OTHER INTRACELLULAR IDR SENSORS

In addition to sensing their chemical environment, IDRs can act as physicochemical sensors 

through other means. Sequence-dependent effects, namely sequence chemistry and length, 

can influence how IDRs sense or exert mechanical force [29,108]. Emerging data suggests 

IDRs may be central to sensing membrane curvature: mechanistically by negatively-charged 

IDRs electrostatically binding lipids, and entropically driven by preferential partitioning to 

convex surfaces of membranes [28,109,110].

IDRs may also function as sensors of intracellular crowding. Prior work combining 

experiments, theory, and simulations revealed that IDRs can show complex and sometimes 

unintuitive responses to crowders depending on IDR sequence and crowder size, shape, 

and chemistry [19,57,58,111,112]. Using single-molecule FRET, the impact of crowding 

on IDR function has also been examined as a potential means through which IDRs 

could – indirectly – enable sensing through crowding-dependent attenuation of molecular 

recognition [57,58,113]. Additionally, recent work on synthetic condensates indicates that 

crowding-induced condensate formation enables novel phosphorylation events to occur if 

those condensates recruit kinases [114]. The ability to encode mechanical-to-chemical signal 

transduction via intracellular phase transitions has broad implications for cell fate, human 

disease, and molecular evolution.
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As a final note, IDRs are inherently temperature-sensitive, owing to the fact that the 

mean-field self-interaction energy has an unavoidable entropic component that comes from 

solvation effects [115,116]. Perhaps unsurprisingly, this temperature dependence depends 

on the solution environment, setting the stage for IDRs to act as tunable temperature 

sensors. As one example, the hydrophobic P domain of Pab1 in S. cerevisiae functions 

as a finely tuned temperature sensor that tunes stress granule assembly during heat stress 

[44]. Similar temperature-sensitive IDRs have been identified in plants [117,118], while 

rationally designed IDRs could enable novel thermosensors [119]. In addition to acting via 

self-assembly, IDRs have also been shown to encode short-lived molecular timers whose 

refractory period depends on the temperature, as is the case in the plant photoreceptor 

Phytochrome B [120].

Concluding remarks—IDRs are inherently sensitive to their physicochemical 

environment. Here we have considered physical bases of that sensitivity, biochemical 

explanations of how sensitivity manifests in IDR ensemble structure, and functional 

consequences of IDR-dependent sensing mechanisms. While this emerging paradigm of 

disordered sensors has the potential to enable new insights into cellular regulation, it also 

raises many questions, some of which are listed in the Outstanding Questions box.

A central challenge in studying IDRs in the context of cellular sensing is distinguishing 

between an effect that unavoidably happens versus one that reports on a bona fide 

sensor or actuator. We highlight this in our precise word choice, differentiating between 

a physicochemical sensor and a biological sensor (Box 1). Verifying biological responses as 

being due to physicochemically induced changes in IDRs remains a key challenge.

A second challenge is a corollary of the first. We reported here many examples in which 

IDRs have been shown to mediate cellular sensing, yet the actual mechanism through which 

this is achieved remains opaque in most – if not all – cases. Enabling molecular insights into 

how these IDRs actually work is an ongoing challenge, both in the context of IDR sensors 

and, more broadly, in understanding IDR function.

In summary, we propose that IDRs represent ubiquitous sensors of intracellular state, where 

they provide a means for complex integrative regulation. While studying IDRs is technically 

challenging, their biophysical plasticity and propensity for weak multivalent interactions 

make them ideal tunable cellular sensors. As we develop new methodologies to study links 

between sequence, environment, and function of IDRs, we expect the discovery of exciting 

new mechanisms by which they regulate biology.
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GLOSSARY:

Biological Sensor
in the context of IDRs, a physicochemical sensor that, by responding to a change in its 

physicochemical environment, elicits a downstream biological response

Chemical Orthogonality
Modes of interaction that are driven by chemically distinct molecular mechanisms. In the 

context of IDRs, two chemically orthogonal IDRs may show divergent responses to the 

same change in solution chemistry. For example, one IDR may become compact in the 

presence of increased ionic strength but show no response to pH changes, while another 

could compact at elevated pH but show no response to elevated ionic strength

Coil-to-globule Transition
A sigmoidal change in the global dimensions of a polymer from a maximally expanded 

state to a minimally expanded state (see Fig. 2B)

Conformational Biases
Local and long-range intramolecular interactions (attractive or repulsive) that deviate from 

those expected for an inert, flexible polymer (see also Box 1)

Conformational Ensembles
the collection of accessible conformations assumed by the IDR in a solution (see also Box 1)

Conformational Heterogeneity
A measure of the range of different conformational states observed. Folded proteins 

have limited conformational heterogeneity, such that they are often well described by a 

single reference structure. Disordered regions have extensive conformational heterogeneity, 

necessitating their description in terms of average properties of a conformational ensemble

Global Dimensions
Properties of an IDR’s conformational ensemble that relate to the overall volume being 

occupied by the ensemble. Typically reported in terms of the radius of gyration, the 

hydrodynamic radius, or the end-to-end distance. Global dimensions are the measured 

observable for most experimental methods (SAXS, ensemble FRET, smFRET, SEC, and 

others)

Intrinsically Disordered Regions (IDRs)
Proteins or protein regions that are poorly described by a single three-dimensional structure 

and instead exist in a conformational ensemble

IDR Sensitivity
The degree to which the conformational biases of an IDR change due to changes in 

the physicochemical environment. Different sequences can display sensitivity to different 

environments (see also chemical orthogonality)

Physicochemical Environment
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The physical and chemical environment surrounding an IDR, including but not limited to the 

solution chemistry, as well as physical parameters such as temperature and pressure

Physicochemical Sensor
in the context of IDRs, an IDR that reproducibly changes its conformational ensemble (see 

Box 1) in response to a specific change in its physicochemical environment

Solution Chemistry
The chemical identity and composition of a solution, including pH, water activity, and 

osmotic pressure, and the identity and concentration of solutes: ions, osmolytes, metabolites, 

other small solutes, and macromolecules (including other proteins)
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BOX 1: IDR CONFORMATIONAL ENSEMBLES and CONFORMATIONAL 
BIASES AND SENSING

Conformational ensembles

An IDR’s conformational ensemble is the collection of accessible conformations 

assumed by the IDR in a solution. Although every protein actually exists somewhere 

on the continuum between rock-like rigidity and complete disorder, for simplicity the 

constantly-changing conformational ensembles of IDRs are commonly contrasted to the 

“native” structures of folded proteins.

Although highly susceptible to change, IDR conformational ensembles are far from 

random. Rather, every IDR conformational ensemble is influenced by conformational 
biases (see below) that depend on, among other things, the amino acid sequence 

of the IDR, the surrounding conditions (solution components, temperature, etc.), and 

interactions with folded domains to which an IDR may be tethered.

Information about the conformational biases of IDR conformational ensembles is 

accessible through measurements of ensemble-average properties such as average global 
dimensions. Ensemble-average global dimensions of an IDR in solution can be measured 

through methods such as Förster resonance energy transfer (FRET) and small-angle X-

ray scattering (SAXS), and predicted through simulations and deep learning approaches.

Conformational biases and sensing

An IDR’s conformational biases (also called structural biases) are preferences in its 

conformational ensemble due to which certain conformations are observed more often 

than expected compared to an inert flexible polymer. This may include local structural 

biases (e.g., transient secondary structure), long-range intramolecular interactions, and 

biases in global dimensions. An IDR’s conformational biases can undergo pronounced 

changes as a result of changes in its physicochemical environment, and these changes 

can influence function.

Importantly, if two IDRs are chemically orthogonal, their conformational biases respond 

differently to a given physicochemical change in their surroundings. These differential 

responses give rise to the idea of an IDR being able to “sense” particular physicochemical 

changes. This perspective proposes that changes in IDR conformational ensembles offer a 

mechanism for intracellular sensing.

A major challenge in establishing IDRs as biological sensors is demonstrating that IDR 

conformational ensemble properties determine molecular function. Structural biology has 

benefited tremendously from the application of conservative separation-of-function point 

mutations motivated by 3D structures to infer structure-function relationships. For IDRs, 

the usability of these tools is diminished, because point mutations often have little effect 

on ensemble structure and function.

As a result, linking IDR ensemble to function, especially in a range of physicochemical 

conditions, requires novel approaches designed to test the ensemble-function relationship. 

Because of the resilience of ensemble structure to mutations, meaningful exploration 
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of this relationship requires high- or medium-throughput approaches. Recent years have 

seen the expansion of computational and experimental approaches that help predict 

and test sequence-ensemble relationships. These include molecular simulations (coarse-

grained and all-atom), high-throughput parallel reporter assays, solution-space scanning, 

and even direct prediction of ensemble properties from sequence.

Moses et al. Page 19

Trends Biochem Sci. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



OUTSTANDING QUESTIONS

1. How do changes in IDR ensembles propagate to drive downstream effects?

2. How is chemical specificity for sensing encoded in IDR sequence?

3. Can IDR-based sensors decouple related chemical signals (e.g., desiccation 

and oxidative stress)?

4. Can IDR sensitivity cause malfunction in a dysregulated cellular environment 

(for example, the Warburg effect in cancer cells)?
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HIGHLIGHTS:

• Intrinsically disordered protein regions (IDRs) are ubiquitous across all 

kingdoms of life.

• IDRs exist as a collection of interconverting conformations known as an 

ensemble.

• Due to the absence of a fixed 3D structure, IDRs are – in general – more 

sensitive to their physicochemical surroundings than folded domains.

• This sensitivity means IDRs are well suited to act as intracellular sensors, 

whereby sequence-encoded conformational biases are altered by varying salt, 

pH, temperature, metabolites, and other solution changes.

• Here we discuss the biophysical and biochemical basis for IDR-mediated 

sensitivity, and highlight examples of this as a potential mechanism for 

biological regulation.
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Figure 1. Disordered regions exist in an ensemble that is inherently sensitive to the 
physicochemical environment.
(A) Protein conformational heterogeneity (see Glossary) exists on a continuum, 

whereby well-folded domains are at one extreme and fully disordered regions with no 

strong conformational biases are at the other. Regions that are highly conformationally 

heterogeneous contain fewer intramolecular bonds and are more solvent-exposed, and hence, 

in general, are more sensitive to even modest changes in the physicochemical environment. 

Here, the x-axis represents conformational heterogeneity while the y-axis represents some 
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change in solution chemistry (see Glossary). (B) Scheme showing some examples of how 

changes in the physicochemical environment can alter IDR conformational biases. Changes 

in solution chemistry (salt, osmolytes, pH) may weaken (or strengthen) intramolecular 

interactions leading to a decrease (or increase) in transient intramolecular interactions. The 

presence (or loss) of ligands, including specific ions, small molecules, second messengers, 

and other biomacromolecules, can lead to the gain (or loss) of structure upon binding (or 

unbinding). Changes in physical parameters such as temperature or pressure can lead to the 

enhancement (or suppression) of intramolecular interactions, which can drive the acquisition 

(or loss) of secondary or even tertiary structure. These are just a handful of examples of how 

changes in physicochemistry can be sensed by IDRs.
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Figure 2. Physical principles that underlie sequence-specific IDR sensitivity to changes in 
physicochemistry.
(A) Homopolymers are defined by a single interaction strength between each polymer 

unit, which also defines the mean-field self-interaction energy (ε). (B) If ε is repulsive, 

a homopolymer behaves as an extended coil with large chain dimensions, whereas if ε 
is attractive, a homopolymer behaves as a compact globule. The mean-field interaction 

energy can be varied by changing the chemical identity of the polymer unit, but can also be 

varied by altering the physicochemical environment the polymer finds itself in (temperature, 

pH, solutes, etc.). (C) Unlike homopolymers, heteropolymers consist of many chemically 

distinct units. A complete description of a heteropolymer requires knowledge of how each 

unique inter-residue interaction behaves, and the mean-field self-interaction energy (ε) is 

now defined in terms of the composition-weighted and context-dependent integral over all 

possible interactions. (D) The various types of interactions that may occur between residues 

in a heteropolymer can be, to first order, described by an interaction matrix. The strengths 

of these interactions depend on solution conditions. (E) The response of a heteropolymer 

to changes in the solution environment depends on the heteropolymer’s chemistry. For 

example, a highly-charged IDR with blocks of oppositely-charged residues will be compact 

at low salt due to strong intramolecular electrostatic interactions. However, under high-salt 

conditions, those attractive interactions are screened, leading to an expanded ensemble 

driven by the substantial solvation free energies associated with charged groups. In contrast, 

a charge-depleted heteropolymer may be relatively salt-insensitive and is relatively compact 

compared to the blocky IDR in the high-salt limit.
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Figure 3. An IDR’s sensitivity to the physicochemical environment depends on its intrinsic 
conformational biases.
(A) The extent of change in chain dimensions (gray shaded region) in response to a change 

in mean-field self-interaction strength tuned by the physicochemical environment (green 

shaded region) depends on both the underlying sequence and the polymer’s behavior prior 
to the change. From equivalent changes in interaction strength, very different changes in 

polymer dimensions can emerge. (B) Chains at the midpoint of the coil-to-globule transition 

are most sensitive to changes in the solution environment. (C) Comparison of experimental 

data and analytical theory demonstrating the broad applicability of this framework. Adapted 

from [19].
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Figure 4. Examples of physicochemically-driven changes in IDR ensembles.
(A) Promotion of secondary structural elements such as residual helicity (shown by the 

tube on the right) can form or dissolve binding motifs, modulating binding affinities. By 

prepaying an entropic cost for binding, the effective concentration of binding motifs can 

be rapidly enhanced or suppressed without the need to alter protein copy number. (B) 
Amphipathic sequences with patches of hydrophobic or hydrophilic residues can compact or 

expand locally in different solutions, tuning accessibility of specific regions. (C) Sequences 

with high net charge (positive or negative) can compact when an increase in ionic strength 

screens out repulsive interactions. (D) Charged sequences with sequestered, opposite charges 

can expand at high ionic strength due to screening of attractive interactions.
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Table 1.

IDRS SHOWING FUNCTIONAL RESPONSE TO PHYSICOCHEMICAL CHANGES

Change Protein Function/Observation Reference(s)

CO2 Ptc2 phosphatase Drives phenotypic (white-opaque) switching in C. albicans [76]

Water availability/deficit

Hydrophilins, LEA 
proteins Protection from water stress [88][51][88]

LEA proteins Sensing of osmotic stress [33]

CAHS D Desiccation protection in tardigrades; acquires helical structure and 
forms hydrogels upon desiccation [52–54,89]

FLOE1 Undergoes phase separation under hydration; signals A. thaliana to 
suppress germination in unfavorable environments [90]

SEUSS Stress tolerance in A. thaliana; drives localization to condensates in 
response to hyperosmotic conditions [91]

Macromolecular crowding

YAP
Transcriptional coactivator in human cell growth that localizes in 
condensates in response to cell volume decrease and alters expression 
patterns

[121]

ASK3 Kinase that forms condensates upon cell volume decrease and 
regulates volume recovery [122]

WNK1 Kinase that forms condensates upon sensing crowding and regulates 
cell volume [92]

Redox state

CP12 Regulates the Calvin-Benson-Bassham cycle [95]

NPR1 Regulates the ubiquitylation of stress response machinery through 
biomolecular condensates [96]

TMF Gene control during flower development [97]

TDP-43 Proposed to function as intracellular redox sensor [98]

Ataxin-2 Proposed to function as intracellular redox sensor [99]

pH

Snf5 Enables transcriptional rewiring in budding yeast [80]

Sup35 May tune local pKa values into the physiological range in yeast [45]

HSF1 pH-responsive element involved in yeast stress response [79]

G3BP1 Mammalian stress-granule formation [86]

Ions & metals

ASK3 Na+ regulates the liquidity of ASK3 condensates [123]

SK Disordered regions that fold upon Ca2+ binding [100]

SilE Disordered bacterial protein that folds upon silver binding [102]

PrPc Binds copper via octa-repeat motifs in its disordered N-terminal IDR. 
This region may also bind other metals. [103]

Granulins Small cysteine-rich disordered proteins that can sequester copper [104]

Mms6 Bacterial protein whose C-terminal IDR coordinates iron in the context 
of magnetosome formation [105]

ProTα Highly-charged IDR that can bind zinc; this binding has been proposed 
to act as an entropic switch. [106]

Insulin SIRT1 An insulin binding motif in the N-terminal IDR leads insulin-
dependent structural acquisition [124]

Temperature

Pab1 Tunes stress granule assembly during heat stress in S. cerevisiae via 
the P-domain (however, P-domain is not required for condensation) [44]

ELF3 A polyglutamine tract in the ELF3 prion-like domain tunes 
temperature sensing in Arabidopsis [117]
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Change Protein Function/Observation Reference(s)

FRIGIDA C-terminal IDR contributes to cold-dependent condensate formation in 
Arabidopsis [118]

Phytochrome B Encodes molecular timer to tune phytochrome revision in Arabidopsis [120]
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