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Abstract

Optical coherence tomography (OCT) is a valuable imaging technique in ophthalmology, 

providing high-resolution, cross-sectional images of the retina for early detection and monitoring 

of various retinal and neurological diseases. However, discrepancies in retinal layer thickness 

measurements among different OCT devices pose challenges for data comparison and 

interpretation, particularly in longitudinal analyses. This work introduces the idea of a recurrent 

self fusion (RSF) algorithm to address this issue. Our RSF algorithm, built upon the self 

fusion methodology, iteratively denoises retinal OCT images. A deep learning-based retinal 

OCT segmentation algorithm is employed for downstream analyses. A large dataset of paired 

OCT scans acquired on both a Spectralis and Cirrus OCT device are used for validation. The 

results demonstrate that the RSF algorithm effectively reduces speckle contrast and enhances the 

consistency of retinal OCT segmentation.
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1 Introduction

Optical coherence tomography (OCT) is a non-invasive imaging technique that utilizes 

low-coherence interferometry to generate high-resolution, cross-sectional images [7]. In the 

field of ophthalmology, OCT provides detailed visualization of the retina, facilitating the 

early detection and continuous monitoring of various retinal diseases, including age-related 
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macular degeneration (AMD) [18] and diabetic macular edema (DME) [1,4]. In neurological 

diseases like multiple sclerosis (MS) [14,15], OCT has provided additional insights and 

potential biomarkers of disease, specifically the thinning of key retinal layers, such as the 

retinal nerve fiber layer (RNFL) and the ganglion cell and inner plexiform layer (GCIPL) 

[16,17]. Retinal OCT images offer precise thickness measurements of each retinal layer, 

enabling the identification of subtle changes over time and providing valuable guidance for 

treatment decisions [19].

However, discrepancies in retinal layer thickness measurements arise due to variations 

in image quality such as noise levels and speckle patterns produced by different OCT 

devices, posing challenges in the consistent comparison and interpretation of data across 

studies or clinical settings. Studies have demonstrated that RNFL thickness measured using 

Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) tends to be thicker than 

measurements obtained from Cirrus OCT (Carl Zeiss Meditec, Dublin, CA, USA) [3,9,12]. 

Similar discrepancies have been observed for other retinal layers [3] and across different 

pairs of OCT devices [9]. Consequently, standardization efforts are crucial in establishing 

harmonized measurements and minimizing disparities among OCT devices. These ensure a 

more reliable and consistent assessment of retinal layer thicknesses in both clinical practice 

and research endeavors.

In this paper, we propose the recurrent self fusion (RSF) algorithm aimed at reducing 

speckle contrast and improving the consistency of retinal OCT segmentation. The RSF 

algorithm builds upon the self fusion approach of Oguz et al. [11] and iteratively denoises 

retinal OCT images. In the downstream segmentation task, we use a deep learning-based 

retinal OCT layer segmentation algorithm [5,6]. To validate our approach, we utilize a 

substantial dataset comprising paired Spectralis and Cirrus OCT scans. Our findings reveal 

that the RSF algorithm effectively reduces speckle contrast in retinal OCT images and 

enhances the consistency of the resulting segmentation.

2 Method

The RSF algorithm is based on the self fusion method [11], which incorporates the concept 

of joint label fusion (JLF) [20], as shown in Fig. 1. The retinal OCT volume contains a set of 

B-scans {fn
(0) ∣ n = 0, 1, …, N − 1}, where the superscript 0 refers to the original B-scans and 

n is an index over the N B-scans. In the (t + 1)th iteration, we register the neighboring mth

B-scans fm
(t) to the nth B-scan fn

(t), by seeking the deformation field ϕm, n
(t)  given by:

ϕm, n
(t) = arg min

ϕ
ℒNCC(fn

(t), fm
(t) ∘ ϕ) + ℛ(ϕ),

(1)

where ℒNCC is the normalized cross correlation (NCC) loss that penalizes low NCC values, 

ℛ is a regularization term on ϕ that penalizes discontinuities in ϕ, and ϕm, n
(t)  is the identity if 

m = n. To solve Eq. 1, we use the greedy reg package1 [21]. An affine transformation is 

performed first, followed by a deformable registration. A window size of 5 × 5 is chosen for 

the NCC calculation, and the default regularization parameters are used.
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After registration, we perform a weighted summation to obtain updated denoised images. 

For the weights, we utilize the concept of JLF, to compute:

(Mn
(t))ij(x, y) ∑

p = x − γ

x + γ
∑

q = y − γ

x + y
dn + i, n

(t) (p, q) ⋅ dn + j, n
(t) (p, q) + αδij,

(2)

where Mn
(t) is a matrix with entries i, j ∈ { − ϵ, …, ϵ} at the tth iteration, (x, y) is a pixel 

location, γ defines a local patch size, δij = 1 when i = j or otherwise δij = 0, α is a 

regularization term which controls the weight similarity, and d is an intensity distance 

measure expressed as:

dm, n
(t) (x, y) = fm

(t) ∘ ϕm, n
(t) (x, y) − fn

(t)(x, y) β,

(3)

where β is a parameter that controls the measure, and dm, n
(t) (x, y) = 0 if m = n. The weight 

parameter is then calculated as:

wn, i
(t) (x, y) =

∑j = − ϵ
ϵ (Mn

(t))ij
−1(x, y)

∑i = − ϵ
ϵ ∑j = − ϵ

ϵ (Mn
(t))ij

−1(x, y)
,

(4)

where wn, i
(t)  is the weight for the warped B-scan fn + i

(t) ∘ ϕn + i, n
(t) . The updated nth B-scan fn

(t + 1) is 

obtained through the weighted summation:

fn
(t + 1)(x, y) = ∑

i = − ϵ

ϵ
wn, i

(t) (x, y) ⋅ fn + i
(t) ∘ ϕn + i, n

(t) (x, y),

(5)

where 2ϵ + 1 is the number of wrapped B-scans used in weighted summation. In this paper, 

we set α = 30, β = 2, γ = 2, ϵ = 1, and we explore up to a total of T = 10 iterations.

3 Results

Dataset.

Our dataset consists of 59 MS participants that were scanned contemporaneously on both 

a Spectralis and Cirrus OCT device with institutional review board (IRB) approval. For all 

59 participants and the two OCT devices, both the left and right eye were imaged. Thus 

our evaluations will be on the 118 eyes, comparing Spectralis to Cirrus. Spectralis scans 

comprise 49 B-scans with dimensions of 496×1024 and Cirrus scans consist of 128 B-scans 

1https://github.com/pyushkevich/greedy.
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with dimensions of 1024 × 512. Both sets of scans cover an approximate field of view of 6 

mm × 6 mm around the central fovea. The Spectralis and Cirrus scans have axial resolutions 

of 3.87 μm and 1.96 μm, respectively.

Speckle Contrast.

By applying the RSF algorithm, we observe a continuous reduction in speckle patterns of 

both OCT devices as iterations progress as shown in Fig. 2(a). To assess the quantitative 

reduction in speckle patterns at each iteration, we evaluate the speckle contrast, Kl, in each 

retinal layer and across the entire retina in each B-scan:

Kl = σl
μl

,

(6)

where μl and σl are the mean and standard deviation of intensities in the lth layer, 

respectively, and the segmentation of each retinal layer is explained in the next paragraph. 

The speckle contrast for both OCT devices over 10 iterations is shown in Fig. 2(b). We 

observe that the speckle contrast for all layers decreases initially, before stabilizing for both 

devices. From Eq. 6, there is an inverse relationship between speckle contrast and the signal 

to noise ratio (SNR). Therefore, as the iterations progress, the SNR in each retinal layer 

increases. Furthermore, we notice that the decreasing rate of the speckle contrast is much 

higher for Cirrus scans than Spectralis scans. This is expected since Spectralis scans possess 

better initial image quality. It is interesting to note that while the original Spectralis and 

Cirrus scans exhibit different speckle contrast, their speckle contrast converges to similar 

values for the GCIPL, INL, OPL, ONL and OS after denoising; see Fig. 2 for the layer 

names.

Segmentation Convergence.

To investigate the impact of the RSF algorithm on downstream segmentation, we use a deep 

learning-based retinal OCT segmentation algorithm, to generate smooth and continuous 

surfaces that accurately represent the retinal layers with the correct topology [5,6]. This 

network was trained with 394 Spectralis and 321 Cirrus retinal OCT volumes. The ground 

truth for layer segmentation in these OCT volumes was obtained using AURA, a well-

established retinal OCT segmentation software [8]. Manual corrections were made to the 

initial segmentation results obtained from AURA to ensure precise and accurate delineation 

of the retinal layers. It is important to note that none of the training data for the deep 

learning-based OCT segmentation algorithm were included in the paired scans used in the 

validation of the RSF method. We apply the deep learning-based retinal OCT segmentation 

algorithm to the paired Spectralis and Cirrus scans. We calculate both the unsigned (blue) 

and signed (yellow) differences between the segmentation results of consecutive iterations, 

as shown in Fig. 3, for both Spectralis and Cirrus scans. This allows us to evaluate the 

magnitude and direction of changes in the segmentation outcomes throughout the RSF 

iterations. These plots demonstrate a convergence in the segmentation results for the 

majority of retinal layers.
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Average Thickness Comparison.

After analysing the convergence of the independent segmentation results, we proceed to 

analyse the paired segmentation results between Spectralis and Cirrus scans. However, 

directly comparing their segmentation results requires OCT image registration [13] between 

the two scan types as the images are not aligned, see Fig. 2(a) for example. OCT image 

registration can be challenging due to the interpolation issues arising from the sparseness of 

OCT B-scans. To circumvent the registration problem, we calculate the average thickness 

within a circular area centered at the fovea, with a diameter of 5 mm, for both Spectralis 

and Cirrus scans. Then, we compare the difference in the averaged thickness for each retinal 

layer by subtracting the Spectralis thickness from the Cirrus thickness. The overall results 

for the average thickness difference between the paired scans at different iteration steps 

are shown in Fig. 4. We observe that in comparison to Spectralis thickness measurements, 

the initial thickness measurements obtained from Cirrus scans tend to be smaller in RNFL, 

GCIPL, OPL, OS, RPE and the overall retina, but tend to be larger in INL, ONL and IS. 

After applying the RSF algorithm, the thickness measurements for all retinal layers from the 

paired scans converge to a smaller value. Moreover, it is noteworthy that the RSF algorithm 

applied to Spectralis scans does not noticeably reduce the thickness difference, as opposed to 

its impact on Cirrus scans. This outcome is expected due to the inferior initial image quality 

of Cirrus scans, thus benefit more from the RSF algorithm.

Thickness Distribution Comparison.

To gain a more comprehensive understanding, it is valuable to analyse the differences 

in thickness distributions, as they capture the overall statistics of retinal layer thickness. 

To quantify the dissimilarity between the Spectralis and Cirrus thickness distributions, we 

employ the Jensen-Shannon Distance (JSD):

JSD(p1 ∣ ∣ p2) = D(p1 ∣ ∣ q) + D(p2 ∣ ∣ q)
2 ,

(7)

where p1 and p2 are two probability density functions, D is the Kullback-Leibler divergence, 

and q = 1
2(p1 + p2). The JSD between the paired thickness distributions at different iteration 

steps are shown in Fig. 5. These results align with the findings from Fig. 4. Specifically, 

we observe a reduction in the JSD between the thickness distributions of each retinal layer 

as the denoising iterations progress. Furthermore, it is evident that the RSF algorithm has a 

more pronounced impact on the Cirrus scans than the Spectralis scans.

4 Discussion and Conclusions

Spectralis and Cirrus OCT devices are widely used in ophthalmology, but they differ in 

terms of their hardware and imaging algorithms, which impact their image quality. Spectralis 

scans tend to exhibit smoother images with reduced noise and fewer speckle patterns. These 

disparities in image quality can contribute to domain discrepancies between the two OCT 

scans and potentially lead to variations in retinal layer thickness measurements following 
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segmentation. Our hypothesis is that by applying the RSF algorithm, the two distinct OCT 

scans gradually become more similar, resulting in improved consistency in retinal layer 

thickness measurements. This hypothesis is supported by the results obtained in this study.

However, the proposed method has certain limitations. First, the processing speed of the 

current RSF is relatively slow due to its reliance on a classical registration method, 

which requires a longer processing time. Second, the validation of the proposed method 

is limited to a single deep learning-based retinal OCT segmentation algorithm and lacks 

comparison with other denoising algorithms. Third, the proposed method is evaluated 

on a cross-sectional study and its impact on longitudinal OCT data remains unexplored. 

To address these limitations, future work involves exploring the implementation of deep 

learning-based registration methods such as Voxelmorph [2] or Coordinate Translator [10] 

to improve processing speed, validating the consistency of thickness measurements after 

denoising using a broader range of OCT segmentation and denoising algorithms, and 

investigating the RSF algorithm in longitudinal OCT data for identifying subtle retinal layer 

thickness changes over time.

In this paper, we propose the RSF algorithm for iteratively denoising retinal OCT images. 

Each RSF iteration effectively reduces speckle contrast and improves SNR across various 

retinal OCT layers and on both investigated devices. Moreover, by applying a deep learning-

based retinal OCT segmentation algorithm to the paired OCT volumes from different OCT 

devices, we observe a significant improvement in the consistency of the segmentation 

results. These findings underscore the potential of the proposed RSF algorithm as a valuable 

pre-processing step for retinal OCT images, facilitating more consistent and reliable retinal 

OCT segmentation.
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Fig. 1. 
Diagram of the RSF algorithm for iterative denoising. The operations ∘, ×, and + represent 

composition, pixel-wise multiplication and pixel-wise summation, respectively.
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Fig. 2. 
(a) Original and denoised retinal OCT images after one, five and ten iterations on paired 

Spectralis and Cirrus scans for a similar cross section. (b) Speckle contrast across the 118 

Spectralis scans (red) and the 118 Cirrus scans (green) over ten iterations. The value at 

iteration ‘0’ is the speckle contrast of the original images. Key: RNFL: retinal nerve fiber 

layer; GCIPL: ganglion cell layer and inner plexiform layer; INL: inner nuclear layer; OPL: 

outer plexiform layer; ONL: outer nuclear layer; IS: inner segment; OS: outer segment; 

RPE: retinal pigment epithelium complex.
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Fig. 3. 
(a) Boxplots of the unsigned (blue) and signed (yellow) differences between the 

segmentation results of consecutive iterations across the 118 Spectralis scans. (b) Boxplots 

of the unsigned (blue) and signed (yellow) differences between the segmentation results of 

consecutive iterations across the 118 Cirrus scans. Key: ILM: internal limiting membrane; 

ELM: external limiting membrane; BM: Bruch’s membrane; see Fig. 2 for the other layer 

names.
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Fig. 4. 
Difference of the averaged thickness for each retinal layer by subtracting the Spectralis 

thickness from the Cirrus thickness at different denosing iteration steps for each device. The 

color and the size of each circle represent the mean and the standard deviation, respectively, 

of the thickness difference between the paired OCT scans across 118 paired scans. The value 

of the mean is shown in the color bar. The value of the standard deviation is proportional to 

the circle size, with the unit circle representing a standard deviation of 3 μm.
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Fig. 5. 
JSD of the thickness distributions for each retinal layer between the Spectralis and the Cirrus 

OCT scans at different denosing iteration steps for each device. The color and the size of 

each circle represent the mean and the standard deviation, respectively, of the JSD between 

the paired OCT scans across the 118 paired scans. The value of the mean is shown in the 

color bar. The value of the standard deviation is proportional to the circle size, with the unit 

circle representing a standard deviation of 0.2.
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