
Cellular harmonics for the morphology-invariant analysis of 
molecular organization at the cell surface

Hanieh Mazloom-Farsibaf1,2, Qiongjing Zou1, Rebecca Hsieh1, Gaudenz Danuser1,2,*, 
Meghan K. Driscoll1,2,3,*

1Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, 
Dallas, TX, USA.

2Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical 
Center, Dallas, TX, USA

3Current address: Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA

Abstract

The spatiotemporal organization of membrane-associated molecules is central to the regulation of 

cellular signals. Powerful new microscopy techniques enable the 3D visualization of localization 

and activation of these molecules. However, the quantitative interpretation and comparison of 

molecular organization on the 3D cell surface remains challenging because cells themselves vary 

greatly in morphology. Here, we introduce u-signal3D, a framework to assess the spatial scales 

of molecular organization at the cell surface in a cell-morphology invariant manner. We validated 

the framework by analyzing synthetic signaling patterns painted onto observed cell morphologies, 

as well as measured distributions of cytoskeletal and signaling molecules. To demonstrate the 

framework’s versatility, we further compared the spatial organization of cell surface signals both 

within and between cell populations and powered an upstream machine-learning based analysis of 

signaling motifs.

Many cell functions depend on the subcellular regulation of signal transduction. Cells 

regulate signaling patterns through nonlinear circuitry of activators and inhibitors and 

by directly controlling the localization of molecular components1,2. Confinement on 

membranes, in scaffolds, or via phase separation, all serve to localize reactions3. 

Accordingly, molecular activities vary across space and time, requiring live cell microscopy 

and appropriate image analytics for quantifying cell signaling.
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One of the most important organizers of molecular signals is the plasma membrane 

itself4. The plasma membrane acts as both a platform and a conduit for the chemical 

reactions that range from local nano- or microscale puncta to global bursts that span 

the entire cell (Fig. 1A)5,6. Deciphering the regulatory principles that define these scales 

requires a comprehensive quantification of molecular concentration and activity at the 

3D cell membrane. This task is complicated by the fact that cells configure their plasma 

membranes into a wide range of 3D morphologies7. Signaling data, such as those probed 

by a fluorescence biosensor of protein activity, can be projected onto the 3D cell surface 

to facilitate analysis (Fig. 1B)7–9. However, this alone does not enable quantitative 

comparisons of signaling organization. A natural ordering or parameterization of the surface 

signal is required that is consistent across variable morphologies.

To normalize surface signal distributions, 3D analysis frameworks have considered a 

combination of geometry and molecular organization10, constrained cell shape by micro-

patterned surfaces11, or normalized the cell shape based on global cell shape features12–14. 

Tools to normalize and analyze molecular distributions in cells adopting unconstrained 

morphologies are missing.

We propose a spectral approach, in which the surface distribution is broken down into a 

set of elementary modes that spans a wide range of spatial scales. A natural candidate for 

spectral decomposition of data on the cell surface is the Laplace-Beltrami operator (LBO), 

which constructs a mathematically complete set of Fourier-like modes on surfaces15,16. 

These modes are invariant to isometric transformations17 and are independent of shape 

representation, parametrization and spatial position. These properties have been leveraged 

in computer science to quantify the global characteristics of 3D shape17,18, and the LBO 

has been modified to represent local morphological motifs19–22. Because of its ubiquitous 

use in the computer graphics field, the efficiency and stability of LBO implementations 

have been extensively characterized23–25. In the biomedical sciences, the LBO has been 

used to describe brain images26–30, and spherical harmonics, which are the LBO modes 

of a sphere, to represent 3D cell shapes31–33. Here, we exploit the LBO to establish a 

spectral representation of the cell surface signal variation that is agnostic to the underlying 

cell shape variation. Specifically, we introduce u-signal3D, a cellular manifold harmonics 

pipeline to i) compare the spatial organization of signaling over time (Supplementary Video 

1) or across cell populations (Fig. 1C), ii) measure subcellular signaling responses to acute 

experimental intervention (Fig. 1D), iii) perform generative modeling of representative 

signaling distributions, and iv) classify features of signaling distributions across cells and 

conditions via machine learning.

Results

Pipeline overview.

The u-signal3D pipeline accepts 3D images or triangle meshes with associated signaling 

data as input and outputs spectra describing the spatial organization of surface signal 

distributions that can be compared across morphologies. For convenience, the pipeline 

includes the cell surface segmentation functionality of our previous software pipeline, 

u-shape3D, which generates surface meshes from 3D images34. To meet the numerical 
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requirements for LBO applications, we modified u-shape3D’s mesh generating process 

to keep only a single mesh component (Supplementary Fig. 1A, see Methods). The 

u-signal3D pipeline incorporates two implementations of the LBO, one optimized for 

computational speed35,36, and one robust on non-manifold meshes24 (Supplementary Fig. 

1B, see Methods).

The LBO computes the local geometrical variation of a 3D surface and defines a 

mathematically complete set of manifold harmonic functions, referred to as cellular 

harmonics, ordered by increasing frequency and conformed to the morphology (Fig. 2A). 

The cellular harmonics simultaneously encode the spatial scale and orientation relative to 

the cell shape. For an irregularly shaped cell, the morphological complexity complicates 

intuitive interpretations of these harmonics. In the limit of a perfect sphere, the LBO 

yields the hierarchy of the spherical harmonics, with functions at low frequency levels 

capturing surface signal variations that span the entire sphere and functions at higher 

levels capturing increasingly finer-grained variations (Fig. 2B, see Methods). In general, 

the LBO yields manifold harmonics similar to spherical harmonics but conformed to the 

geometrical undulations of particular 3D morphologies. Thus, we arranged the LBO modes 

into a spherical harmonics style pyramid (Fig. 2C.i). Mathematically, the eigenvectors of 

the LBO form an orthogonal basis of RN, where N is the number of mesh vertices. Hence, 

the eigenvalues can be considered pseudo-frequencies of the geometry defined over the 

mesh graph and ordered inversely with the length scale of surface undulation (Fig. 2C.ii). 

Surface-associated molecular distributions can therefore be quantified by projection of the 

pattern onto the LBO eigenvectors.

Characterizing molecular distributions on the cell surface.

We demonstrate the spectral representation of cellular signals by the LBO for a fluorescent 

reporter of PI3-Kinase (PI3K) activity on the surface of MV3 melanoma cell (Fig. 2Di). 

The contribution of each eigenvector to the total surface signal is visualized via the 

function pyramid of Fig. 2C.i weighted by the magnitude of the matching eigenprojection 

(Supplementary Fig. 2A). PI3K activity has previously been shown to follow a polarized 

distribution with increased signaling at the cell front37. Accordingly, the strongest 

eigenprojections associate with eigenvectors at level L = 1 (black arrow, Fig. 2D.ii), whereas 

the projections for higher levels decrease near monotonically.

Distinct cell states are associated with distinct signaling patterns, encoded by contributions 

from different spatial scales. However, the pattern orientation, determined by the relative 

weights of the basis functions at one scale, can be ignored. Thus, to calculate an 

interpretable spectral signature for any given cell surface pattern, we separated spatial 

frequency from pseudo-orientation by integrating across the spherical harmonics levels.

The overall intensity of the fluorescence signal often varies between cells due to the 

concentration of the probes. To eliminate this factor, we first normalized the fluorescence 

intensity and further calculated an energy density across levels. This energy measures the 

signal gradient under Dirichlet boundary conditions, which is valid for a closed 3D shape 

(see Methods). The Dirichlet energy density provides a quantitative measure of how much 

each frequency level contributes to the organization of the surface signal. For the PI3K 
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activity in Fig. 2D.i, the Dirichlet energy density reveals that the signal is organized across a 

range of higher spatial frequencies beyond the low-level frequencies that capture front-back 

polarization (black arrow, Fig. 2D.iii).

Given the parameterization of a surface signaling pattern by frequency levels, we 

can regenerate sub-patterns containing only particular spatial scales. For example, we 

reconstructed the PI3K activity using LBO eigenvectors up to L = 3, 11, 15, 24 and 69 

(Fig. 2E). The absolute error ratio between reconstructed and original signal decreases 

with inclusion of higher levels (Fig. 2E, Supplementary Fig. 2B), confirming that LBO 

eigenvectors describe the signal completely given sufficient eigenvectors. This property can 

be leveraged for denoising the signaling patterns by suppression of high-frequency basis 

functions (Supplementary Fig. 2C). Moreover, we were able to separate low frequency from 

high frequency components, with the former representing the signaling pattern at the cell 

scale, and the latter the spatial distribution of localized signaling hotspots (Fig. 2F).

Validation of spectral decomposition on the cell surface.

To validate the decomposition of cell surface signals across spatial scales, we generated 

synthetic patterns on both experimental and modeled cell geometries. The frequency-

dependent behavior of optical instruments is commonly assessed via stripe patterns, such 

as Ronchi rulings38. Stripe patterns cannot be applied to the highly curved surfaces of 

cells with any consistency. We instead introduced polka dots consisting of circular shapes 

of equal radius arranged as far apart as possible on the cell surface (Supplementary Fig. 

3A, see Methods). Generating variously scaled polka dot patterns allowed us to simulate 

surface signal distributions ranging from front-back polarization to punctate micro-clusters 

(Fig. 3A). Applied to a sphere, coarse- to fine-grained polka dot patterns yielded spectral 

peaks at increasingly higher frequency levels (Fig. 3A). For each pattern, secondary lower 

peaks occur due to sharp boundaries at the polka dot edge. They vanish upon smoothing 

the polka dot pattern (Supplementary Fig. 3B). The primary peaks across various patterns 

broaden at higher frequencies. Although the spherical harmonics have the same spatial 

angular frequency at each pyramid level, the number of peaks varies (Supplementary Fig. 

4A). At higher frequency levels, similar peak numbers are shared by a greater range of levels 

(Supplementary Fig. 4B). Consequently, polka dot number and angular spatial frequency 

are not perfect analogues, even though both capture spatial scale information. Additionally, 

changing the dot radius changes the energy spectra peak magnitude without changing its 

corresponding frequency level (Fig. 3B, Supplementary Fig. 3C), demonstrating that the 

relative distance and number of dots determine the spatial scale of a pattern, and not the dot 

radius.

Analyzing the same polka dot patterns on a melanoma cell surface, we recovered spectra 

similar to the patterns on the sphere (Fig. 3C). Hence, the spectral decomposition is largely 

independent of the underlying surface morphology. To more formally test the consistency 

of spectra across cell morphologies, we first applied a polka dot pattern to a sphere and 

similarly sized ellipsoids (Supplementary Fig. 3D). Regardless of shape eccentricity, the 

spectra coincided. We then applied five different patterns to a cell library with lamellipodia 

(thin, sheet-like membrane protrusions), blebs (hemispherical membrane protrusions), or 
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filopodia (elongated and spiky membrane protrusions) (Fig. 3D, Supplementary Fig. 5)34. 

We found consistent spectral peaks over 67 different cell morphologies (Fig. 3E). Our 

spectral decomposition thus characterizes the spatial scales of cell surface patterns in a cell 

shape-agnostic manner.

To validate the conclusions from these synthetic data in more general scenarios, we 

first painted only a portion of the cell surface with polka dots to break the uniformity 

(Supplementary Fig. 6A). The energy spectra peak at the frequency level of the uniform 

pattern, but the asymmetry of surface coverage generates a second, weaker, low frequency 

peak. We also confirmed that our framework could properly detect the superposition of 

two patterns with distinct dot numbers (Supplementary Fig. 6B). Next, we distributed the 

polka dots randomly (Supplementary Fig. 6C). Compared to the energy spectra of uniform 

patterns, the corresponding non-uniform patterns generated spectra with similar dominant 

frequency levels but wider peaks. Hence, the peak frequency reflects the average distance 

between polka dots, even when individual neighbor-to-neighbor distances vary across the 

cell. Finally, we tested the sensitivity of energy spectra to noise (Supplementary Fig. 7). 

We employed two methods to disturb a given baseline polka dot pattern: i) we changed 

the intensity value of every surface mesh node by adding a random value from a uniform 

distribution (intensity noise); ii) we spatially blurred the pattern by translocating the value 

of a surface mesh node to another node in a predefined neighborhood (spatial shuffling). 

The energy spectrum of a surface signal with random intensity values in every mesh node 

increases monotonically across the frequency levels (Supplementary Fig. 7A), indicating 

the implicit low-pass filtering properties of the LBO. We added increasing intensity noise 

to a polka dot pattern until the dominant pattern vanished (see Methods). Low level noise 

marginally altered the measured spectra of polka dot patterns or molecular distributions. 

However, when the range of noise began to equal that of the signal, regardless of the dot 

size, the effects of the noise dominated the spectra, particularly at high frequency levels 

(Supplementary Fig. 7B, C, D, E). The peaks of the energy spectra are remarkably resistant 

to spatial shuffling, in line with our previous conclusion that the spectrum maxima capture 

the mean distance between the dots (Supplementary Fig. 7F). Only when the shuffling 

neighborhoods become similar and greater than the dot size do the energy spectra raise 

at high-frequency levels outside the frequency band of the underlying pattern. Finally, we 

tested the sensitivity of the spectra to reduction in mesh density while maintaining the cell 

shape (Supplementary Fig. 8A). The energy spectra remain remarkably similar even with a 

100-fold reduction in surface mesh nodes, although the maximum frequency level is limited 

to the number of vertices.

Measuring cellular harmonics further allows us to parameterize surface signals for 

downstream analyses such as machine learning applications. In Fig. 3F we show the 

application of principal component analysis to reduce the dimensionality of the energy 

density spectra on 67 cell morphologies of the four polka dot patterns introduced in Fig. 3D, 

E. Independent of the cell morphology, each polka dot pattern appears as a distinct cluster 

in the reduced space of the first three principal components. Performing a similar cluster 

analysis directly on the intensities projected onto the cell surface is impossible, because 

there is no natural ordering of intensities that is consistent between cells with highly diverse 

morphologies.
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In summary, our validation based on polka dots established the ability of the pipeline to 

measure the spatial organization of cell surface patterns independent of the underlying cell 

shape.

Spectral analysis of molecular patterns on cell surfaces.

To illustrate the utility of cellular harmonics in biological experiments, we analyzed 

molecular distributions on melanoma cells imaged in 3D culture by high-resolution light-

sheet microscopy37,39,40. First, we compared the cell surface distributions of two co-imaged 

molecular signals. Melanoma cells in soft collagen tend to extend dynamic blebs39. 

Expanding blebs are thought to be largely devoid of cortical actin whereas retracting blebs 

have increased cortical actin41. Thus, a snapshot of cortical filamentous actin at a single 

time-point of a blebbing cell is expected to display a patchy fluorescent signal over the 

entire cell surface (Fig. 4A.i and Supplementary Video 2). We measured the localization 

of filamentous actin (CyOFP-tractin) and a cytosolic GFP marker within a 1 μm sampling 

radius of the cell surface. Averaged across five cells, filamentous actin shows peaks in 

spatial organization at mid-range energy levels with the maximum at L = 13 and a full width 

at half maximum (FWHM) of 15 levels (Fig. 4A.ii, Supplementary Fig. 8B). Surprisingly, 

the cytosolic marker also shows spatial organization across a range of energy levels with 

wider FWHM (20 levels), suggesting that its distribution is not homogenous. Indeed, the raw 

data (Supplementary Video 3) displays a spatial patterning, such as a reduction in intensity 

within blebs, probably because of the limited diffusion of GFP molecules into the narrow 

space of blebs. Of note, the first peak in both cytosol and tractin energy density spectra is 

associated with an illumination gradient across the entire cell, which is clearly recognizable 

in the maximum projection images (Fig. 4A.i).

To enable interpretation of energy spectra, we calculated an approximate conversion 

between energy level and actual spatial scale. To do so, we measured the relative distances 

amongst polka dots distributed on 11 blebby cells (Supplementary Fig. 8C). Comparison 

between the spectra of CyOFP-tractin and polka dot patterns for MV3 cells suggests that 

filamentous actin is organized at a peak length scale of 7 μm for the energy peak at 

L =13 (Supplementary Fig. 8C). Moreover, these analyses indicated that 50 frequency 

levels are sufficient to represent energy density spectra at a spatial resolution above 1 μm, 

which is the limit imposed by the sampling radius of fluorescence intensity (dashed line 

in Supplementary Fig. 8C, see Methods). To test the possibility that the spatial pattern of 

actin filaments relates to the spatial pattern of blebs, we detected blebs using the u-shape3D 

software34 and converted the segmentation into a binary cell surface pattern (Fig. 4A.iii). 

The energy spectra of bleb distribution peaks (L= 16 with a FWHM of 17 levels) at a spatial 

scale of 5 μm (Supplementary Fig. 8C), i.e. at somewhat higher frequency ranges than the 

CyOFP-tractin signal. Hence, on a blebby cell filamentous actin density varies over longer 

distances than bleb formation, as one would expect for a snapshot, in which only the fraction 

of retracting blebs is filled with actin filaments.

Next, we analyzed the spatial organization of wild type NRAS signaling in melanoma 

cells (Fig. 4B). Across six cells, the NRAS organization peaked at mid-range energy levels 

(L=13 with a FWHM of 17 levels) corresponding to spatial scales of 7 μm (Supplementary 
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Fig. 8D). NRAS is recruited to the membrane by bleb-related scaffold proteins39. Thus, 

we hypothesized that the spatial scale of NRAS signaling relates to the length scale of 

bleb-induced surface undulations. We detected blebs on the cell surface using the u-shape3D 

software34 (Supplementary Fig. 9). Compared to the bleb spectra, the NRAS spectra were 

somewhat skewed to lower frequency levels (Fig. 4Bii & iii, Supplementary Fig. 9). Thus, 

we concluded that while the bleb distribution in these melanoma lacks an axis of preferential 

organization, the NRAS distribution is at least in part determined by secondary, long-range 

mechanisms that structure organization at scales larger than that of blebs.

To check whether our framework could evaluate the spatial signature of a surface signal in a 

shape-invariant manner for an experimentally derived surface pattern, we transferred both a 

polka dot pattern and experimentally measured NRAS patterns from one cell to another cell 

using an orbifold Tutte embedding texture mapper42. The energy spectra of the original and 

mapped polka dot patterns and NRAS organization display similar spatial signatures on both 

cell surfaces (Supplementary Fig. 10A & 10B top row). For five cells the spatial scales were 

preserved regardless of cell morphology (Fig. 4C, Supplementary Fig. 10B).

To further validate our framework, we measured the spatial organization across a 

perturbation with expected effects on the organization of septin. Septin is a curvature 

sensitive molecule that associates to the base of blebs39. Bleb formation is inhibited by 

wheat-germ agglutinin (WGA)43. Thus, in untreated cells, septin is organized in patches 

near the base of blebs (Fig. 5Ai left), whereas the patches disappear under WGA treatment 

(Fig. 5Ai right), yielding a spectrum without a preferential scale. We measured the energy 

spectra of 10 untreated cells and seven WGA-treated cells (Fig. 5Aii). Per KS test on 

the average curves, the energy spectra are statistically distinct between the two conditions 

(p-value 0.016).

Polarized cell signaling is often accompanied by polarized cell morphology. Our framework 

allows the disentangling of morphology-driven from signaling-driven polarization. For 

example, PI3-Kinase activity is known to be polarized in migrating melanoma cells that 

themselves have polarized morphologies37. We measured PI3K activity via a fluorescent 

biosensor (GFP-AktPH) both before and after treatment with a PI3K inhibitor (PI3Kα 
Inhibitor). This biosensor reports PI3K activity by localizing to PI3K effector products PIP2 

and PIP3. Even when the effects of a polarized morphology were excluded by applying 

cellular harmonics as the base functions, the high energy at low frequency levels indicated 

significant polarization of the PI3K activity. Upon PI3K inhibition, the overall energy 

spectra are reduced (Fig. 5B,C), indicating that the spatial organization of the PI3K signal 

is governed at least in part by the PI3K activation level. The area under the energy curve 

for 13 cells demonstrates the energy reduction after PI3K inhibition for individual cells 

(Fig. 5C inset). Moreover, even on a relative scale the energy density at low frequencies 

is suppressed, showing that PI3K inhibition abrogates polarity in signaling (Fig. 5D, 

Supplementary Video 4). Calculating the median frequency level of energy density spectra 

(dashed lines in Fig. 5D) before and after treatment, we found the trend of PI3K inhibition 

raising the frequency level of the energy density distribution (Fig. 5E). Among the 13 cells 

analyzed, 9 exhibited a shift towards higher frequencies, indicating that for the majority of 

cells, the signaling became less polarized. This observation is consistent with conclusions 
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drawn previously37. We also computed the averaged difference between the curves before 

and after treatment over 13 cells (Fig. 5F). The biggest difference occurs at low frequency 

levels, confirming that PI3K inhibition abrogates primarily the polarity in signaling but less 

so the fine-grained organization (purple arrow in Fig. 5F).

Discussion

Elucidating the organization of molecular distributions and signaling activities on cell 

surfaces in 3D is confounded by the complexity of relating surface patterns to a reference 

that allows comparative analyses across cell populations with widely variable morphologies. 

Here we introduce cellular harmonics to disentangle the differences in surface signal 

organization from differences in cell morphology. We implemented the Laplace-Beltrami 

operator (LBO) on individual cell shapes to define a complete basis that spans spatial 

frequencies and is well adapted to the morphological structures of the cell surface. To 

parameterize a molecular cell surface pattern, we generated spectra that capture the spatial 

scale signatures of the pattern.

Previous approaches to quantifying molecular cell surface patterns in the face of cell 

morphological variation relied on a few global features to represent cell shape or constrained 

cell shape on micro-patterns11–13. Our work introduces a mathematical construction to 

characterize the signal organization in a functional space that captures the full range of 

natural scales relevant to the regulation of molecular processes. Thus, our framework 

is suitable to experimental conditions, including in vivo imaging, that preclude external 

control over cell shape. The isometry invariant property of the LBO is often desired 

in shape matching, preserving the eigenvalue spectrum. Surfaces that change shape via 

folding without stretching are expected to be isometric across time, rending our framework 

particularly well-suited for evaluating molecular patterning on individual cells over time 

(Supplementary Video 1 & 4). In general, the spectral decomposition of surface data enables 

the measurement and interpretation of the spatial organization of molecular distributions 

ranging from simulated data, such as signaling distributions on the cell surface, to larger 

scale phenomena, such as cytoskeletal distributions on embryo surfaces. The framework 

also provides a mathematically tractable, yet complete, representation to power downstream 

analyses including generative modeling and machine learning.

The spatial scale of molecular organization is measured by the relative distances between 

aggregates. However, the spectra are non-informative of the aggregate sizes. This may be 

a limitation for certain biological applications. The accuracy of the spatial scales depends 

on the imaging resolution and measurement of marker signal intensity at the mesh surface. 

All image data presented in this work was Nyquist sampled (voxel side length of 160 nm 

with an isotropic optical resolution of generally 390 nm after deconvolution)44. Our default 

segmentation process generates a mesh surface with a number of nodes high enough to 

preserve the input imaging resolution. Using our framework, we can calculate the LBO for 

a mesh with ~100K nodes. However, as shown in Supplementary Fig.s 7 and 8A, the energy 

spectra of a molecular organization are robust in presence of spatial noise in the signal and 

down-sampling of the mesh. Thus, the proposed method is applicable to diverse image data 

sets, likely also of lower quality than those illustrated here.
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The u-signal3D framework is made available as a collection of MATLAB functions bundled 

into a user-friendly interface. Underlying the implementation of u-signal3D is a robust 

computational pipeline for mesh triangulation and determination of LBO eigenvectors using 

algorithms that cope with both manifold and non-manifold cell geometries24,35,36. The LBO 

is critical to many computer graphics algorithms. The resources and validation provided by 

this work will aid the microscopy community in further adapting tools from the computer 

graphics field.

Methods

Cell culture and imaging.

To validate our workflow, we used movie collections that were generated for previously 

published studies of various cellular processes. All cells were imaged via high resolution 

light-sheet microscopy with isotropic resolution40,44. The cell preparation and imaging 

conditions for the CyOFP-tractin40, NRAS-GFP39, pBOB-Septin2-GFP39, and PI3K activity 

(GFP-AktPH)37 datasets are available in the previously published papers. To simulate the 

polka dot patterns on observed cell geometries, we also used 67 cell surfaces from Driscoll 

et al34. These cell surfaces included 29 dendritic cells expressing Lifeact-GFP, 27 MV3 

melanoma cells expressing tractin-GFP, and 11 human bronchial epithelial (HBEC) cells 

expressing tractin-GFP.

Cell surface generation.

The pipeline embeds the cell surface generation modules from our previously published 

u-shape3D analysis framework34. 3D raw images of cells were deconvolved using either 

a Wiener filter with the Wiener parameter set to 0.018 (for CyOFP-tractin, NRAS-GFP 

and pBOB-Septin2-GFP localization) or a Richardson-Lucy algorithm (for PI3K activity). 

To reduce deconvolution artifacts, images were apodized, as previously described40. The 

apodization height parameter set to 0.06 for all data except the PI3K dataset. Then 

we smoothed the deconvolved images with a 3D Gaussian kernel (only for the PI3K 

dataset with σ = 1.5 pixels) and applied a gamma correction (for the PI3K and septin 

dataset of 0.7, for the NRAS datasets of 0.6, and for CyOFP-tractin of 1). For the 

segmentation of melanoma cells in the PI3K, septin, and NRAS data sets, we used the 

‘twoLevelSurface’ segmentation mode, which combines a blurred image of the cell interior 

with an automatically thresholded image of the cell surface. For melanoma cells labeled with 

CyOFP-tractin, cells were segmented at the intensity value specified by the Otsu threshold45. 

Finally, the triangle mesh representing the cell surface was smoothed using curvature flow 

smoothing46.

Mesh characterization and validation.

Triangle surface meshes generated from 3D microscopy images are prone to artifacts 

that adversely impact the Laplace-Beltrami operator output. One such artifact is a multi-

component mesh, which often has isolated sets of disconnected triangles that do not 

correspond to the actual cell geometry (Supplementary Fig. 1A, black arrows), and thus 

can be safely removed. Connected components of a mesh are identified by a list of mesh 

faces that share an edge. Smaller components are filtered out by a threshold defined on 
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volume or surface area. For our data, we set the threshold to keep only the largest component 

of the cell surface. We used the ‘remove_small_components’ function from a public GitHub 

repository of the geometry processing toolbox [https://github.com/alecjacobson/gptoolbox].

For further processing, the cell surface must be represented as a closed 2-manifold mesh 

satisfying two conditions: i) each edge is incident to only two faces and ii) at each vertex of 

a face the face is embedded in a fan (Supplementary Fig. 1B). Since some workflows may 

generate non-manifold meshes, as an option, we include a state-of-the-art LBO algorithm24 

that first creates a manifold mesh, termed a tufted mesh, from the non-manifold mesh, 

before applying the LBO. In practice, we have not encountered a non-manifold mesh 

generated by our framework, thus we use the standard approach to compute the LBO, 

described below, by default.

Intensity measurement.

We measured the fluorescence intensity local to each mesh vertex from the raw image. 

The cytosolic background noise was first removed by subtracting the median pixel intensity 

inside the cell. Then, at each vertex, the average pixel intensity was computed within a 

sampling radius of 1 μm over the pixels inside the cell. Finally, we normalized each cell’s 

surface intensity to a mean of one.

Laplace-Beltrami calculation.

The cell surface geometry is defined by vectors X = x, y, z  of N triangle mesh vertices 

in a Cartesian coordinate system. The mesh vertices are connected in triangles to form 

mesh faces. To create a set of basis functions for a cell, we applied the Laplace-Beltrami 

operator (LBO) to the mesh. The LBO is a second-order differential operator defined as the 

divergence of the gradient of a function. On a triangle mesh, it computes the geometrical 

variation of the surface from a sphere. Mathematically, we aim to solve the following 

eigendecomposition equation to obtain the eigenvectors and eigenvalues of the LBO on a 

given mesh:

Δϕi = λiϕi .

(1)

Here ϕi denotes the i-th eigenvector corresponding to the i-th eigenvalue, λi, of the Laplacian 

operator,Δ.

The Laplacian operator acting on an arbitrary discrete mesh has been extensively 

studied15,23,35,36,46–49. Most computational approaches are based on the cotangent 

scheme35,36, which is a form of first order finite element method applied to the Laplacian 

operator on a surface. In the cotangent formula (C), the LBO is an NxN symmetric matrix:

Cij =

1
2 ∑i k cotαik + cotβik if i = j

− 1
2 cotαij + cotβij if i j

0
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(2)

where αij, βij are the two angles relative to edge ij as indicated in Supplementary Fig. 1Bii. 

For the matrix element Cii, the index k runs over all vertices connected to vertex i through an 

edge ik.

To obtain the LBO eigenvectors and eigenvalues, we used the function eigs() in MATLAB. 

The eigenvectors are frequency-based hierarchical functions that follow the protrusions of 

the 3D shape, respecting their symmetries. For example, for a sphere the eigenvalues of the 

first frequency level (L = 1) are identical and correspond to three eigenvectors oriented in 

three orthogonal directions in 3D space. When the LBO is applied to an ellipsoid, where 

the symmetry is broken in one direction, the eigenvalue has higher magnitude in the short 

ellipsoid axis direction. Eigenvectors at the higher frequency levels follow the symmetry 

breaks of the ellipsoid to capture the shape variation relative to a sphere. In analogy, for a 

complex shape, the LBO eigenvectors follow the variation of the surface relative to a sphere 

(Fig. 2C).

Computation time depends on the number of LBO eigenvectors, which determines the 

frequency upper limit. Measuring the energy spectra up to L = 50 requires a few minutes. 

For raw images, additional time is needed for the cell segmentation process.

Representation of cell surface signals using LBO eigenvectors.

Eigenvectors (ϕi) of the Laplacian constitute an orthogonal complete basis set. Thus, we can 

extend a surface signal u X  in this basis,

u X = ∑
i

N
aiϕi X

(3)

where N is the number of Laplacian eigenvectors and ai is the Laplacian eigenprojection of 

the i-th eigenvector. The eigenprojections determine the contribution of each cell geometry 

defined eigenvector in parameterizing the signal u X . Based on the LBO eigenvectors and 

eigenprojections of a signal, the signal can be recreated (u X ). To do so, we summed up the 

eigenprojections, multiplying each by the corresponding eigenvector in order to reconstruct 

the signal. To assess the reconstructed signal with its original values, we computed the 

absolute error ratio given by,

Error = ∑ u X − u X
∑u X .

(4)

Mazloom-Farsibaf et al. Page 11

Nat Comput Sci. Author manuscript; available in PMC 2024 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LB frequency level measurement.

Application of the LBO (equation (1)) to a perfect sphere yields the spherical harmonics, 

Y l, m θ, φ , as shown in a frequency level pyramid with the first levels shown in Fig. 2B. In 

spherical coordinates, the spherical harmonics are given by

Y l, m θ, φ ∝ P l
m cosθ eimφ

(5)

in which, θ, φ define the colatitude and longitude, respectively; the indices l and m
indicate the degree and order of the function in frequency-based levels; and P l

m cosθ  are 

the Legendre polynomials. The LBO encodes both the spatial angular frequency and its 

orientation over the eigenvectors.

Each frequency level has 2l + 1 eigenvectors with similar spatial angular frequency. As an 

example, the second level (l = 1) of spherical harmonics has three identical eigenvectors 

corresponding to three harmonics, capturing three orthogonal spatial direction (Fig. 2B). 

Higher level basis functions capture a greater number of pseudo-orientations with equal 

spatial scale. To quantify the spatial angular scale of a signal on a mesh surface, we 

collapsed the measurements from individual eigenvectors (frequency index) to a single value 

per level (frequency level), as we explain in the next section. Seeking to separate scale and 

pseudo-orientational information, we turned to a quantum mechanical interpretation of the 

spherical harmonics. The electron orbitals of an atom are simply described by the spherical 

harmonics pyramid shown in Fig. 2B, with each level of the pyramid corresponding to a 

distinct electron energy. Indeed, mathematically all orbitals belonging to the same level have 

the same spatial angular frequency.

Although for complicated 3D shapes with lower symmetry compared to a sphere, 

eigenvectors at the same frequency levels have different eigenvalues, it is still reasonable 

to smooth the measurement over each level (l) to extract the spatial scale signature of a given 

molecular organization.

Dirichlet energy calculation.

In computer geometry and shape analysis, the Dirichlet energy is often used as a metric of 

the smoothness of a function defined in a region50. The Dirichlet energy is given by

E = 1
2∬

Ω
∇ w X 2dA X

(6)

where w X  is a function defined on the region Ω in three dimensions X = x, y, z . 

Integration by parts yields,
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∬
Ω

∇ w X 2dA X = ∬
Ω

w X Δw X dA X + ∮
Ω

w X ∇ w X . n dA X

(7)

The first term on the right hand side is the Laplacian of the w X  in the region, and the 

second term relates to the boundary conditions. For a closed surface, such as a segmented 

cell, this term vanishes.

Substituting u X  for w X  subject to equation (1) and under consideration of the 

orthogonality of the LBO eigenvectors, the energy term equation (7) turns into,

E(u) ∬
Ω

u(X)Δu(X)dA(X)

= ∬
Ω

∑
i, j

N
aj

*aiλiϕj
* X ϕi X dA X

= ∬
Ω

∑
i, j

N
aj

*aiλiδi, j X dA X

= ∑
i

N
ai

*aiλi

(8)

The Dirichlet energy in (8) is a scalar parameter. In our framework, the energy is computed 

per spatial angular frequency level to obtain an energy spectra. The energy per frequency 

level follows

el = ai
*aiλi i = lI

lI + 2l + 1

(9)

where lI is the first index of the eigenvector at frequency level l. Similar to quantum physics, 

the ai
*ai term gives the probability of the i-th eigenvector contributing to the signal function 

u X , while λi is the eigenvalue corresponding to the eigenvector ϕi. As mentioned above, 

the eigenprojections per level indicate the dominant spatial scale of a given molecular 

organization without regard to shape symmetry variation. Since fluorescence expression can 

vary from cell to cell, we normalized the energy spectra to 1 by dividing by the total energy 

(E in equation (8)) to define an energy density spectra for each cell that can be compared 

across a cell population.

Polka dot generation.

We simulated polka dot patterns to validate the spatial scale of the measured signal 

distribution on a given mesh. As shown in Supplementary Fig. 5A, to generate uniform 

polka dot distributions, dot centers, or seeds, were first found by maximizing the 
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minimum pairwise Euclidean distance amongst seeds. We used the ‘farthest_point’ function 

from a public GitHub repository of the geometry processing toolbox [https://github.com/

alecjacobson/gptoolbox/external/toolbox_fast_marching]. Then we calculated the geodesic 

distance of all vertices from the closest seed using the fast marching method51. The polka 

dot pattern was then created by thresholding the surface over the list of geodesic distances, 

such that the fraction of total surface area occupied by polka dots was maintained across 

patterns. For the presented data, we found that 30% of the entire cell surface area has a 

higher energy peak magnitude for the polka dot surface area (Supplementary Fig. 3C). We 

set the edge mode parameter in the framework to ‘sharp’ for binary patterns and ‘smooth’ 

for gray patterns (Supplementary Fig. 3).

The generation of patchy polka dot patterns was similar to that of uniform polka dot 

patterns, except we kept only one quarter of the pattern on one side of the cell surface. For 

non-uniform polka dot patterns, we randomly chose mesh vertices for dot centers and grew 

the seeds as mentioned above.

Noise generation.

We generated two kinds of noise, i) intensity noise and ii) spatial noise. In the first case, we 

added a random intensity value to each mesh node drawn from a uniform distribution in the 

range of zero to a variable upper limit. We adjusted the noise level by changing the upper 

limit to a factor of the maximum intensity of either the polka dot pattern or the molecular 

organization. For the spatial noise, we translocated the mesh node values of painted area 

to a random node in a predefined neighborhood. The number of iteration for translocating 

each mesh node value was randomly selected from a Gaussian distribution with a standard 

deviation proportional to dot size. We controlled the noise level by changing the standard 

deviation of gaussian distribution.

Measuring the upper limit of the frequency level.

The Laplace-Beltrami operator is scale invariant. To measure the average distance between 

molecular aggregations on the cell surface, we painted the cell with various uniform polka 

dot distributions. The distance between dot centers was next calculated as the square root 

of surface area divided by the number of polka dots (Supplementary Fig. 8C). Depending 

on the cell surface, the energy peak levels vary with the number of polka dots, which 

corresponds to the distance between dots.

Texture mapping.

We mapped the molecular (NRAS) organization from one melanoma cell surface to another 

using a texture mapping algorithm, orbifold-Tutte embeddings42. First, we chose four 

positional constraints on each mesh at top and bottom of the mesh by choosing from the 

minimum and maximum mesh node coordinates. Then we used the ‘Parallelogram’ mode 

for finding the mapping matrix. Finally, we mapped a pattern from the mapped mesh to the 

primary mesh using the transpose of the mapping matrix.
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Polka dot clustering.

We constructed four polka dot patterns with 16, 64, 256, and 1024 dots respectively on each 

of the 67 cell morphologies. For each pattern, we compiled a feature vector composed of 

the energy density spectra and then performed principal component (PC) analysis. The first 

three components contributed 58% of the total variance in the 77-dimensional feature space. 

To cluster the polka dot patterns, we employed the k-means algorithm in the 3D PC space. 

The number of clusters was optimized to four using the silhouette distance. We calculated 

the mean of silhouette distances for each data point across each cluster, obtained by k-means 

clustering for cluster numbers ranging from 2 to 10.

Statistical analysis of drug inhibition.

We used the two-sided Kolmogorov-Smirnov (KS) test to evaluate the septin energy spectra 

under WGA treatment. We calculated the p-value between the averaged energy spectra of 

untreated and treated cells.

To quantify the redistribution of PI3K activity after PI3K inhibition, we compared the 

energy spectra of individual cells before and after inhibition. We measured the median 

frequency level of each curve because the value of the energy spectra at higher frequencies is 

dominant by noise and the distribution is more skewed rather than a normal distribution. We 

then computed the difference in the median before and after inhibition for 13 cells (Fig. 5E). 

Additionally, to evaluate the energy spectra over the entire frequency range, we averaged the 

difference curves between the before and after inhibition conditions for the 13 cells (Fig. 

5F).

Visualization

3D surface renderings of single cells were generated with ChimeraX version 1.2.552 and 

some schematics were adapted from “Cancer Cells” by BioRender.com (2022). ImageJ/Fiji 

was employed to prepare the MIP and slice images53.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Spatial organization of molecular distributions on the 3D cell surface.
A. Membrane-associated proteins (brown) can spatially organize across scales ranging from 

a uniform distribution or punctate clustering to a highly polarized configuration. B. 3D raw 

image of an MV3 melanoma cell with PI3K activity labeled using a fluorescent biosensor 

(GFP-AktPH) (left), surface rendering of the same cell (middle) with localization of PI3K 

activity projected onto the 3D cell surface (right). Red surface regions indicate high local 

PI3K activity. C. NRAS-GFP localization projected onto the 3D cell surface of MV3 

melanoma cells. D. PI3K activity projected onto an MV3 melanoma cell before (top) and 

after (bottom) treatment with a PI3K inhibitor. Scale bars: 2 μm.
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Fig. 2. Cellular harmonics for the analysis of molecular distributions on the 3D cell surface.
A. Surface rendering of a dendritic cell (left) and select modes of its cellular harmonic basis 

(fi) (right). Brown and green colors represent positive and negative values, respectively. 

Black arrows indicate eigenvector magnitudes that follow protrusions in the underlying 

cell morphology. The cell surface was generated from the Lifeact-GFP-signal visualizing 

cortical actin filament structures (data not shown). Scale bar: 2 μm B. Select modes of 

spherical harmonic basis (si), representing LBO eigenvectors applied to a sphere. The 

spherical harmonics naturally organize into a pyramid. C. Surface rendering of an MV3 

melanoma cell expressing GFP-AktPH, a marker of PI3K activity. Scale bar: 2 μm. C.i. 
LBO eigenvectors (fi) arranged hierarchically into a pyramid from low frequency level (Lj) 

to high frequency level. C.ii. LBO eigenvalues plotted as a function of LBO frequency 

index. Inset: zoomed-in region of the LBO eigenvalues plot showing only the first three 

frequency levels. D. Reconstruction of surface signal by cellular harmonics. D.i. PI3K 

activity projected onto the cell surface shown in (C). D.ii. Absolute value of the LBO 

eigenprojection profile over the cellular harmonics index. D.iii. Energy density spectra of 

PI3K activity over frequency levels. E. Absolute error ratio between the reconstructed 

data and the original signal as a function of the number of frequency indices in the 

reconstruction. Black arrows indicate 3D reconstructed data visualized up to levels, L=3, 
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11, 15, 24, and 69. F. Reconstructed PI3K activity from the LBO eigenvectors showing only 

low frequency (L=1 to L=20) or high frequency (L=20 to L=69) information. Color scale is 

adjusted for visualizing the high-frequency variations.
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Fig. 3. Validation and robustness of spectral decomposition analysis.
A. Polka dot patterns on a sphere with increasing numbers of dots, from left to right N = 

1, 16, 64, 256, and 1024 (top). Corresponding energy density spectra (bottom). B. Polka dot 

patterns on a sphere with 64 dots painting 10%, 30%, 50% and 60% of the total surface 

area (top). Corresponding energy density spectra (bottom). C. Polka dot patterns as in (A) 

applied to the 3D cell surface of an MV3 melanoma cell expressing tractin-GFP (top). 

Corresponding energy density spectra (bottom). D. Polka dot patterns on a variety of MV3 

melanoma cells, dendritic cells and human bronchial epithelial cells (HBECs). Numbers of 

dots number increase from left to right N = 1, 16, 64, 256, and 1024. E. Scatter plot of the 

energy density peak for 67 MV3 (morphological motif is blebs), dendritic (morphological 

motif is lamellipodia), and HBEC (morphological motif is filopodia) cells painted with 

polka dot patterns of N = 1, 16, 64, 256, and 1024 dots. F. Principal component analysis of 

energy density spectra for the cells in (E) with polka dot patterns of N = 16, 64, 256, and 

1024 dots. Colored circles are clusters determined via the k-means algorithm.
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Fig. 4. Decomposing the spatial organization of cell surface signaling on melanoma cells.
A.i. Maximum intensity projections of an MV3 melanoma cell labeled with an actin 

marker, CyOFP-tractin, and cytosolic GFP (top). Surface renderings of the same cell with 

fluorescence intensities projected onto the cell surface (bottom). Red indicates regions of 

high fluorescence intensity, yellow regions of low intensity. A.ii. Energy density spectra 

of a cytosolic marker (blue curve), CyOFP-tractin (red curve), and the binary on-/off-bleb 

distribution (yellow). A.iii. Segmentation of blebs (dark gray) vs non-bleb (white) was 

performed by u-shape3D software34. Scale bar: 2 μm. B.i. Surface renderings of MV3 

melanoma cells expressing NRAS-GFP with fluorescence intensities projected onto the cell 

surfaces. Scale bar: 2 μm. Energy density spectra of NRAS localization (B.ii) and bleb 

distribution (B.iii). Line colors in correspondence with box colors in (B.i). The black curve 

in each panel is the average energy density spectra across six cells. C. Energy density 

spectra of NRAS localization of MV3 melanoma cells (n = 5) on the original mesh (blue) 

and mapped to a new mesh (red).
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Fig. 5. Evaluating the spatial redistribution of cell surface signaling on melanoma cells.
A.i. Maximum intensity projections and molecular surface projections of septin localization 

on untreated (left) and WGA-treated MV3 melanoma cells (right). A.ii. Energy spectra 

of septin organization in untreated cells (blue curve, n=10 cells) and WGA-treated cells 

(red curve, n=7 cells). Bold curves indicate the mean of the energy density per level for 

each condition. Shaded bands indicate the range from minimum to maximum of the energy 

density per level for each condition. P-value indicates two-sided Kolmogoroff-Smirnov test 

comparing the averaged energy curve in untreated and WGA-treated cells. B. Maximum 

intensity projections (left) and surface projections (right) of an MV3 melanoma cell, 

expressing GFP-AktPH, a marker of PI3K activity, before (top) and after (bottom) PI3K 

inhibition. C. Energy spectra of PI3K activity on the same cell before (blue) and after (red) 

PI3K inhibition. Inset: Area under the energy spectra curve of PI3K activity for 13 cells 

before (blue) and after (red) PI3K inhibition. D. Energy density spectra of PI3K activity 

before (blue) and after (red) PI3K inhibition. The dashed line indicates the median frequency 

level of the energy density spectra. E. Median energy density of PI3K activity between 

untreated and PI3K-inhibited cells (n=13 cells). Cells exhibiting a nonpositive shift after 

PI3K inhibition treatment, which deviates from the generally positive shifts, are indicated by 

red lines. F. The differences curve of energy spectra between untreated and PI3K-inhibited 

cells (gray curve is for a single cell, purple curve is averaged across 13 cells). Scale bar: 2 

μm.
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