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A landscape of checkpoint blockade resistance in cancer: underlying mechanisms 
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ABSTRACT
The discovery of immune checkpoints and the development of immune checkpoint inhibitors (ICI) have 
achieved a durable response in advanced-stage cancer patients. However, there is still a high proportion 
of patients who do not benefit from ICI therapy due to a lack of response when first treated (primary 
resistance) or detection of disease progression months after objective response is observed (acquired 
resistance). Here, we review the current FDA-approved ICI for the treatment of certain solid malignancies, 
evaluate the contrasting responses to checkpoint blockade in different cancer types, explore the known 
mechanisms associated with checkpoint blockade resistance (CBR), and assess current strategies in the 
field that seek to overcome these mechanisms. In order to improve current therapies and develop new 
ones, the immunotherapy field still has an unmet need in identifying other molecules that act as immune 
checkpoints, and uncovering other mechanisms that promote CBR.
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1. Introduction

Immunotherapy has revolutionized how advanced-stage can-
cers are treated by shifting the focus of the treatment from 
directly killing the tumor cells to activating the host’s immune 
system to target the tumor.1 One breakthrough in cancer 
immunotherapy has been possible due to the discovery of 
immune checkpoints (i.e., cytotoxic T lymphocyte antigen-4 
(CTLA-4), program cell-death 1 (PD-1), and program cell- 
death ligand 1 (PD-L-1)).2–5 Under homeostasis conditions, 
the role of immune checkpoints, along with costimulatory 
signals, is to maintain self-tolerance and regulate the type 
and magnitude of the immune response.2 However, tumor 
cells can dysregulate the signaling of immune checkpoints to 
allow the evasion of tumor cells.3 Based on the immense role of 
checkpoint signaling in cancer, targeting checkpoint molecules 
is a rational strategy to promote anti-tumor immunity and, 
indeed, several immune checkpoint inhibitors (ICI) have been 
developed and proven effective in the clinical setting.1,4

CTLA-4 is an immunoglobulin-related receptor that is 
upregulated on conventional T cells following activation.5,6 

As a homolog of CD28, it also binds CD80 and CD86 
expressed on antigen-presenting cells (APCs) but at a higher 
affinity, effectively competing with CD28 for ligand binding. 
In contrast to CD28, CTLA-4 attenuates T cell responses 
potentially through various reported mechanisms such as 
interfering with molecules downstream of CD28 and the 
T cell receptor (TCR).7,8 In addition, CTLA-4 is highly 
expressed on regulatory T cells (Tregs) and is believed to be 
important in Treg homeostasis and function.9 Ipilimumab, 
a human monoclonal antibody (mAb) targeting the 

immunosuppressor molecule CTLA-4, was the first US Food 
and Drug Administration (FDA)-approved ICI for the treat-
ment of metastatic, late-stage melanoma patients.10–12 The 
approval of ipilimumab was based on the results of the 
MDX010–020 clinical trial (NCT00094653) showing that 
among 676 randomized patients, 20% and 16% of the patients 
survived ≥2 years and ≥3 years, respectively.4 This was 
a significant improvement in overall survival (OS) over che-
motherapy and cytokine-based therapies, which were used as 
standard-of-care (SOC) treatment for this patient 
population.13 Currently, ipililumab in combination with nivo-
lumab is approved for colorectal cancer (CRC), hepatocellular 
carcinoma (HCC), mesothelioma, and non-small cell lung 
cancer [NSCLC].2,14 For melanoma, ipilimumab is approved 
as monotherapy or in combination with nivolumab.

The discovery of PD-1—a receptor expressed on activated 
T cells and its ligand PD-L1, expressed on tumor cells – iden-
tified another immunosuppressive mechanism that inactivates 
TCR and/or CD28 signaling, thereby impairing the normal 
function of cytotoxic effector T cells (Teff). Nivolumab was 
the first anti-PD-1 blocking antibody that was approved for 
treatment of inoperable or metastatic melanoma based on the 
CheckMate 037 (NCT01721746) clinical trial.15 The trial 
demonstrated that a greater proportion of advanced mela-
noma patients achieved an objective response and fewer toxic 
effects compared to the alternative chemotherapeutic 
regimen.15 Since then, other anti-PD-1 therapies such as pem-
brolizumab, cemiplimab, and dostarlimab have also been 
approved.2 Targeting PD-L1 is also a viable approach to 
block the PD-1/PD-L1 inhibition pathway.
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Figure 1. Mechanism associated to ICI resistance. The TME represents a complex interaction between tumor cells, immune cells, and inhibitory cytokines leading to 
a plethora of mechanisms associated to ICI resistance. (a) Defects in T cells effector function and their exclusion from the TME can occur as a result of dysregulation of 
MAPK/ERK cell signaling pathways in tumor cells inducing the production of VEGF and IL-8, having a net inhibitory effect on the recruitment of T cells and defects in 
T-cell activation and differentiation. Due to the crosstalk between the MAPK and the PI3K signaling pathways, an oncogenic mutation in MAPK pathway or a loss of 
PTEN expression can cause the enhancement of PI3K-AKT signaling as well. Similarly, a mutation or silencing of β-catenin or tumor suppressor wnt protein, results in 
dysregulation of the WNT/β-catenin pathway, promoting aberrant signaling of b -catenin contributing to the absence of T cell expression signature. Mutations in the 
IFN-g receptor and defects on the IRF1 or JAK1/2 genes can contribute to T cell desensitization and consequently promote acquired resistance to ICIs. Specifically, 
mutations of PD-L1, PD-L2, and JAK2 genes resulting from the amplification of the locus that contains these genes promote the formation of the PD-1/TCR inhibitory 
microcluster, which results in the inhibition of T cell activation. (b) Another resistance mechanism is developed after defects in the APM specifically due to mutations of 
B2M and TAP proteins. These mutations make the antigen unable to reach the tumor cell’s surface and be recognized and cleared out by CD8+ T cells. (c) the interaction 
between T cells, tumor cells, APCs, and immunosuppressive cells (MDSCs) throughout immune checkpoints such as VISTA, LAG-3, TIGIT, and TIM-3, triggers and 
inhibitory signal causing the exhaustion of T cells, blockage of TCR signaling, and decreasing T cell activation and TCR expression. (d) Immunosuppressive signaling also 
contributes to primary and/or acquired resistance in cancer. Tregs can restrain the effector function of immunocompetent cells by inducing checkpoint-mediated 
suppression (CTLA-4, PD-1, TIGIT, TIM-3, and LAG-3), competing for IL-2 binding, or by producing anti-inflammatory cytokines. As such, TGF-b is a pleiotropic cytokine 
involved in tumor evasion and immunotherapy resistance. The upregulation of the metabolic modulator IDO within the TME allows the depletion of tryptophan, 
resulting in the decrease of T cells. Another metabolic modulator associated with T cell function suppression and ICI resistance is adenosine. Several ectonucleotidases 
(CD39 and CD73) catalyze the conversion of ADP or AMP to adenosine or NAD+ to AMP (CD38) causing the upregulation of adenosine in the tumor milieu. TME: tumor 
microenvironment; MAPK/ERK: mitogen-activated protein kinase/extracellular signal-regulated kinase; VEGF: vascular endothelial growth factor; IL-8: interleukin-8; 
PTEN: phosphatase and tensin homolog deleted on chromosome 10; PI3K-AKT: phosphoinositide-3-kinase – protein kinase B/Akt; WNT/β-catenin: wingless-related 
integration site/ b-catenin; IRF1: interferon regulatory factor 1; JAK1/2: Janus kinase 1/2; PD-L1/L2: program cell-death ligand 1/ligand 2; PD-1/TCR inhibitory 
microcluster: program cell-death 1/T cell receptor inhibitory microcluster; APM: antigen presenting machinery; β2 M; β2-microglobulin; TAP:transporter associated with 
antigen presentation; APC: antigen presenting cells; MDSCs: myeloid-derived suppressor cells; VISTA: V-domain ig suppressor of T cell activation; LAG-3: lymphocyte 
activation gene 3; TIGIT: T cell ImmunoGlobulin and ImmunoTyrosine inhibitory motif (ITIM) domain; TIM-3: T cell immunoglobulin and mucin-3; IDO: indoleamine 
2,3-dioxygenase 1; CTLA-4:cytotoxic T lymphocyte antigen-4; TGF-β: transforming growth factor beta ; ADP: adenosine triphosphate; AMP: adenosine monophosphate; 
NAD+: nicotinamide adenine dinucleotide.
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The JAVELIN Merkel 200 clinical trial (NCT02155647) 
paved the way for the approval of the PD-L1 blocking anti-
body, avelumab, for the treatment of metastatic Merkel carci-
noma (MCC).12,16 In this study, 31.8% (28 out of 88) of MCC 
patients whose disease had progressed on or after chemother-
apy experienced objective responses with avelumab 
treatment.16 Avelumab was also later approved for patients 
with locally advanced or metastatic urothelial carcinoma 
(mUC).12,17 Durvalumab and atezolizumab are among the 
antibodies blocking PD-L1 that have been FDA-approved for 
the treatment of patients with locally advanced mUC.12,18 

Collectively, ICIs targeting the PD-1/PD-L1 axis are therapeu-
tic options for basal cell carcinoma (BCC), cutaneous squa-
mous cell carcinoma (CSCC), NSCLC, CRC, HCC, Hodgkin 
lymphoma (HL), head and neck squamous cell carcinoma 
(HNSCC), mesothelioma, renal cell carcinoma (RCC), breast 
cancer (BC), large B cell lymphoma, and endometrial, esopha-
geal, and gastric carcinomas.2

The blockade of multiple checkpoints as a combinatorial 
therapy has improved the immunomodulatory ability of the 
immune system in achieving tumor cell clearance. The combi-
nation of ipilimumab plus nivolumab has also been FDA- 
approved for the treatment of advanced unresectable/metastatic 
melanoma cancer patients, after showing an improvement in 
overall response rate (ORR), progression-free survival (PFS), 
and OS against the SOC chemotherapy (sunitinib).12,15,19,20 

Furthermore, the combination has resulted in improved PFS 
when compared to ipilimumab alone in melanoma.20 In fact, 
except for melanoma, approved indications of ipilimumab are 
usually in combination with nivolumab.2

Despite the durable response observed with immune check-
point blockade (ICB) as part of the SOC for the treatment of 
patients with a broad range of advanced-stage cancers, only 
a limited population of patients benefit from ICI therapy.1,21,22 

The lack of response to ICI, also called checkpoint blockade 
resistance (CBR), can be categorized as primary or 
acquired.1,22,23 Primary CBR is observed in patients who do 
not respond to initial treatment, while acquired CBR is defined 
as confirmed early response to the therapy, but with eventual 
disease progression after prolonged treatment.1,22,23 For exam-
ple, primary CBR is observed in metastatic BC patients,24,25 in 
about 45–70% of melanoma patients,19,26 and 7–27% of 
NSCLC patients.27,28

In conjunction with efforts to understand the mechanisms 
that result in CBR, methods to overcome CBR are being devel-
oped, such as targeting new immune checkpoints and costimu-
latory molecules or testing new combination therapies.29–33 

Prevailing strategies are focused on transforming immunologi-
cal “cold” tumors into “hot” tumors30,34,35 by increasing tumoral 
T cell infiltration, enhancing cytotoxic T cell function,30,32,36 

repolarizing immunosuppressive population,31–33,37 or over-
coming tumor-intrinsic resistance mechanisms related to loss 
of major histocompatibility complex class I (MHC-I), aberra-
tions in antigen processing machinery (APM), and interferon 
gamma (IFN-γ) pathways.33,38–40 In this review, we will discuss 
the response of ICI in the real world and how this compares to 
the responses observed in clinical trials, as well as the underlying 
mechanisms promoting primary and acquired CBR. Finally, we 
aim to discuss current efforts to suppress these mechanisms that 

lead to CBR with the end goal of improving patient response to 
ICI therapy.

2. Contrasting responses to immune checkpoint 
blockade in the real-world

The response of patients treated with ICIs in the “real 
world” occasionally looks different from the responses 
observed and reported by controlled clinical trials run in 
different institutions. While there are data showing the 
consistency between the PFS and objective response rate 
observed in ICI-treated patients in the real world and the 
responses reported in the clinical trials,41–43 other studies 
have highlighted a gap between the outcomes of immu-
notherapy reported by clinical trials (efficacy) and the out-
comes observed in real-world (effectiveness) across several 
cancer types.14,44 For example, data support the ground-
breaking efficacy and durable response achieved by ICIs for 
the treatment of advanced-stage cancers, specifically in 
melanoma,45,46 advanced MCC,47,48 RCC,49 and NSCLC.49 

Interestingly, these cancers have in common a high density 
of immune subsets infiltrated in the tumor microenviron-
ment (TME) and the accumulation of pro-inflammatory 
cytokines that make them classified as “hot” tumors.49,50 

These characteristics, among other factors that will be dis-
cussed later in the review, improve the response rate to ICI 
therapy in “hot” tumors.50 Specifically, in melanoma 
patients, median survival improved from 6 months when 
patients were treated with cytotoxic agents such as temo-
zolomide to 6.5 years following treatment with anti-CTLA 
-4, anti-PD1 or a combination of both ICIs.51 A study of 60 
patients with desmoplastic melanoma treated with antibo-
dies blocking PD-1 or PD-L1 showed an objective response 
of 70% and 32% of them showed a complete response 
(CR).45 Another study of 230 metastatic melanoma patients 
showed a longer PFS using a combination of anti-CTLA-4 
and anti-PD-1,46 highlighting the benefits of blocking dif-
ferent immune checkpoints to improve the immune 
response. However, it is important to mention that two- 
thirds of melanoma patients failed to achieve complete 
response after ICI therapy, hence the challenge of primary 
and acquired resistance faced by these patients.51

Blocking PD-1/PD-L1 axis with ICIs for the treatment of 
advanced MCC has achieved anti-tumor activity in ~ 30–60% 
of the patients as well as improvement in PFS and OS compared 
to patients receiving chemotherapy.52–55 Indeed, data from ret-
rospective analyses confirmed the optimistic overview to con-
tinue using ICIs for the treatment of metastatic MCC 
patients.52,56 This study evaluated patients from two large aca-
demic medical centers who were treated with alternative ICIs 
after progressive disease (PD). Anti-CTLA-4 alone or in combi-
nation with anti-PD-1 revealed an overall response (OR) in 31% 
of the patients; one patient with MCC refractory – anti-PD-1 
and anti-CTLA-4–had tumor regression with anti-PD-L1.52 It is 
worth mentioning that this study is the largest case series to date 
describing the anti-tumor efficacy of anti-PD-L1 as a second- 
line treatment for MCC patients with anti-PD-1 refractory 
disease.
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Figure 2. Strategies to overcome associated mechanisms contributing to immunotherapy resistance. (a) Chemotherapy, radiotherapy, and small molecule inhibitors are 
among the strategies used to overcome deficiencies in T-cell priming. These agents can induce ICD in tumor cells causing the release of antigens and DAMPs, allowing 
the recruitment and maturation of APCs and the presentation of targetable antigens to effector T cells. Other interventions are used to increase the number of tumor- 
reactive T cells interacting in the TME, such as (b) ACT using TCR T cell or CAR T cell. TCR T directed against specific cancer antigens (testis antigen, NY-ESO-1) can 
recognize the antigen through MCH molecules and CAR T cells act in an MHC-independent manner targeting cell surface antigens. (c) the use of cancer vaccines is also 
used to expand tumor-specific T cell populations, broaden the T cell repertoire, and promote the transport of T cells to tumor lesions. Additionally, the use of (d) 
immunostimulatory cytokines such as NHS-IL-12 or N803 can promote the enhancement of effector cell recruitment and boost CD8+ T cell and NK cell cytolytic 
functions. (e) physical barriers also prevent the infiltration of effector T cells in the TME, and tumor vasculature represents one of these barriers. Therefore, VEGF 
targeting using small molecule inhibitors or mAbs represents an effective strategy to disrupt angiogenic pathways that are fostering the aberrant vasculature. (f) 
another physical barrier is the extracellular matrix that is composed mainly of collagen. Collagen is produced by TAMs, CAFs, and tumor cells and can impair immune 
activity through interactions with LAIR-1. Blockade of LAIR-1 combined with PD-1, and TGF-β blockade can increase M1 TAMs population, CD8+ T cell infiltration, while 
decreasing TGF-β and collagen. Figure adapted from J Clin Invest. 2022;1328: e155148. https://doi.Org/10.1172/JCI155148. lastly, repolarization of the immunosup-
pressive microenvironment as an alternative strategy to overcome certain resistant mechanisms can be achieved by (g) the use of mAbs targeting CD33 and TRAIL-R2 
receptors expressed in tumor cells were demonstrated to eliminate MDSCs. The use of anti-CFR-1 were demonstrated to eliminate M2 macrophages. Likewise, the 
depletion of tregs using anti-CD4, anti-CD25 or anti-GITR in combination with ICI have shown to improve CD8+ T cell activity. Another approach uses to decrease the 
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NSCLC, as one of the most common and deadliest malig-
nancies worldwide, also benefits from blocking the immune 
checkpoints PD-1, PD-L1, and CTLA-4 alone or in combi-
nation with SOC.29 Approximately 20–30% of NSCLC 
patients respond to ICI treatment and several studies con-
tinue to evaluate combination therapies to improve the 
response rate.29 Despite the progress observed, response to 
ICI is not always compared equally to the response reported 
by clinical trials. For example, a retrospective analysis of 
stage-IV NSCLC patients treated with pembrolizumab as 
a first-line treatment and nivolumab as a second-line treat-
ment showed that the OS in real world was significantly 
shorter in patients receiving pembrolizumab as a first-line 
treatment compared to ORR as reported in clinical trials.14 

The PFS of patients in pembrolizumab or nivolumab cohorts 
was comparable between real-world and trials.14 Likewise, 
another retrospective study with a cohort of 19,529 Medicare 
patients with NSCLC, ranging from 66 to 89 years old, 
showed an unadjusted median survival of 11.4 months 
among patients receiving single-agent pembrolizumab, 
which was 15 months shorter than the median survival of 
pembrolizumab-treated participants in the KEYNOTE-024 
trial.44,57 In many studies, the use of chemoimmunotherapy 
for cancer patients with advanced stages has been incorpo-
rated into their SOC treatment regimen58–61; however, this 
study also showed that the unadjusted median survival for 
patients receiving chemoimmunotherapy (platinum/peme-
trexed/pembrolizumab) was 12.9 months, approximately 10  
months shorter than for participants in the KEYNOTE-189 
trial who received the same regimen44,62

In total contrast to the response observed in “hot” 
tumors toward ICIs, the response documented in “cold” 
tumors is poor.49 “Cold” tumors such as prostate, pan-
creatic, and most colorectal cancers are characterized for 
being non-T cell infiltrated (non-inflamed) and largely 
resistant to ICI therapy.49,50 As of today, the only ICI 
FDA-approved treatment for prostate cancer patients is 
pembrolizumab (anti-PD-1), but only for metastatic cas-
tration-resistant prostate cancer (mCRPC) patients with 
high tumor mutational burden (TMB-H), high microsa-
tellite instability (MSI-H), or mismatch repair deficiency 
(MMR-D).63 However, several clinical trials continue to 
show the limited response of mCRPC patients to single- 
agent ICI therapy, including pembrolizumab and other 
ICIs such as atezolizumab (anti-PD-L1) and ipilimumab 
(anti-CTLA-4).63 Besides poor infiltration in “cold 
tumors,” these tumors rarely express PD-L1 (immunolo-
gically ignorant) and show low expression of neoantigens 

and immunosuppressive TME, all contributing factors to 
their unresponsiveness to checkpoint blockade.49

3. Checkpoint blockade resistance

CBR needs to be discussed not only in terms of the biologi-
cal concepts, but also in the complex scenario of the clinical 
setting, making it challenging to convey a uniform clinical 
definition of resistance to ICB for advanced diseases.23 To 
bring consensus to defining CBR, several principles and 
guidelines have to be considered and established, including 
the underlying mechanisms driving primary or acquired 
resistance,64–66 treatment duration criteria to determine the 
cutoff to distinguish primary resistance,23,66 and treatment 
discontinuation criteria to determine if acquired resistance is 
considered even after cessation of the ICI.23,66 In response to 
this heterogenous scenario, the Society for Immunotherapy 
of Cancer (SITC) taskforce agreed to take into consideration 
the duration of drug exposure, scan requirements, and 
response evaluation to define both primary and acquired 
resistance.

First, the taskforce stated that it was critical to define 
a minimal exposure timeframe for patients treated with an 
FDA-approved PD-1 or PD-L1 inhibitor to derive any possible 
clinical benefit.23 The taskforce established a required expo-
sure to ICI therapy of at least 6 weeks but not more than 6  
months. For patients with indolent tumor types, however, this 
timeframe needs to be redefined.23,67 To determine whether 
a treated patient is showing immune checkpoint primary 
resistance, a confirmatory scan needs to be performed to 
validate PD.23 On the other hand, the taskforce disagreed on 
which response evaluation criteria – Response Evaluation 
Criteria in Solid Tumors68 or RECIST 1.1—was to be 
employed and agreed that immune-based Response 
Evaluation Criteria in Solid Tumors (iRECIST) could not be 
used as a sole criterion to determine ICI efficacy. Although 
iRECIST was created to address cases of mixed responses and 
pseudoprogression, the taskforce stated that further validation 
is needed.23,68 However, the group agreed that the use of 
a fluorodeoxyglucose (FDG)/positron emission tomography 
(PET) scan combined with metabolically active immune infil-
trates may be used as an indicator of response to ICI therapy.23

The taskforce defined acquired resistance in advanced dis-
ease settings, otherwise known as secondary resistance, when 
a patient is treated for 6 months or longer, has a CR, partial 
response (PR), or prolonged stable disease (SD) – confirmed 
by scan – for more than 6 months and then presents PD in the 
setting of ongoing treatment.23 Members of the taskforce did 
not reach a consensus regarding the requirement of confirma-
tory imaging for validating secondary resistance. Two of the

immunosuppressive population that abrogates the effect of ICIs, is the use of small molecule inhibitors targeting CXCR1/2 which are receptors to chemokines essential 
for the recruitment of MDSCs and TANs. Growing evidence have shown that blocking TGF-b and PD-L1 simultaneously can decrease immunosuppressive population in 
the TME. (h) the use of inhibitors against IDO enzyme, halt the conversion of tryptophan to kynurenine allowing the increase of NK cells and CD8+ T cell and the 
decrease of Tregs. ICD: immunogenic cell death; DAMPs: damage-associated molecular patterns; APC: antigen presenting cells; TME: tumor microenvironment; ACT: 
adoptive cell transfer; TCR T: T cell receptor-engineered T cells; CAR T cells: chimeric antigen receptor T cells; MCH: major histocompatibility complex; VEGF: vascular 
endothelial growth factor; TAMs: tumor-associated macrophages; LAIR-1: leukocyte-associated immunoglobulin-like receptor-1; CAFs: cancer-associated fibroblasts; 
TANs: tumor-associated neutrophils; PD-1: program cell-death 1; TGF-β:transforming growth factor beta.
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three groups recommended a scan within 4–12 weeks after 
evidence of PD, including verification of ≥2 metastatic sites/ 
lesions for patients with multiple metastases, for acquired 
resistance confirmation.23

Uncommon response patterns represent an additional chal-
lenge in defining clinical resistance to ICIs.23,69 One of these 
patterns is known as pseudoprogression and describes patients 
who appear to have PD after radiographic confirmation, but 
experienced tumor shrinkage months after treatment 
cessation.23,69,70 This type of response was first observed in 
a phase II clinical trial that evaluated the efficacy of ipilimu-
mab in metastatic melanoma patients.71 In this study, 
Wolchok et al. showed that 9.7% (22 out of 227) of the treated 
patients were characterized with PD – following World Health 
Organization (WHO) and iRECIST guidelines – in spite of 
having clinical responses (PR and SD).70,71 Clinical trial pro-
tocols did not require patient follow-up after PD was observed, 
thus limiting data collection for those showing a response after 
leaving the clinical trial. Accordingly, the number of patients 
with pseudoprogression may have been underestimated.71 

Current data support that pseudoprogression occurs in 
approximately 5–10% of the patients receiving anti-CTLA-4 
or anti-PD-L1 therapy, across several solid tumor types.23,70,72 

Building on these findings, a novel benchmark designated as 
immune-related response criteria (irRC) is currently used to 
differentiate pseudoprogression from true progression and 
may provide a more comprehensive evaluation of the response 
toward the immuno-oncology (IO) agent.71,72 As such, a study 
evaluating irRC and RECIST criteria in advanced melanoma 
patients treated with pembrolizumab showed that the sole use 
of RECIST criteria may have underestimated the benefit of the 
checkpoint in approximately 15% of the patients.73

4. Underlying mechanism associated to ICI resistance

4.1 T cells exclusion and dysfunction in the TME

The density of preexisting T cells in the TME as well as their 
functionality are two of the factors used to determine the 
outcome of ICI therapy.1 Immune-excluded tumors – “cold 
tumors” – lack infiltrating effector T cells and are less prone to 
respond to ICI therapy. This lack of response may be due to 
primary resistance conferred by mutations and dysregulation 
of cell signaling pathways in tumor cells, resulting in poor 
T cell recruitment and T cell dysfunction.1,39 For example, 
a study in highly aggressive HCC determined that low T cell 
numbers may be associated with deletions in the MAX/TP53 
genes, which in turn resulted in the downregulation of TP53- 
related chemokines that are pivotal in T cell recruitment.74,75

Multiple oncogenic signaling pathways affecting primary 
resistance have been identified, including mitogen- 
activated protein kinase (MAPK)/extracellular signal- 
regulated kinase76 signaling pathways and/or loss of phos-
phatase and tensin homolog deleted on chromosome 10 
(PTEN) expression.1,74,77 Dysregulated MAPK/ERK path-
ways induce the production of vascular endothelial growth 
factor (VEGF) and interleukin-8 (IL-8), resulting in an 
inhibitory effect on the recruitment of T cells and defects 
in T-cell activation and differentiation (Figure 1a).74,78 

Different cancer types harbor somatic mutations related 
to the MAPK pathways, many of which had been demon-
strated to be oncogenic.79 For example, approximately 18% 
of HNSCC patients harbor MAPK pathway mutations and 
half of these mutations are oncogenic in nature.79,80 As 
a result of the crosstalk between the MAPK and the phos-
phoinositide-3-kinase – protein kinase B/Akt (PI3K-AKT) 
signaling pathways, an oncogenic mutation in MAPK path-
way – or loss of PTEN expression – will cause the enhance-
ment of PI3K-AKT signaling, associated with resistance to 
checkpoint blockade resistance (Figure 1a).1,77,81 A study of 
melanoma cancer patients correlated the constitutive acti-
vation of PI3K-AKT signaling, due to PTEN loss, with low 
numbers and impaired function of the tumor-infiltrated 
lymphocytes (TILs), as well as poor outcomes after PD-1 
inhibitor treatment.81

Another common mutation in cancer occurs in the 
WNT/β-catenin signaling pathway, particularly due to 
mutation or silencing of the Wnt protein, which acts as 
a tumor suppressor (Figure 1a).82 In melanoma cancer 
patients, dysregulation of the WNT/β-catenin pathway 
has been correlated with unresponsiveness to ICI 
therapy.82 This was corroborated in a murine melanoma 
model wherein continuous β-catenin signaling in the TME 
contributed to the absence of T cell expression signature 
and, consequently, resistance to anti-PD-L1 and anti-CTLA 
-4 therapy.82 The growing evidence of the relationship 
between the activation of WNT/β-catenin signaling and 
ICI resistance has given the rationale to target β-catenin 
pathway to enhance the efficacy of ICIs.83

Cancer-associated resistance also arises as a result of 
mutations in the IFN-γ signaling pathway (Figure 1a).1,77 

IFN-γ is a pleiotropic cytokine with antitumor and immu-
nomodulatory functions; thus, it plays an important role in 
both innate and adaptive immune responses.84 IFN-γ acti-
vates its receptor (IFNG1/2) which is intracellularly asso-
ciated with kinases from the Janus kinase (JAK) family 
(JAK1 and JAK2), inducing the expression of genes 
involved in cell cycle regulation, apoptosis, growth inhibi-
tion, and tumor suppression.84 The growing data support 
the idea that defects in the IFN-γ signaling pathway cause 
T cell desensitization, allowing acquired resistance to 
checkpoint blockade.1,77,85,86 Recent data showed that biop-
sies from melanoma patients who did not respond to anti- 
CTLA-4 therapy have mutations in IFNG1/2, JAK2, and 
interferon regulatory factor 1 (IRF1) genes.85 In a separate 
study, two out of four metastatic melanoma patients who 
had progressive disease after initial objective tumor regres-
sion with pembrolizumab had loss-of-function mutations 
in JAK1 or JAK2 genes.86 Mutations in the IFN-γ signaling 
pathway can also foster primary or acquired resistance via 
constitutive PD-L1 expression or the loss of PD-L1 expres-
sion in cancer cells.1,77 The mutations in the first scenario 
arise after the amplification of the locus in chromosome 9 
that contains the genes for PD-L1, PD-L2, and JAK2.1 The 
interaction of the PD-1 receptor with its ligand, PD-L1, 
now overexpressed in tumor cells due to the mutation, 
forms the PD-1/TCR inhibitory microcluster, resulting in 
the inhibition of T cell activation (Figure 1a).1 In
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the second scenario, in which PD-L1 expression is no 
longer inducible by IFN-γ, anti-PD-1/PD-L1 antibodies 
would not be effective, and patients would manifest pri-
mary resistance to ICI.1,87

4.2 Defects in antigen processing machinery and lack of 
tumor-associated antigens

The antigen processing and presentation pathway are critical 
in the immunosurveillance of cancer.88,89 Tumor antigen 
recognition by CD8+ T cells requires that for an effector 
CD8+ T cell to recognize an antigen from a tumor cell, the 
antigen must be expressed in the surface of the tumor cells and 
the T cell must be able to recognize that antigen presented by 
an MHC class I molecule (MHCI).89 In humans, MHCI mole-
cules are heterodimers composed of heavy chains encoded by 
Human Leukocyte Antigen (HLA) genes (HLA-A, HLA-B, and 
HLA-C) and a light chain b2- microglobulin (B2M).88,89 

Antigen processing is a multi-step procedure that includes 
antigen fragmentation by the proteosome, relocation of the 
antigenic peptide to the endoplasmic reticulum (ER) by spe-
cific transporter proteins, docking of the peptide on an MHC-I 
molecule, and the transport of the MHC-I-peptide complex to 
the cell surface.89

Evidence indicates that mutations and epigenetic modifica-
tions in the cancer DNA that alter the antigen processing and 
presentation machinery can contribute to checkpoint immu-
notherapy resistance.1,88 Specifically, tumor cells can develop 
acquired resistance through loss of surface expression of 
MHC-I molecules via mutations in the B2M light chain 
(Figure 1b).1,88 Without B2M, the MHC-I molecules cannot 
be folded and transported to the surface of the cells in order to 
present the antigen; thus, CD8+ T cells will not be able to 
recognize the antigen and clear out the tumor cell.88 In addi-
tion, mutations in genes encoding transporter proteins, such as 
transporters associated with antigen presentation 1/2 (TAP) 1/ 
2, which are involved in the process of importing antigen 
peptides into the endoplasmic reticulum, inhibit the formation 
of MHC-I-peptide complexes, thereby preventing the antigen 
processing and presentation machinery to proceed (Figure 
1b).88

Logically, the presence of targetable tumor antigens is 
a critical factor contributing to the ability of T cells to mount 
an immune response and to the ability to gain clinical benefits 
with ICI therapy.89 These tumor antigens can be generated 
through genetic diversity, missense, and silent mutations, 
insertions, deletions, as well as copy number gains and 
losses.89 For example, cancers with MMR-D as a result of 
loss of function of certain genes (MLH-1, PMS-2, MSH-2, 
and MSH-6) involved in the DNA repair pathway and those 
that have MSI-H are examples of cancers with TMB-H.40 Both 
MSI-H and MMR-D induce frameshift mutations allowing for 
neoantigen formation.38,40

The number of all the somatic mutations per megabase 
(Mb) in the genome of a tumor cell, also known as TMB, 
seems to be the driver generating the immunogenic neoanti-
gens presented by the MHC complex.89,90 Cancers with a high 
TMB, which is broadly defined as cancers with ≤20 mutations 
per Mb, have a higher objective response rate to ICI 

therapy.78,91–93 As such, melanoma and NSCLC are among 
the malignancies with TMB-H and higher OR to anti-PD-1 
therapy.38,94 Nonetheless, only 45% of the patients with TMB- 
H responded to ICI therapy, indicating the existence of other 
mechanisms promoting primary resistance in these cases.91,95 

Whereas high ORR and OS are associated with tumors with 
TMB-H, cancers categorized as low TMB (TMB-L), defined 
as ≤5 mutations per Mb,38,91 such as pancreatic cancer and 
triple-negative breast cancer (TNBC), have a low probability of 
response to ICIs and manifest as primary or acquired 
resistance.38,91,96,97 These observations were highlighted in 
a study that analyzed patients across several solid tumors, 
excluding NSCLC and melanoma, who had TMB assessment 
and received ICI therapy. The study revealed that only a low 
percentage of patients (9%) harboring TMB-L tumors had CR/ 
PR; conversely, 47% of the patients with TMB-H had CR/PR.95

4.3 Presence of alternative inhibitory immune 
checkpoints

V-domain Ig suppressor of T cell activation (VISTA), T cell 
immunoglobulin and mucin-3 (TIM-3), lymphocyte activation 
gene 3 (LAG-3), and T cell ImmunoGlobulin and 
ImmunoTyrosine inhibitory motif (ITIM) domain (TIGIT) 
are examples of alternative checkpoint molecules that elicit 
immune inhibitory signals that may contribute to primary 
and acquired resistance (Figure 1c).1,98–100 VISTA is 
a negative regulator of T cell activation and is expressed by 
neutrophils, monocytes, macrophages, dendritic cells, TILs, 
and by some human cancer cells (ovarian cancer, endometrial 
cancer, and CRC).98,100–102 Although the specific mechanisms 
through which VISTA exerts immune inhibition are still 
unclear, its role in acquired resistance is being elucidated. 
A study of metastatic melanoma patients treated with ipilimu-
mab found that the majority of patients (12/18) had biopsies 
with significantly higher densities of VISTA+ lymphocytes 
during disease progression compared to pre-treatment.98,103 

Interestingly, another study that analyzed tumor tissue biop-
sies from prostate cancer patients found that suppressive 
macrophages express either VISTA (26.5%) or PD-L1 
(29.4%), but rarely both markers (2%).85,98 The presence of 
distinct macrophages suggests that these subsets may compen-
sate for each other during ICI therapy.85,98 Overall, there is 
evidence that VISTA may be a compensatory inhibitory path-
way that results in acquired resistance to currently available 
ICI therapy.103

LAG-3 is expressed on activated T cells, natural killer (NK) 
cells, B cells, and dendritic cells (DCs), and currently, the only 
known ligand for LAG-3 is the MHC-II molecule.100 LAG-3/ 
MHC-II high-affinity interaction blocks proper TCR signaling, 
resulting in hampered T cell functions.104 Data showed that 
MHC-II expression in tumor cells is associated with increased 
response to anti-PD-1 therapy.105 A follow-up study demon-
strated that MHC-II expression in tumors is associated with an 
increased infiltration of LAG-3+ TILS.100,106 Notably, LAG-3 
expression was higher in specimens from patients who initially 
responded to PD-1 therapy but eventually progressed. 
Furthermore, LAG-3 has been observed to be co-expressed 
with PD-1 in exhausted or dysfunctional T cells in human
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tumors like ovarian cancer and melanoma.100,107 Additionally, 
LAG-3 signaling can promote Treg populations through the 
release of immunosuppressive cytokines like transforming 
growth factor beta (TGF-β) and IL-10.104 Collectively, the 
growing body of data suggests that LAG-3 upregulation is 
associated with primary and acquired resistance in different 
cancer conditions.104,108

The immune checkpoint molecule TIM-3 is expressed in 
activated human T cells, NK cells, and monocytes.100 High 
TIM-3 expression in several syngeneic models has been asso-
ciated with acquired resistance toward PD-1 blockade.109–111 

For example, Koyama et al. correlated acquired resistance after 
anti-PD-1 therapy with TIM-3 upregulation in a lung adeno-
carcinoma murine model.110 The same TIM-3 upregulation 
was observed in lung cancer patients who had PD following 
PD-1 blockade. Furthermore, TIM-3 expression was higher in 
the relapsed NSCLC patients when compared to those who 
were not treated with ICIs.110 Additionally, clinical data sup-
port that TIM-3 is universally co-expressed with PD-1 in TILs, 
enabling a more exhausted T cell phenotype.100,112 Indeed, 
a study associated the co-expression of PD-1 and TIM-3 with 
acquired resistance to anti-PD-1 therapy in NSCLC 
patients.109

TIGIT expression is restricted to CTLs, Th, Tregs, and 
NK cells.113,114 TIGIT’s inhibitory signaling occurs upon 
interaction with its main ligand CD155 (PVR), expressed 
on tumor-infiltrating myeloid cells and tumor cells.114 

Since TIGIT binds to CD155 with a higher affinity than 
its competitive ligand CD226, TIGIT/CD155 interaction 
disrupts CD226 homodimerization, inhibiting CD226- 
mediated T cell activation.113,114 The TIGIT/CD155 com-
plex can also reduce TCR-expression and TCR signaling.114 

A study of melanoma correlated high CD155 and TIGIT 
expression with PD-1 and/or CTLA-4 primary and 
acquired resistance in patients with non-inflamed tumors 
and inflamed tumors with TMB-H.115 In addition, a study 
using a preclinical model of pancreatic adenocarcinoma 
(PDAC) supported the hypothesis that TIGIT blockade 
may overcome preexisting or acquired resistance to 
CD40a/PD-1 therapy.116

4.4 Immunosuppressive signaling

Tumor-cell extrinsic factors such as immunosuppressive cells, 
including Tregs and tumor-associated macrophages (TAMs), 
and inhibitory cytokines, such as TGF-β, also contribute to 
primary and/or acquired resistance in cancer (Figure 1d).1,3 In 
physiological conditions, the main function of Tregs is to main-
tain immune homeostasis; however, cancer exploits Treg cellu-
lar mechanisms to restrain the effector function of 
immunocompetent cells.117 Tregs can induce CTLA-4-mediated 
suppression of APCs, compete for IL-2 binding, produce anti- 
inflammatory cytokines, and express immune inhibitory mole-
cules such as TIGIT, PD-1, TIM-3, and LAG-3.117 Indeed, 
a study in NSCLC, gastric cancer and melanoma have suggested 
the involvement of Tregs in resistance to anti-PD-1 
immunotherapy.117 This study demonstrated that the balance 

between PD-1+CD8+ T cells and PD-1+ Tregs in the TME can 
better predict the outcome of PD-1 therapy than PD-L1 tumor 
tissue expression or TMB.117

TGF-β is a pleiotropic cytokine that plays a key role in 
maintaining immune tolerance, yet is also involved in tumor 
evasion and immunotherapy resistance.118,119 A plethora of 
studies on solid tumors have correlated TGF-β signaling in 
the TME with different mechanisms underlying ICI 
resistance.118,119 For example, TGF-β can suppress TILs and 
at the same time induce high expression of PD-1 and PD-L1 in 
T cells and tumor cells, respectively.118 Additionally, a clinical 
study showed that high TGF-β gene signature can predict the 
failure of ICIs in gynecological cancer patients.119 The role of 
TGF-β in promoting primary resistance is yet to be under-
stood; however, inhibition of TGF-β in a murine model refrac-
tory to anti-PD-1 improved antitumor response and survival 
benefits.118,120,121

Metabolic modulators such as indoleamine 2,3-dioxygenase 
1 (IDO) and adenosine can also play a role in fostering immu-
nosuppressive conditions in the TME that result in immu-
notherapy resistance (Figure 1d).104,122,123 IDO is an 
intracellular enzyme that catalyzes the reaction that converts 
tryptophan into kynurenine under normal physiological con-
ditions. It is expressed only in select tissues (mucosal tissues, 
placenta, eye, and pancreas) and by a small population of 
immune cells (DCs and eosinophils).29,122 However, data con-
firmed IDO upregulation in CRC, breast cancer, prostate can-
cer, and esophageal cancer.29 As such, expanding preclinical 
and clinical data correlated IDO upregulation with suppres-
sion of T cell function and ICI resistance.29,122,124

Adenosine accumulates in the TME through the conversion 
of hydrolyzed forms of adenosine triphosphate (ATP) to ade-
nosine diphosphate (ADP) or adenosine monophosphate 
(AMP), and then into adenosine by ectonucleotidases (CD39 
and CD73), which are overexpressed in different cancer 
types.123 High levels of adenosine in the TME may also be 
due to mutations or hypoxic conditions that decrease the 
reduction of this metabolite (Figure 1d).123 Another source 
of adenosine in the TME comes from nicotinamide adenine 
dinucleotide (NAD+) converted to AMP by CD38, a molecule 
that is upregulated by tumor cells and identified as another 
mechanism of resistance to PD-1 and PD-L1 checkpoint 
blockade (Figure 1d).123

5. Strategies to overcome associated mechanisms 
contributing to immunotherapy resistance

As described above, response to ICI is contingent on the 
presence, abundance, and activity of tumor-reactive T cells. 
Treatments to induce effector T cell activation, infiltration, 
and function, therefore, are strategies that can be combined 
with ICI to enhance antitumor response or used after ICI 
therapy failure (Table 1).

5.1 Overcoming deficiencies in T cell priming

Lack of tumor antigen, defective antigen processing and presenta-
tion, and insufficient T cell–DC interaction all contribute to
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deficient T cell priming and activation that undermines the effect 
of immunotherapy. Anticancer treatments that induce immuno-
genic cell death (ICD), such as oncolytic viruses, radiotherapy, and 
certain types of chemotherapy and small-molecule inhibitors, can 
bridge this gap. Tumor cells undergoing ICD release antigens and 
damage-associated molecular patterns (DAMPs), allowing for the 
recruitment and maturation of APCs, the presentation of targe-
table antigens to effector T cells, and subsequent induction of 
antitumor immune responses and immune memory (Figure 
2a).128 Furthermore, chemotherapy and radiotherapy can upre-
gulate the antigen processing machinery, promote the expression 
of MHC class I, and elicit the expression of death receptors, 
rendering the tumor cells that survived the treatment more sus-
ceptible to immune attack (Figure 2a).129,130 Several preclinical 
studies, including those on ICI-resistant tumor models, demon-
strate that induction of ICD can potentiate the efficacy of ICI 
therapy.131–133 The exact role of ICD is yet to be elucidated in 
a clinical setting, but growing evidence suggests that ICD inducers 
may play an important role in the antitumor effect of ICIs.134–136 

Most inducers of ICD, such as CAR T cells, are not “targeted,” at 

least not to the same degree as checkpoint blockade; therefore, 
future studies on the immunotherapy field should focus on devel-
oping a consensus on the importance of defining a more general-
ized approach. Ongoing clinical trials are investigating the safety 
and the effect of combining ICD-inducers with ICI therapy, 
including in cancers that are refractory to checkpoint blockade 
(NCT03474497; Table 1).

5.2 Increasing the number of tumor-reactive T cells

Achieving high numbers of infiltrating tumor-reactive T cells 
is crucial for ICI response. The most direct way to increase 
the number of effector cells is via adoptive cell transfer (ACT) 
using TILs, TCR-engineered T cells, or chimeric antigen 
receptor (CAR)-engineered T cells. ACT with TILs involves 
isolating lymphocytes from resected tumors, expanding the 
cells ex vivo, and selecting for tumor-reactivity before re- 
infusing the TILs into patients.137,138 In a clinical study, TIL 
therapy was shown to induce durable responses in patients 
with metastatic melanoma. Notably, 11 patients enrolled in

Table 1. Clinical trials recruiting patients with primary refractory or acquired secondary resistance to prior immune checkpoint treatments.

Study ID Malignancies Phases Combinatorial approach

NCT04577807 Melanoma Phase II Lerapolturev (formerly known as PVSRIPO) (live attenuated  
Sabin type 1 polio vaccine, targeting CD155) 125 anti-PD-1

NCT04239040 Neuroblastoma Phase I GVAX vaccine (irradiated GM-CSF secreting, autologous neuroblastoma 
cell vaccine) Nivolumab Ipilimumab

NCT03388632 Metastatic solid tumors Phase I IL-15 
Nivolumab 
Ipilimumab

NCT05533697 Advanced solid tumors Phase I/II mRNA-4359 vaccine (encoding for concatemerized PD-L1 and 
indoleamine 2,3-dioxygenase 1 (IDO1) antigens 126 Pembrolizumab

NCT03474497 Metastatic NSCLC, melanoma, 
RCC, or HNSCC

Phase I/II IL-2 
Pembrolizumab 
Radiotherapy

NCT03739931 Solid tumors or lymphoma Phase I mRNA-2752 (a lipid nanoparticle encapsulating mRNAs encoding human 
OX40L, IL-23, and IL-36γ)

NCT05764395 Unresectable metastatic 
melanoma

Phase II Rigosertib (ON01910) (in vitro inhibitor of PLK1) 127 
Pembrolizumab

NCT05200143 Cutaneous melanoma Phase II Ipilimumab 
Nivolumab 
Cabozantinib

NCT05431270 Solid tumors Phase I PT199 (an anti-CD73 mAb) 
Anti-PD-1

NCT04493203 Advanced melanoma Phase II Nivolumab 
Axitinib

NCT05723055 Classical Hodgkin lymphoma Phase II Nivolumab 
Axatilimab

NCT03333616 Advanced Rare Genitourinary 
Tumors

Phase II Nivolumab Ipilimumab

NCT04862455 Recurrent/metastatic HNSCC Phase II NBTXR3 (hafnium oxide-containing nanoparticles) 
Pembrolizumab

NCT03747484 Metastatic MCC Phase I/II FH-MCVA2TCR (gene-modified autologous MCPyV-specific HLA-A02- 
restricted TCR-transduced CD4+ and CD8+ T-cells) 
Pembrolizumab 
Interferon–1b

NCT03228667 NSCLC, SCLC, UC, HNSCC, MCC, 
melanoma, RCC, gastric 
cancer, cervical cancer, HC, 
MSI/MMR-D CRC

Phase II N-803 
Pembrolizumab 
Nivolumab 
Atezolizumab

NCT04879368 AGOC Phase III Regorafenib 
Nivolumab 
Docetaxel

NCT03161431 Melanoma Phase I Pembrolizumab 
SX-682 (CXCR1/CXCR2 inhibitor)

NSCLC: non-small cell lung carcinoma, RCC: renal cell carcinoma, HNSCC: head and neck squamous cell carcinoma, SCLC: small cell lung carcinoma, MCC: Merkel cell 
carcinoma, PLK1: polo-like kinase 1, UC: urothelial carcinoma, HC: hepatocellular carcinoma, MSI: microsatellite instability, MMR-D: mismatch repair deficiency, AGOC: 
advanced gastro-esophageal carcinoma.
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the study had failed CTLA-4 treatment. Of the 11, five 
patients experienced complete regression while two experi-
enced partial regression after TIL ACT.137,138 TCR T cells are 
peripheral T cells that are engineered to express tumor anti-
gen-specific TCRs that are modified for improved expression 
and function.139 As such, TCR T cells rely on antigen pre-
sentation via MHC molecules but can be generated to target 
antigenic peptides of intracellular and extracellular origins. 
Clinical studies using TCR T cells directed against the cancer- 
testis antigen NY-ESO-1 resulted in promising responses in 
different tumor types.140–142 Preclinical studies combining 
NY-ESO-1 TCR T cells with ICI demonstrated improved 
antitumor activity related to increased T cell efficacy 
(Figure 2b).143,144 However, in a pilot trial, the combination 
of NY-ESO-1 TCR T cell and NY-ESO-1 DC vaccine resulted 
in transient antitumor response and the addition of ipilimu-
mab to the combination did not improve clinical benefit,145 

indicating that optimization may be warranted. Clinical trials 
evaluating the efficacy of TCR T cells with anti-PD-1 or anti- 
PD-L1 are currently underway.146 CAR T cells express recep-
tors composed of an antibody-derived single-chain variable 
fragment for antigen recognition fused to an intracellular 
signaling domain derived from T cell signaling proteins.147 

Contrary to TCR T cells, CAR T cells are MHC-independent 
and can only target cell surface antigens (Figure 2b). 
Advancements in this ACT platform have led to six approved 
CAR T cell therapies for hematological cancers. In solid 
tumors, however, the efficacy of CAR T cells is severely 
limited partly due to the immunosuppressive environment 
that the adoptively transferred cells encounter.148 Hence, 
a great deal of effort is being exerted on studying the applica-
tion of CAR T cells with ICI. Furthermore, the role of check-
point blockade in ACT efficacy is paramount; thus, 
autologous T cells and CAR T cells with knocked out or 
disrupted PD-1 are being developed and evaluated.149,150

Cancer vaccines can amplify a preexisting response by 
expanding tumor-specific T cell populations, broadening the 
T cell repertoire, and promoting the transport of T cells to 
tumor lesions (Figure 2c).151,152 Cancer vaccines are typically 
composed of soluble tumor antigens (e.g., oncoviral, oncofetal, 
cancer-testis, or neoantigens), formulation (e.g., peptide, 
nucleic acid, or whole tumor), delivery vehicle (e.g., liposome, 
cell-based, or viral-based), and an immune adjuvant (e.g., 
CD40 agonist, TLR agonist, or GM-CSF). Although mono-
therapy activity of cancer vaccines has so far been limited, its 
ability to sensitize host immunity to the tumor can comple-
ment ICI therapy, and this prospective synergistic activity is 
the focus of several clinical trials153 (Table 1). The phase 1 
Lipo-MERIT Trial (NCT02410733) aimed to evaluate the effi-
cacy and safety of a tetravalent RNA vaccine (targeting the 
tumor antigens NY-ESO-1, MAGE-A3, tyrosinase, and TPTE) 
with or without PD-1 blockade in metastatic melanoma.154 

Partial responses were observed in both vaccine monotherapy 
(12%) and vaccine plus anti-PD-1 treatment (35.3%). Notably, 
patients with disease that progressed under ICI treatment 
achieved partial responses with the monotherapy or the com-
bination. Furthermore, the response was associated with the 

induction of T cells specific to at least one vaccine-targeted 
antigen and the formation of memory T cells. The data suggest 
that cancer vaccines may be a strategy to overcome ICI resis-
tance by synergizing with ICI in ICI-experienced tumors.

Immunostimulatory cytokines may also be key combina-
tion partners for ICI. One example is IL-12, which is a pro- 
inflammatory cytokine produced by APCs that promotes Th1 
polarization, enhances effector cell recruitment, and boosts 
CD8+ T cell and NK cell cytolytic functions (Figure 2d).155– 

157 Intratumoral administration of IL-12 in conjunction with 
CTLA-4 blockade has been shown to act synergistically to 
eradicate murine glioblastoma.158 Moreover, in murine 
tumor models resistant to anti-PD-1/anti-PD-L1 therapy, 
tumor-targeted NHS-IL12 (IL-12 fused to an antibody that 
binds exposed DNA commonly found in necrotic tumors) 
when administered with a histone deacetylase inhibitor poten-
tiated CD8+ T cell-dependent antitumor activity and provided 
survival benefit.33 However, a phase 1b study evaluating the 
combination of NHS-IL12 and avelumab was discontinued 
due to lack of efficacy (NCT02994953). Several active studies 
that involve NHS-IL12 with anti-PD-L1/anti-TGF-β fusion 
protein are ongoing but have yet to post results 
(NCT04287868, NCT04303117).

Another cytokine that has the potential to elevate ICI activ-
ity is IL-15, which plays an important role in the activation, 
proliferation, survival, and function of NK and cytotoxic CD8 
+ T cells, as well as the maintenance and survival of memory 
T cells.159–161 In colon and prostate murine tumor models, the 
dual blockade of CTLA-4 and PD-L1 in combination with 
recombinant IL-15 (rIL-15) treatment resulted in tumor 
growth suppression associated with cytotoxic T cell activity, 
IFNγ secretion, and inhibition of Treg functions.162,163 Based 
on these findings, a phase 1 trial has been designed to test the 
safety of combining rIL-15 with nivolumab and ipilimumab in 
patients with refractory cancers (NCT03388632).160 Due to the 
short lifespan of rIL-15 in vivo, N803, an IL-15 superagonist 
composed of IL-15 mutant (IL-15N72D) complexed to 
a dimeric sushi domain of IL15Rα (IL-15 RαSu) and fused to 
an IgG-Fc fragment, was developed.161,164 The combination of 
N803 and ICI has been the focus of several preclinical and 
clinical studies. In syngeneic breast and colon murine tumor 
models, the combination of N803 and PD-L1 blockade pro-
moted the activation, proliferation, and cytotoxicity of CD8+ 

T cells and NK cells, resulting in decreased tumor burden 
(Figure 2d).165 Meanwhile, in an oral squamous cell carcinoma 
model, N803 plus PD-1 blockade had moderate therapeutic 
efficacy that was further enhanced with the adoptive transfer of 
a PD-L1-targeted CAR-NK.166 In the clinic, a completed phase 
1/phase 2 study in NSCLC patients demonstrated that N803 
and nivolumab were well-tolerated.167 Furthermore, six (29%) 
of the 21 patients enrolled in the study achieved an objective 
response. Eleven of the 21 patients had relapsed after PD-1 
blockade therapy and, of the 11, three (27%) had partial 
responses and seven (64%) had stable disease. Similarly, an 
ongoing phase 2b aims to evaluate the safety and efficacy of 
N803 plus ICI in patients who have progressed after PD-1/PD- 
L1 treatment (NCT03228667; Table 1). In this trial, patients
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with disease progression with N803 + ICI roll over to a new 
cohort and receive N803, PD-1/PD-L1 checkpoint inhibitor, 
and PD-L1-targeted CAR-NK.

The pathophysiological properties of tumors result in 
physical barriers that prevent the infiltration of effector 
cells. One impediment is the tumor vasculature, which is 
characterized by abnormal endothelial cells, chaotic vessel 
growth, leakiness, and erratic blood flow.168 Tumor vascu-
lar endothelial cells also express the death ligand FasL, 
killing extravasating CD8+ T cells while sparing Tregs 
that are not as sensitive to Fas-mediated apoptosis.169 

Furthermore, VEGF, the critical driver of angiogenesis, 
promotes an immunosuppressive ecosystem in the 
TME.170 The first anti-angiogenic drug, bevacizumab, an 
anti-VEGFmAb, was initially approved in 2004 as 
a treatment for colorectal cancer in combination with 
chemotherapy.171,172 Since then, research has been con-
ducted to improve patient response to bevacizumab and 
other antiangiogenic drugs, mainly monoclonal antibodies 
and small-molecule tyrosine kinase inhibitors that target 
VEGF/VEGFR and other angiogenic pathways, in combi-
nation with other anti-cancer agents.173 Several murine 
tumor models posit that the combination of ICI with anti-
angiogenic agents results in better antitumor effects, asso-
ciated with normalized vasculature, increased T cell 
infiltration, improved antigen presentation, and decreased 
immunosuppressive cell populations (Figure 2e).174–176 The 
combination of ICI with antiangiogenic agents has also 
achieved success in the clinic. For instance, the open- 
label, randomized phase 3 IMbrave150 (NCT03434379) 
study in patients with unresectable hepatocellular carci-
noma showed that atezolizumab, an anti-PD-L1 antibody, 
with bevacizumab resulted in superior overall and progres-
sion-free survival outcomes than standard-of-care sorafe-
nib, a multikinase inhibitor.177,178 This trial informed the 
FDA approval of this combination in hepatocellular carci-
noma in 2020.179 In addition, a phase 1b clinical trial 
(NCT02715531) demonstrated that in patients with unre-
sectable hepatocellular carcinoma, atezolizumab plus bev-
acizumab significantly prolonged progression-free survival 
compared with atezolizumab monotherapy.180 Collectively, 
these studies show that the combination of ICI with an 
antiangiogenic agent results in improved clinical benefit 
when compared to monotherapy with either treatment.

The extracellular matrix is another physical barrier that 
effector immune cells must overcome to effectively attack 
tumor cells. In addition to regulating the migration of 
T cells, collagen produced by cancer-associated fibroblasts, 
macrophages, and tumor cells can impair immune activity 
through interactions with leukocyte-associated immunoglo-
bulin-like receptor-1 (LAIR-1).181 LAIR-1 activation and sig-
naling on T cells, NK cells, monocytes, and DCs result in the 
inhibition of these immune cells.32,182–184 An experimental 
antibody, NC410, that competes with LAIR-1 for collagen- 
binding is currently being evaluated in a phase 1 study in 
patients with advanced and metastatic solid tumors, such as 
ovarian, gastric, and colorectal cancer (NCT04408599). In 
murine EMT6 breast and MC38 colon cancer models, the 
combination of NC410 and an anti-PD-L1/anti-TGF-β 

fusion protein antibody (bintrafusp alfa, formerly M7824) 
improved antitumor activity by remodeling the collagen 
matrix, enhancing T cell tumor infiltration, and skewing 
the tumor-associated macrophages from the immunosup-
pressive M2 phenotype to immune-favorable M1 (Figure 
2f).32 This preclinical study underscores the valuable contri-
bution of targeting the extracellular matrix in facilitating ICI 
therapy.

5.3 Repolarization of the immunosuppressive 
microenvironment

The immunosuppressive tumor microenvironment is com-
prised of cellular components and soluble factors that promote 
tumor progression and contribute to immune resistance. The 
abundance of myeloid-derived suppressor cells (MDSCs), 
Tregs, TAMs, and other immunosuppressive cells in the per-
ipheral blood or in the tumor lesion has been associated with 
poor prognosis in cancer patients.185 Immunosuppressive 
cells, together with tumor cells and stromal cells, can produce 
inhibitory cytokines (e.g., IL-10 and TGF-b) and factors (e.g., 
arginase, IDO, and collagen) and express checkpoint ligands to 
dampen the immune response.185,186

Several immuno-oncology agents that deplete or reprogram 
immunosuppressive populations by targeting markers over-
expressed on those cells are under development and have the 
potential to synergize with ICIs. Antibodies that target CD33 
(gemtuzumab ozogamicin, BI 8,366,858) and TRAIL-R2 (DS- 
8273a) were demonstrated to eliminate MDSCs (Figure 
2g).187–189 A phase 1 trial studying the combination of DS- 
8273a and nivolumab has recently been completed, but results 
are yet to be published (NCT02983006). Likewise, targeting 
colony stimulating factor-1 receptor (CSF-1 R), which regu-
lates monocyte migration, proliferation, and differentiation 
into TAMs, has been shown to reduce TAM populations 
(Figure 2g).190 The safety and efficacy of axatilimab, an anti- 
CSF1-R antibody, in combination with nivolumab in patients 
with refractory/relapsed classical Hodgkin lymphoma is the 
subject of an ongoing phase 2 trial (NCT05723055, Table 1). 
Targeting MARCO, which is expressed on immunosuppres-
sive M2-like TAMs, reprogrammed the macrophages into 
a pro-inflammatory phenotype and enhanced the antitumor 
efficacy of anti-CTLA-4 in melanoma and colon carcinoma 
models.191 Studies on mouse models also suggest that deple-
tion of Tregs using anti-CD4, anti-CD25, or anti-GITR (glu-
cocorticoid-induced tumor-necrosis-factor receptor (TNFR)- 
related protein) antibodies in combination with ICI improves 
CD8+ T cell activity, resulting in control of tumor growth 
(Figure 2g).192–194 However, several phase 1 trials demon-
strated that anti-GITR (MK-4166, MK-1248, or TRX518) in 
combination with anti-PD-1 (pembrolizumab or nivolumab) 
only resulted in limited clinical responses.195–197 A study 
investigating the safety and efficacy of another anti-GITR 
mAb, REGN6569, plus PD-1 blockade with cemiplimab is 
underway with results pending (NCT04465487). However, 
based on what is currently known, additional work will be 
required to translate the benefits of anti-GITR and ICI combi-
nation into an effective therapy.198
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Blocking the recruitment and migration of immuno-
suppressive cells can also effectively repolarize the TME 
and sensitize tumors to ICI. For example, targeting 
CXCR1 and CXCR2, which are receptors to chemokines 
essential for MDSC and tumor-associated neutrophil 
(TAN) recruitment, can prevent MDSC and TAN accu-
mulation, enhance effector cell function, and augment the 
antitumor activity of PD-1/PD-L1 blockade in preclinical 
models (Figure 2g).199–202 SX-682, a small molecule dual 
inhibitor of CXCR1 and CXCR2, is currently being inves-
tigated in combination with anti-PD-1 (nivolumab, pem-
brolizumab, or tislelizumab) in patients with colorectal 
cancer (NCT04599140), melanoma (NCT03161431; 
Table 1), pancreatic cancer (NCT05604560), and non- 
small cell lung cancer (NCT05570825).

Lastly, another potential strategy to re-invigorate effector 
cells in tandem with ICIs is to target immunosuppressive 
factors in the TME. IDO is an enzyme involved in tryptophan 
catabolism, converting tryptophan to kynurenine. In cancer 
settings, the depletion of tryptophan and accumulation of 
kynurenine promotes Treg activation and inhibits NK and 
CD8+ T cell activation, thereby resulting in 
immunosuppression (Figure 2g).203,204 The IDO inhibitor, 
epacadostat, showed promising anti-tumor activity when 
combined with pembrolizumab and nivolumab in phase 1/2 
trials.205 However, a phase 3 study of epacadostat plus pem-
brolizumab did not improve progression-free or overall sur-
vival in patients with unresectable or metastatic 
melanoma.205,206 Another metabolite that accumulates in 
the TME and plays an important role in immunosuppression 
is extracellular adenosine (eADO). The adenosine pathway 
ultimately results in the conversion of extracellular ATP to 
eADO via ectonucleotidases CD39 and CD73, which are 
overexpressed in tumors.207 Ligation of eADO to adenosine 
receptors (A2A and/or A2B) on effector cells results in the 
reduction in CD8+ T cell function, differentiation of naïve 
CD4+ T cells to Treg cells, and decreased NK proliferation, 
survival, and function.123 Immuno-oncology agents targeting 
CD39, CD73, and adenosine and their potential combinations 
have been reviewed recently by Zahavi and Hodge (Figure 
2h).123 Cytokines that support the immunosuppressive milieu 
can also be targeted to enhance ICI activity. TGF-β is 
expressed by tumor cells, stromal cells, and immunosuppres-
sive cells that can attenuate CD8+ T cell function,208,209 inhi-
bit CD8+ T cell infiltration,210 expand Tregs,211 and polarize 
neutrophils into pro-tumor populations.212 The value of 
simultaneous blockade of PD-1/PD-L1 axis and TGF-β is 
underscored by the development of bintrafusp alfa, which is 
a fusion antibody composed of an anti-PD-L1 antibody fused 
to the extracellular domain of human TGF-β receptor II 
(Figure 2g). In preclinical studies, monotherapy with bintra-
fusp alfa was shown to effectively trap TGF-β and bind PD- 
L1, resulting in decreased tumor burden and prolonged 
survival.213,214 Furthermore, treatment with bintrafusp alfa 
had superior anti-tumor activity than treatment with either 
anti-PD-L1 or TGF-β, highlighting the importance of co- 
targeting these two inhibitory molecules. A recent publication 
by Gameiro et al. reviews past and current clinical trials 
involving bintrafusp alfa.215

Conclusion

To date, the benefits of cancer immunotherapy are limited to 
certain cancer types, mainly because of the heterogenicity 
intrinsic to different tumor types and to the mechanisms 
promoting primary and acquired resistance. Efforts made in 
the field to overcome CBR-related unresponsiveness to ICI 
therapy have been focussed on overcoming T cell-related defi-
ciencies and/or suppressing immunosuppressive populations 
in the TME. However, additional effort is needed to close the 
gap in knowledge in identifying additional checkpoints that 
may be abrogating the effectiveness of ICI therapy as well as 
unknown mechanisms underlying CBR. More detailed guide-
lines are needed as well to follow mixed responses after ICI 
therapy and to define primary and acquired resistance more 
accurately, not only in the setting of a clinical trial but also in 
the real-world after agent approval.
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