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Abstract

Recent statistics on lung cancer, including the steady decline of advanced diseases and the 

dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, 

mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung 

adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical 

adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to 

adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually 

to invasive ADC. Although molecular evolution during early lung carcinogenesis has been 

explored in recent years, the progress has been significantly hindered, largely due to insufficient 

materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial 

intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin 

and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode 

lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) 

covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical 

adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed 

progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from 

normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and 

expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively 

increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive 

ADC. These findings demonstrated the feasibility and substantial potential of pathomics in 

studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin 

staining.
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Introduction

Lung cancer is the leading cause of cancer-related mortality in the United States and 

worldwide, with approximately 350 deaths per day in 2022.1 Over the past 2 decades, the 

incidence of lung cancer, particularly advanced-stage non–small cell lung cancer (NSCLC), 

has declined steadily. Meanwhile, the proportion of localized NSCLC has drastically 

increased by 4.5% annually, from 17% in 2004 to 28% in 2018, largely due to the increasing 

implementation of low-dose computed tomography (LDCT)–guided lung cancer screening 

programs.2,3 These tendencies underscore the significance and urgency of a comprehensive 

understanding of early lung carcinogenesis to improve interception and treatment of lung 

cancer.

Adenocarcinoma (ADC) is the most common primary histologic subtype of lung cancer, 

accounting for approximately 30% of all cases and 40% of NSCLCs.4 In the past 2 

decades, the proportion of lung ADC has increased in both sex in the United States, and 

a similar trend has been observed in Asian and European countries.5,6 Atypical adenomatous 

hyperplasia (AAH) is the only recognized preneoplasia of lung ADC, comprising a localized 

growth of premalignant and cuboidal cells lining the alveolar walls. AAH can progress to 

adenocarcinoma in situ (AIS), then minimally invasive adenocarcinoma (MIA), and finally 

invasive ADC. AAH, AIS, and MIA are deemed as precursors of invasive ADC.7–10 The 

widespread implementation of LDCT lung screening has contributed to the substantially 

increased detection of indeterminate pulmonary nodules (IPN), many of which are ADC 

precursors. Nevertheless, there is an insufficient understanding of IPN biology, and a definite 

diagnosis of IPN still bears a critical challenge for the management of patients with IPNs.11

Carcinogenesis is a complicated process, comprehensive understanding of which requires 

multiomics profiling. Using this approach, a series of studies from our group and others 

have explored the dynamic evolutionary progression of ADC precursors and demonstrated 

progressive accumulation of molecular alternations and progressive suppression of immune 

response from AAH to ADC.10,12–16 However, omics profiling needs a large number of 

tissue specimens, and most precancerous specimens are insufficient for comprehensive 

omics profiling. In addition, multiomics profiling is expensive, technically complicated, 

and time-consuming. These have been major challenges hindering the advance of our 

understanding during lung carcinogenesis.

Contrary to the tissue-demanding, time-consuming, and complex omics techniques, 

pathologic assessment by hematoxylin and eosin (H&E) staining is low-cost and robust 

and has been routinely used as the gold standard for cancer diagnosis.17–19 Plus, 

the technological upgrading of whole slide imaging has enabled high-quality and high-

throughput slides digitization.20,21 This digital transformation has laid a foundation for 

implementing computer-aided pathology slide analysis, termed pathomics.22,23 The fast 

development of artificial intelligence (AI), in particular deep learning, has prompted 

numerous successful pathological applications, including but not limited to mitosis counting, 

tumor early detection and grading, patient prognostication, and treatment planning in 

subspecialties such as thyroid, bladder, kidney, and leukemia.19,24–32
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To the best of our knowledge, no prior studies had yet investigated the cellular-level lung 

precancerous progression with pathomics, indicating the lagging behind in utilizing H&E 

staining to interrogate lung carcinogenesis. To fill this knowledge gap, we developed 

an AI-based pipeline utilizing tissue H&E slides to study the tumor and immune 

progressions and their coevolutions with molecular biomarkers from preneoplasia to ADC. 

Our results revealed that the trends of immune and molecular progression during early 

lung carcinogenesis are consistent with those inferred via omics profiling, highlighting the 

potential of pathomics in studying cancer biology, particularly in diseases with limited tissue 

specimens.

Materials and Methods

Patients and Study Design

This study was approved by the Institutional Review Board of The University of Texas 

MD Anderson Cancer Center and conducted following the Declaration of Helsinki. We 

collected tissue slides from 98 patients, including 59, 21, and 18 patients from Japan, China, 

and United States, respectively. The sex, age, and tobacco usage of 3 cohort patients are 

summarized in Table 1. We only kept patients of White race in the US cohort. Patients 

originating from Japan and China were Asians.

The general pipeline of this study is shown in Figure 1. First, we curated and prepared 

lung neoplasia digitized slides, then annotated representative regions of interest (ROI), and 

further segmented and annotated cells into 3 subtypes, including atypical epithelial cells 

(AEC), lymphocytes (LYM), and other cells (OC). Next, cellular-based pathomic features 

were extracted to characterize each ROI, including proportion, density, spatial entropy, and 

embedded map textures. At last, we analyzed these pathomic features’ evolution trends 

along with pathological stage progression.

Slides Acquisition and Preprocessing

H&E slides were digitized with an Aperio AT2 scanner (Leica Biosystems) at ×20 

magnification (0.50 μm/pixel). One pathologist (F.R.R.) performed the quality check to 

exclude slides with evident artifacts, such as folding tissue, and 86, 30, and 46 slides 

remained from Japan, China, and US cohorts. Two pathologists (F.R.R. and L.M.S.S.) 

further confirmed the pathological diagnosis of each slide. Of note, as one patient can 

possess multiple slides with distinct diagnoses, we took the patient’s most severe diagnosis 

among all slides as the patient-level diagnosis.

As the pervasiveness of tissue heterogeneities, 1 slide might cover multiple pathological 

morphology patterns, for example, AAH and ADC can appear in different locations on 

the same slide. Although we conducted a slide-level quality check, the quality of certain 

regions inside the slides was still unsuitable for analysis. Besides, cellular-level analysis on 

whole slides is computationally expensive.33 With these considerations, we employed the 

ROI-based manner to analyze the tumor and immune progression for lung neoplasia. For 

each slide, diagnostically informative ROIs with high tissue quality were annotated by 1 

pathologist (F.R.R.) and further checked by 3 more pathologists (A.S., J. Fujimoto., and 
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L.M.S.S.). We only retained those ROIs with the consistently diagnosed pathological stages. 

We limited the minimum width and height of selected ROIs to 500 pixels (0.25 mm) to 

ensure a sufficient number of cells in each ROI, and the maximum ROI width and height to 

5000 pixels (2.5 mm) to mitigate the computational burden. The numbers of patients, slides, 

and ROIs involved in the lung neoplasia progression analysis are shown in Supplementary 

Table S1.

To increase the number of studied ROIs, we occasionally annotated ROIs with a less severe 

pathological diagnosis, mostly normal, in certain tissue slides. The overall number of slides 

in each diagnosis and the number of annotated ROIs belonging to different diagnoses from 

each slide group with the same diagnosis are shown in Supplementary Table S2. Besides, 

we observed some evident stain color variations among ROIs delineated from different 

cohorts (Supplementary Fig. S1A). To ensure the robustness of the downstream intensity-

related cellular features, we performed the Macenko34 normalization for all ROIs, and the 

color discrepancy among ROIs has been noticeably decreased after the stain normalization 

operation (Supplementary Fig. S1B).

Cellular Segmentation and Annotation From Tumor Microenvironment

We employed the state-of-the-art nuclei segmentation model, HoVer-Net35 pretrained on 

the PanNuke data set (covering nuclei curated from 19 different tissue types, including 

lungs), to segment nuclei on our experimented ROIs from 3 cohorts. HoVer-Net robustly 

separated and segmented nuclei, as qualitatively evaluated by pathologists (F.R.R., A.S., and 

L.M.S.S.). Exemplary nuclei segmentation overlaying ROIs are exhibited in Supplementary 

Figure S2. Since purplish blue regions denoting the ribosomes and chromatin within nuclei 

are major visible cell components under the H&E staining,36 cells were adopted to refer to 

segmented nuclei. Nonetheless, the cell classification outcomes from the HoVer-Net model, 

which classified cells into 6 categories, including neoplastic, inflammatory, connective, 

dead, nonneo-plastic, and others, were deviated from the acceptable performance.

Considering the biology of preneoplastic lesions, the major occurring cell phenotypes, and 

the technical feasibility of the machine learning-based pattern recognition, 3 cell subtypes, 

including AEC, LYM, and OC, were devised and annotated (Supplementary Fig. S3). AEC 

contained tumor epithelial cells and atypical pneumocytes. OC covered normal-appearing 

pneumocytes, fibroblasts, endothelial cells, neutrophils, macrophages, and normal epithelial 

bronchial cells. With the consensus of 2 pathologists (F.R.R. and A.S.), 306 cells (95 AEC, 

88 LYM, and 123 OC) in 23 Japan ROIs and 576 cells (193 AEC, 190 LYM, and 193 OC) in 

27 US ROIs were annotated for training cell classifiers. To guarantee that these cells cover a 

heterogeneous morphology spectrum, we selected ROIs from diverse stages and patients and 

annotated cells sparsely distributed within ROIs.

Inspired by H&E stained LYM’s morphology characteristics (small, dark, and round), we 

employed 3 cellular features, including cell area, mean intensity, and cell roundness, for 

machine recognition of AEC, LYM, and OC. The value distributions of 3 features based on 

annotated cells from Japan and United States were depicted by a violin plot (Supplementary 

Fig. S4). The cellular properties of the 2 cohorts were similar. We combined all annotated 
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cells together to train the cell classifier using XGBoost37 and further applied the classifier to 

label segmented cells in 3 study cohorts.

We adopted 2 approaches to evaluate cell subtype recognition. On the cellular-level 

evaluation, we calculated the precision and sensitivity for each cell subtype and the overall 

accuracy for the whole cells. On the ROI-level visual evaluation, we used the precision to 

measure the recognition performance for each cell subtype, namely for all cells predicted 

as 1 particular cell type, divided by the true positive ones. Besides, we set 4 scales for 

ROI-level cell precision, with visual evaluation by pathologists (F.R.R. and A.S.), including 

outstanding (score = 100), good (score = 90 or 80), tolerable (score = 70 or 60), and poor 

(score < 60).

Pathomic Feature Extraction at the Region of Interest Level

Based on segmented and recognized cells inside each ROI, we extracted 4 groups 

of pathomic features: proportion, density, spatial entropy, and embedded map texture 

features.38 The cell proportion of each ROI was measured by dividing the number of 1-cell 

subtype by the total number of cells inside, which assessed the cells’ relative abundance. 

The cell density of each ROI was measured by dividing the number of 1-cell subtype by the 

occupied area, which evaluated the compactness of cells. Both cell proportion and density 

were independent measurements of the 1-cell subtype without consideration of the spatial 

arrangement among different cell subtypes. To quantify the interaction among different cell 

subtypes, we adopted Altieri’s spatial entropy,39,40 which accounts for the role of location 

and type of each cell inside the ROI to measure the heterogeneity. Besides, we embedded 

each ROI into smaller maps to summarize the cellular composition and architecture of each 

cell type.41,42 Here, we took LYMs to illustrate the generation process of embedded maps. 

We glided through the ROI from the image top-left to bottom-right with a window size 

of 50 × 50 pixels and a stride of 50 pixels. For each window, we counted the number of 

recognized LYMs as the value of the corresponding pixel of the down-sampled map. This 

map embedding procedure can be similarly applied to AECs and OCs. Several exemplary 

embedded maps are shown in Supplementary Figure S5. For each embedded map, we first 

calculated its gray-level co-occurrence matrix (GLCM). The contrast and energy of the 

GLCM matrix are then computed using the default scikit-image42 parameters to serve as a 

compact representation of the embedded maps. Supplementary Table S3 summarizes the 9 

pathomic features extracted and used in our analysis.

Lung Carcinogenesis Decoded by Pathomics

With 9 pathomic features extracted from each ROI, we evaluated each feature’s mean value 

and distribution within each diagnosis stage to assess the progression trends from normal 

to AAH, AIS, MIA, and ultimately ADC. We also compared the trends across 3 different 

cohorts (Japan, China, and United States), 2different races (Asian and White), and different 

smoking statuses (never vs current/former).

Correlation of Pathomic Features and Molecular Markers

We assessed 3 molecular markers using a subset of Japan (21 patients; 23 slides) and China 

(9 patients; 12 slides) cohorts’ matched slides and conducted correlation analysis to evaluate 
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the biological relevance of extracted pathomic features. These molecular markers comprised 

tumor mutational burden, copy number variation (CNV) burden, and allelic imbalance 

frequency. The molecular markers were measured based on the slide level, while multiple 

ROIs with distinct pathological stages were annotated on a single slide. To mitigate the gap, 

we only used the pathomic features from those ROIs with the same pathological stage as 

the slide to correlate with molecular measurements. We used Spearman’s rank correlation to 

evaluate the association of pathomics and molecular markers, with the false discovery rate 

method for the multiple testing adjustment of P values.43

Statistical Analysis

The 2-tailed Student’s t test was applied to assess the significant level of the difference 

between distinct pathological diagnoses or the difference between the 2 disparate cohorts 

with the same pathological diagnosis. All P values reported in this study were measured with 

2-sided tests, and a P value of <.05 was considered statistically significant. We implemented 

all these statistical analyses using Python 3.8.3.

Results

Computational Pipeline With Robust Performance to Recognize Different Cell Subtypes as 
Confirmed by Thoracic Pathologists

We first explored 5 ways of cell classifier training and evaluation, including training on 

Japan test on United States, training on United States test on Japan, training and testing 

on Japan via cross-validation (CV), training and testing on United States via CV, and 

mix Japan and United States via CV. The confusion matrices of 5 experiments are shown 

in Figure 2. The accuracies of 3 CVs were 0.902, 0.894, and 0.897, on Japan, US, and 

Japan-US combined data, respectively (Fig. 2A–C). However, when evaluating the models 

across different data sets, the accuracy for the Japan cell classifier dropped to 0.892 and 

that for the US cell classifier dropped to 0.859 (Fig. 2D). This indicated the importance of 

encompassing diverse data to strengthen the cell classifier’s generalization and robustness. 

Although the Japan-US fusion model showed a similar accuracy to both Japan and US 

models, its SD (0.019) was smaller compared to that of the Japan (0.046) or US (0.037) 

models, demonstrating the robustness of the model built by fused data. We thus chose it 

to recognize the subtypes of all segmented cells in annotated ROIs. Additionally, the cell 

classifier using fused data showed high precision and sensitivity scores on both AEC and 

LYM (AEC precision = 0.931; AEC sensitivity = 0.902; LYM precision = 0.910; LYM 

sensitivity = 0.937) under the 5-fold CV settings, while an inferior recognition outcome is 

observed in the OC category (OC precision = 0.854; OC sensitivity = 0.857).

To further validate the recognition performance of these 3 cell subtypes, dozens of ROIs (44 

from the Japan cohort, 22 from the China cohort, and 22 from the US cohort) were randomly 

selected for pathologists to conduct a visual assessment for each cell type’s recognition 

precision, namely for those classified as a cell subtype category, and the percentage that 

belonged to that cell subtype category. Two pathologists (F.R.R. and A.S.) performed 

visual evaluations independently. As shown in Table 2, the ROI-level precisions on both 

AEC and LYM across 3 data sets by 2 pathologists were higher than 0.80 and mostly 

Chen et al. Page 7

Mod Pathol. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



larger than 0.90, while OC’s evaluation was suboptimal, with precisions less than 0.80. In 

addition, consistency evaluation between 2 pathologists, with the denotations outstanding 

(score = 100), good (score = 90 or 80), tolerable (score = 70 or 60), and poor (score < 

60) (Supplementary Fig. S6) showed interobserver variability, highlighting the challenges of 

histologic diagnosis of ADC precursors based on morphology. Most of the inconsistencies 

only happened between neighboring denotations. For instance, the inconsistencies between 

AEC and LYM mostly appeared within the outstanding and good regions.

According to cellular- and ROI-level cell recognition evaluations, the recognition accuracy 

and precision of AEC and LYM were steady above 0.80, while OC was comparatively 

inferior. Thus, when quantifying cell proportions, cell densities, and texture features of 

embedded maps, we only considered the pathomic features from AEC and LYM.

Pathomic Features Characterize the Underlying Evolutionary Trends From Normal to 
Invasive Adenocarcinoma

The evolution trends of AEC proportion, AEC density, LYM proportion, and LYM density 

from normal to ADC are shown in Figure 3. Overall, the density and proportion of 

AEC gradually increased from normal to ADC, regardless of the cohort, ethnicity, or 

smoking status, reflecting the expansion of neoplastic cells along with the progression 

of ADC precursors. On the other hand, there was substantial variation between different 

lesions of the same stages and overlap between different stages, highlighting the profound 

heterogeneity between different patients even at the early stages of carcinogenesis. 

Additionally, the patterns of AEC density were more similar to each other between the Japan 

and China cohorts than with the US cohort, reflecting the potential racial and environmental 

differences. Interestingly, between never-smokers and current/former smokers, the difference 

in AEC proportion and density on both normal and ADC stages was minimal. However, 

current/former smokers exhibited a higher AEC proportion and density in AAH, AIS, and 

MIA stages.

Different from the AEC proportion, the LYM proportion first decreased from normal to 

AIS and then almost plateaued to ADC, which was in line with prior studies by molecular 

and immune profiling.44 Interestingly, although there were minor differences among AIS, 

MIA, and ADC, their values lay in a similar range compared to AAH and normal. Besides, 

the value range of the LYM proportion in these 3 stages was relatively narrow, mainly 

distributed between 0.05 and 0.20. Furthermore, the LYM density of all data steadily 

increased from normal to AIS and then slightly decreased until ADC, with a reverse trend 

compared to LYM proportion. The reverse evolution trend of LYM proportion and density 

also manifested when comparing subgroups (3 cohorts, 2 races, and different smoking 

statuses). Comparing between White and Asian races, the LYM proportion was more 

prominent in the Asian race in normal, AAH, and AIS stages, while the difference was 

minimal in MIA and ADC stages. The distinction of LYM proportion and density between 

never-smokers and current/former smokers was primarily slight.
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Pathomics Analysis Reveals Increasing Cellular Heterogeneity Architecture Along With 
Progression of Lung Preneoplasia

Intratumor heterogeneity (ITH), a term referring to tumors being composed of cancer cells 

and stromal cells with distinct molecular and phenotypical features,45–51 is a fundamental 

phenomenon of malignancy with important biological and clinical impacts. A series of 

studies from our group and others have demonstrated ITH of lung cancer at different 

molecular levels, and increased molecular ITH was associated with impaired T cell response 

and increased risk of postsurgical recurrence.14,45,52–59 In these studies, ITH was assessed 

at the molecular level, which is often confounded by the composition of various cell types 

in the tumor. The H&E images provide a unique opportunity to delineate ITH of ADC and 

its precursors at the cellular level. We next applied Altieri entropy to depict the evolution 

of cellular ITH during progression of lung preneoplasia. The conventional Shannon entropy 

only considered the proportions of different cell types without considering their position 

information, which was one critical factor when analyzing ROIs’ characteristics at the 

cellular level. Here, we adopted the Altieri entropy, which considers both the proportions 

and relative positions of various cells, to quantify the spatial entropy of the cells inside 

ROIs. The spatial relationship was built by setting up multiple intervals to define the 

coexistence. As shown in Figure 4, the cellular ITH architecture was more complex in ADC 

and later-stage ADC precursors than in normal lung or AAH. It is thought-provoking to 

observe that the second law of thermodynamics, “entropy always increases,” was exquisitely 

held on the lung neoplasia progression process. When comparing 2 smoking statuses, the 

Altieri entropy was almost alike in the normal and AAH stages, while on AIS and ADC 

stages, the current/former smoker group presented higher entropy values. These results 

might reveal that the current/former smokers’ tumor microenvironment presented stronger 

ITH than never-smokers in advanced stages.

We further encoded each ROI into 2 smaller embedded maps, AEC map and LYM map, to 

index the cellular spatial distribution from a textural perspective. For each embedded map, 

we explored the contrast and energy properties of embedded maps’ GLCM. The contrast 

represents the amount of local gray-level variations. A higher contrast value indicates the 

presence of edges or wrinkled structures inside. The energy measures the square root of 

uniformity of the gray-level distributions. A large energy value corresponds to a smaller 

number of gray levels, namely higher uniformity. The trends of 4 embedded map texture 

features are shown in Figure 5.

In the AEC contrast, similar to the AEC proportion, it increased steadily from normal to 

ADC. From the biology perspective, as ROIs progressed to later stages, AEC were more 

widely scattered over ROIs, thus forming more edges or wrinkled structures inside the 

generated GLCMs, and accordingly accompanied with higher contrast values. However, the 

AEC energy exhibited a reverse trend compared to AEC contrast. Likewise, as the stages 

advance, the embedded map demonstrated more diverse distributions among local regions 

inside each ROI, namely lower uniformity accompanied by a lower energy value. The LYM 

contrast and LYM energy manifested more intricate trends than their AEC counter-parts, 

similar to the more subtle trends of LYM proportion and LYM density. The LYM contrast 

increased from normal to AIS, then slowly decreased on MIA, and further reduced in the 
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ADC stage. The LYM energy manifested an opposite trend, with values steadily decreasing 

from normal to AIS and then continuously increasing from AIS to ADC. On smoking status 

subgroup analysis, the current/former smoker cohort exhibited higher AEC contrast and 

lower AEC energy in AAH, AIS, and MIA stages. Simultaneously, on LYM contrast, both 

never-smoker and current/former smoker cohorts manifested very close distribution on all 

5 stages. In contrast, never-smokers showed higher LYM energy values in AAH and ADC 

stages.

Taken together, by different approaches, the pathomics analysis revealed a higher level 

of cellular ITH architecture in ADC and later-stage ADC precursors compared to early 

stages, marking the pattern of ITH evolution during early lung carcinogenesis. Just as for 

individual cell types, large variations between different lesions of the same stages and 

considerable overlap between different stages were observed regarding cellular ITH, once 

again high-lighting the profound heterogeneity among different patients.

Pathomic Features Reveal Distinct Associations With Molecular Markers

We next assessed whether pathomic features associated with genomics features from 

the gold standard whole exome sequencing in a subset of samples whose whole exome 

sequencing data were available.52 Here, we correlated 9 pathomic features with 3 important 

genomic features associated with the evolution of lung cancer, including total mutation 

burden, CNV burden, and allelic imbalance burden. To focus on those highly correlated 

pairs, we set a cutoff of 0.3 to mask those pairs with smaller absolute correlation values as 

0.0.

As shown in Figure 6, the AEC proportion showed noticeable positive correlations with all 3 

genomic features, in line with the facts that ADC and ADC later-stage precursors have more 

neoplastic cells, a high burden of genomic abnormalities, and a higher degree of ITH. On 

the other hand, the LYM proportion showed a negative correlation with CNV burden (rho 

=−0.328) consistent with previous knowledge that high CNV burden is associated with cold 

tumor immune microenvironment.44,55,60,61 On false discovery rate–adjusted P values, all 

pairs with absolute values larger than .3 presented significance (P ≤.05). Even some pairs 

with absolute values less than .3 also showed significance. These statistical significances 

further validated the potential associations between our extracted pathomic features with 

molecular markers. Additionally, the fitted regression of these pairs also manifested a 

relatively narrow CI (Fig. 6B).

Discussion

Recent advances in pathology image digitization and AI have facilitated large-scale, 

objective, and low-cost pathomics studies. Although this approach has been applied to 

various malignancies in recent years,24–28 it has not been explored in the study on lung 

cancer precursors, for which image-based analysis such as pathomics is critically needed 

because of lack of study materials for multiomics analyses. In this study, we proposed a 

new pipeline using H&E slides to study lung ADC and its precursors. Using the H&E 

images from 3 countries, the proposed pipeline utilized the deep learning model HoVer-Net 

to segment cells inside annotated ROIs, constructed a robust cell classifier that can annotate 
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segmented cells into 3 cell subtype categories (AEC, LYM, and OC), and extracted 9 

pathomic features to characterize lung cancer evolution from normal to invasive ADC. 

The results from extracted pathomic features revealed progression of lung preneoplasia 

from different perspectives, including the proportion, density, textures of embedded maps 

of both AEC and LYM, and cell interaction and ITH architecture measured by Altieri 

entropy. Importantly, these trends obtained from pathomics are consistent with the findings 

from tissue-demanding, time-consuming, high-cost, and complicated molecular and immune 

profiling, which were further validated by correlations between pathomic features with 

molecular biomarkers. Taken together, these results demonstrated the substantial potential of 

H&E images and AI-based pathomics analysis in the study of diseases with limited materials 

for research, for example, lung preneoplasia.

Pathomics has also been broadly adopted to study a wide spectrum of lung diseases, 

including cancer, idiopathic pulmonary fibrosis, and COIVD-19, and further explored 

the utility of novel biomarkers for different clinical problems, including diagnosis, risk 

stratification, and treatment response prediction.62 To our knowledge, no prior studies 

have yet investigated the precancerous progression using the pathomics approach. With 

the increasing implementation of LDCT lung cancer screening, the drastically increased 

detection of IPNs, many of which are lung ADC precursors, demands an improved 

understanding of the biological features and more precise management of these IPNs. Lung 

carcinogenesis and its dynamic evolution have been explored by multiple different omics 

studies.10,44,52 However, it is well known that these omics techniques are expensive and 

require large tissue samples, which are often not amendable for ADC precursors. For these 

reasons, these omics studies can hardly be widely conducted, leading to lagging of our 

understanding of early lung carcinogenesis. In contrast, pathologic assessment by H&E 

staining has been introduced for more than 100 years, which is mature, robust, affordable, 

and widely available. Robust computational analytical tools to interrogate routinely used 

H&E tissue slides will be of great value to delineate the lung neoplasia progression.

As a study based on heterogeneous real-world cohorts, our work has several important 

limitations. First, although we have procured patients from 3 different countries, the cohort 

size is relatively small. Larger cohorts of ADC and its precursors of different studies are 

warranted to validate these intriguing findings before they can be widely applied. Second, 

we used a total of nearly 900 annotated cells to build the cell classifier and then used 

the cell classifier to annotate the remaining cells. We achieved accurate cell recognition 

performance on AEC and LYM. However, we had to group many other cell types important 

for the tumor microenvironment such as endothelial cells, fibroblasts, etc. into other cells. 

A more detailed cell annotation would further enhance cell recognition robustness and more 

comprehensively depict the tumor, precursor, and associated microenvironment. Moreover, 

due to computational cost, the current model did not incorporate the context information 

around the cells when conducting cellular recognition. A novel model that accounts for 

the pixels inside and outside the cellular contour and, meanwhile, is computationally 

efficient would further improve the pathomics pipelines. Additionally, a semisupervised 

or unsupervised learning strategy might be an option to make use of a large number 

of unannotated cells.63,64 Third, as a real-world study, the data quality from different 

institutions was very heterogeneous. Many factors may affect the quality and consistency 
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of acquired images, for example, different protocols in glass slide preparations, varied 

tissue persevering periods/conditions, and different protocols for H&E stains. These 

factors can lead to inferior cell segmentation and classification and inaccurate quantified 

pathomics. Standardized tissue slide preparation, preservation, and digitalization can help 

mitigate confounding factors’ effects on the pathomics studies. On the other hand, these 

heterogeneous data from different institutions testified to the robustness of our pathomics 

pipeline and indicated its potential generalizability. Fourth, H&E images have inherited 

limitations. For example, boundaries of cell cytoplasm are difficult to mark on H&E images, 

which has limited our analysis to focusing only on nuclei. Moreover, H&E images are not 

able to provide more detailed phenotypic information on cell subtypes, so we could not 

recognize T LYM, B LYM, and natural killer cells within LYM. A deep understanding 

of these cell subtypes will have to depend on high-resolution immune staining images. 

However, a similar concept of machine learning can be applied to these immune staining 

images to improve the relevant image analyses. Finally, we have solely focused on the cell 

features such as the roundness, regularity, and size of cells in this study. However, the size 

of the lesion provides critical information for the diagnosis of ADC precursors. For example, 

among all 3 cohorts, AAH and AIS showed substantial disparity and overlap. One important 

reason is that lesion size, which was not captured in the current pipeline, is one of the major 

features to distinguish AAH from AIS. Future studies incorporating lesion size information 

from whole slide images or radiographic scans may further improve the performance of 

pathomics analysis.

In conclusion, we propose a new computational pipeline to study lung neoplasia progression 

using H&E images. Extracted pathomic features revealed progression trends in line with the 

results from molecular profiling studies. As a proof-for-concept study, our work proved the 

feasibility and laid a foundation for utilizing pathomics to investigate molecular and immune 

features of diseases with limited research tissues as exampled by the lung cancer precursors.
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Figure 1. 
Pipeline illustrating the general study design. (A) Slide curation and preprocessing, region 

of interest (ROI) annotation, and cell segmentation (Seg) and recognition. (B) Extraction of 

4 groups of ROI-level pathomic features, including cell proportions, cell densities, spatial 

entropy, and embedded map textures. (C) Investigation of extracted pathomic features’ 

evolution trends from normal to preneoplasia and eventually invasive adenocarcinoma, 

and the correlation between pathomic features with molecular biomarkers. AEC, atypical 

epithelial cell; LYM, lymphocyte.
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Figure 2. 
Cell recognition confusion matrices of 3 cell types, including atypical epithelial cell (AEC), 

lymphocyte (LYM), and other cell (OC). (A) Performance evaluation among 306 Japan 

annotated cells. (B) Performance valuation among 576 US annotated cells. (C) Performance 

valuation by fusing Japan and US annotated cells. (D) Cellular classifier cross-evaluations, 

with the left confusion matrix showing recognition of US cells evaluated on cellular 

classifier trained on Japan data, and the right showing the confusion matrix of Japan cells 

when evaluated on the US data trained cellular classifier.
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Figure 3. 
The trends of 4 pathomic features, including ratios and densities of both atypical epithelial 

cell (AEC) and lymphocyte (LYM). From top to bottom lie the AEC proportion, AEC 

density, LYM proportion, and LYM density. From left to right, present the trends of the 

fusion of all 3 data sets, the comparison of 3 data sets, the comparison of 2 races, and 

the comparison between never-smokers and former/current smokers. AAH, adenomatous 

hyperplasia; ADC, adenocarcinoma; AIS, adenocarcinoma in situ; MIA, minimally invasive 

adenocarcinoma.
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Figure 4. 
The trends of spatial entropies evolving from normal to invasive adenocarcinoma 

(ADC). The mean Altieri entropy steadily increases from normal to invasive ADC. 

AAH, adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive 

adenocarcinoma.
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Figure 5. 
The trends of 4 embedded map texture features, including atypical epithelial cell (AEC) 

contrast, AEC energy, lymphocyte (LYM) contrast, and LYM energy presented from top to 

bottom. From left to right, present the trends of the fusion of all 3 data sets, the comparison 

of 3 data sets, the comparison of 2 races, and the comparison between never-smokers 

and former/current smokers. AAH, adenomatous hyperplasia; ADC, adenocarcinoma; AIS, 

adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma.
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Figure 6. 
The correlations between 9 extracted pathomic features with 3 genomic markers. (A) 

Spearman’s rank correlation matrix. Absolute correlation coefficients less than 0.3 are 

masked as 0.000 to highlight those evident correlation pairs. Asterisks denote false discovery 

rate–adjusted P values less than .05. (B) Pairwise scatter plots and their fitted regression 

lines between correlation features. AEC, atypical epithelial cell; AI, allelic imbalance; CNV, 

copy number variation; LYM, lymphocyte; TMB, tumor mutational burden.
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Table 1

Patient characteristics of the 3 study cohorts (Japan, China, and United States)

Cohort Japan (n = 59) China (n = 21) United States (n = 18)

Sex

 Female 22 37.3% 12 57.1% 17 94.4%

 Male 37 62.7% 9 42.9% 1 5.6%

Age (y)

 ≤65 12 20.3% 19 90.5% 3 16.7%

 >65 47 79.7% 2 9.5% 15 83.3%

Tobacco

 Never 24 49.7% 17 81.0% 3 16.7%

 Current/former 35 59.3% 4 19.0% 15 83.3%
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