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Abstract

Conventional designs for choosing a dose for a new therapy may select doses that are unsafe or 

ineffective, and fail to optimize progression free survival time, overall survival time, or remission 

duration. We explain and illustrate limitations of conventional dose finding designs, and make four 

recommendations to address these problems. When feasible, a dose-finding design should account 

for long-term outcomes, include screening rules that drop unsafe or ineffective doses, enroll an 

adequate sample size, and randomize patients among doses. As illustrations, we review three 

designs that include one or more of these features. The first illustration is a trial that randomized 

patients among two cell therapy doses and standard of care in a setting where it was assumed 

on biological grounds that dose-toxicity and dose-response curves did not necessarily increase 

with cell dose. The second design generalizes phase 1–2 by first identifying a set of candidate 

doses, rather than one dose, randomizing additional patients among the candidates, and selecting 

an optimal dose to maximize progression free survival over a longer follow up period. The third 

design combines a phase 1–2 trial and a group sequential randomized phase 3 trial by using 
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survival time data available after the first stage of phase 3 to re-optimize the dose selected in 

phase 1–2. By incorporating one or more of the recommended features, these designs improve the 

likelihood that a selected dose or schedule will be optimal, and thus will benefit future patients and 

obtain regulatory approval.

Introduction

Preclinical development of new targeted and immunotherapy agents for cancers and other 

diseases has created a pressing need for clinical trials to evaluate and optimize these agents. 

Members of the medical research community have become aware that conventional methods 

for choosing the dose or schedule of a new agent are inadequate (1–6). Shah et al. (7) 

provided examples of several agents with recommended doses that had high toxicity rates 

in trials or post-marketing samples following US FDA approval. Failure of conventional 

designs to reliably identify safe and effective doses apply generally, and they are likely to 

perform poorly for cytotoxics. radiation therapy, and targeted agents (2,5,7).

We review problems with conventional dose-finding designs and recommend desirable 

design features to obtain better results. We review three practical dose-finding designs 

that reliably identify safe doses that maximize progression-free survival (PFS) time, overall 

survival time (OS) time, or remission duration (RD). Our goal is to motivate medical 

researchers to include these features in their dose-finding trials.

Background and Examples

The US FDA initiated Project Optimus (7,8), “to reform the dose optimization and dose 

selection paradigm in oncology drug development”. Despite widespread agreement that 

new dose-finding designs are needed for targeted or immunological agents, it is unclear 

how to structure them for many medical settings. Conventional phase 1 designs choose a 

maximum tolerated dose (MTD) by assigning doses to successive patient cohorts in a small 

trial using a 3+3 algorithm (9) or the continual reassessment method (CRM) (10,11), using 

dose limiting toxicity (DLT) evaluated after one or two cycles of therapy. It is well known 

that a 3+3 algorithm is likely to produce poor decisions (2,12,13), with a high risk of an 

unacceptably high toxicity rate at the MTD in later trials (7,13). Most phase I samples are 

too small to reliably choose an MTD or estimate its toxicity probability. For example, if two 

DLTs are observed in six patients treated at the MTD in phase 1, a Bayesian posterior 95% 

credible interval for the probability of DLT at the MTD ranges from 8% to 71%. Treating an 

expansion cohort at the MTD does not solve this problem, because an MTD chosen based 

on a small sample has a high risk of being excessively toxic. Conventional designs assume 

that the risk of DLT increases with dose, “monotonicity”, which may be true for some agents 

but not others, and a careful analysis of all preclinical data should be done to adjudicate this 

before choosing a design. If monotonicity does not hold, dose escalation is inappropriate, 

because higher doses may be less safe or provide lower anti-cancer efficacy.

Conventional phase 1 designs ignore efficacy, such as tumor shrinkage or complete 

remission in cancers such as leukemias, which makes it impossible to choose doses based 

on risk-benefit trade-offs. Phase 1–2 designs use both toxicity and early efficacy to select a 
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doses, and are well-known to be superior to phase 1 designs (2,12,13). Phase 1–2 designs 

accommodate dose-response curves with a plateau due to saturation of PK exposure in the 

patient, whereby the response rate does not increase for higher doses, and a selected dose 

on a plateau by conventional phase 1 designs may expose patients unduly to a higher risk 

of toxicity (2). For example, if five doses have toxicity probabilities 1%, 5%, 30%, 45%, 

and 50%, and response probabilities 20%, 50%, 50%, 50%, and 50%, a plateau is reached 

at dose 2. A 3+3 algorithm or CRM with target toxicity probability 30% both are most 

likely to select dose 3, while dose 2 has the same response probability of 50% but much 

lower toxicity probability of 5%. Although superior to conventional phase 1, most phase 1–2 

designs ignore PFS time, OS time, and RD evaluated over longer follow up. Because early 

outcomes seldom are reliable surrogates for long-term outcomes (14,15), a dose chosen 

in phase 1 or phase 1–2 often fails to maximize PFS, OS, or RD (16,17). Table 1 gives 

examples, and solutions provided by novel designs (1,18–24). For example, writing R = 

response and T = toxicity, the phase 1 trial of niraparib for ovarian cancer in Table 1 might 

be replaced by a phase 1–2 trial based on the utilities U(R, No T) =100 and U(No R, T) = 

0 for the best and worst possible outcomes, with U(R, T) = 80 and U(No R, No T) = 40 for 

the intermediate outcomes, using estimated values of U as a basis for evaluating doses. This 

could be extended further to use response duration to choose a best dose, by applying the 

generalized phase 1–2 design, described below.

As an illustration, a phase 1 trial of allogeneic stem cell transplantation for acute leukemia 

(25) studied six doses of vorinostat added to a standard preparative regimen, using the 

time-to-event CRM (26) with target toxicity probability 30%. Because very few DLTs were 

observed, the design rapidly escalated and selected the highest dose, level 6, as the MTD, 

where an expansion cohort was treated, giving per-dose sample sizes of 3, 3, 3, 4, 4, and 

51. Longer follow up showed that patients treated with dose 6 had shorter OS than patients 

treated at doses 1 – 5. This effect persisted after accounting for prognostic variables (25,27). 

Since dose 6 is undesirable, but a lower dose maximizing OS cannot be determined from the 

small samples at dose levels 1 – 5, it is unclear what dose to use in clinical practice, or how 

to design a future study. This trial suggests that, in general, longer term outcomes should be 

considered, along with toxicity and early response, when selecting a dose.

A second illustration is phase 1–2 trial conducted to optimize the dose of sitravatinib, 

a tyrosine kinase inhibitor, + a fixed dose of nivolumab, an anti–programmed death 

agent, in clear cell renal cell carcinoma (ccRCC) (1). The “Late Onset Efficacy-Toxicity 

(LO-ET) design (28) was used to choose among 60-, 80-, 120-, and 150-mg doses of 

sitravatinib, which had final respective LO-ET desirability scores of 0.622, 0.787, 0.755, and 

0.630. However, longer outcomes including PFS time and later patient-reported outcomes 

measuring depression, quality of life, and hope for the future all indicated that the 120 mg 

dose was best, rather than the nominally optimal LO-ET dose of 80 mg (1).

Recommended Features of a Dose-Finding Design

To address limitations of conventional dose-finding methods, and respond to Project 

Optimus, we recommend that, when feasible depending on the setting, a dose-finding design 

should include one or more of the following features:
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Feature 1.—To choose an optimal dose, in addition to using short-term response and 

toxicity, a long-term outcome such as PFS time, OS time, or RD, evaluated over longer 

follow up should be used.

Feature 2.—Include screening rules that drop unsafe or ineffective doses. If some doses 

are dropped, enrich the sample sizes of remaining doses rather than reducing overall sample 

size.

Feature 3.—Enroll a sample large enough to make reliable inferences.

Feature 4.—If appropriate, randomize patients among doses and compare them with 

standard of care (SOC).

Feature (1) addresses the problem that early outcomes are imperfect surrogates for PFS, OS, 

or RD, so a dose maximizing response rate often does not optimize long-term outcomes. 

Feature (1) requires longer follow-up, often six or 12 months, to evaluate the long-term 

outcome. Screening rules in Feature (2) protect patients from unsafe or ineffective doses, 

and enrichment increases dose selection reliability. Feature (3) is motivated by the fact 

that the precision of any inference increases with sample size. Feature (4) ensures that 

between-dose comparisons are fair and, to protect patient safety, a monitoring rule that stops 

accrual to an excessively toxic dose should be included.

Each of the following three designs has one or more of the recommended features. The 

randomized controlled selection design, which is well established, is the least complex. The 

other two designs are novel. The generalized phase 1–2 design has intermediate complexity, 

and the phase 1–2/3 design is most complex. Properties of these designs are summarized in 

Table 2, which may provide a basis for choosing among them in a particular setting.

A Randomized Controlled Selection Trial to Study Cellular Therapy in COVID-19

If assuming monotonicity is not valid, randomization is more appropriate because it 

gives unbiased comparisons between doses. The following study (29) used a three-arm 

randomized controlled design (16,17) to select a best dose This design is not new (19,30), 

and it offers a scientifically attractive alternative to cohort-by-cohort dose-finding. The 

trial studied T-regulatory natural killer cells for treating COVID19-related acute respiratory 

distress syndrome (ARDS) (29). DLT was any regimen-related grade 3 or worse toxicity 

within 48 hours of infusion, and response was defined as the patient being alive and 

extubated at day 28. Because there was no biological or medical reason to assume 

monotonicity, 45 patients were randomized to 108 cells, 3×108 cells, or SOC, with 15 

patients per arm. DLT and response were co-primary outcomes, and OS was evaluated 

over longer follow up. Safety monitoring rules were included to shut down a dose showing 

excessive toxicity compared to SOC. A schematic of the trial is given in Figure 1.

No toxicities were observed, and the response rate was highest for 108 cells (9/15, 60%) and 

SOC (9/15, 60%) and lowest for 3×108 cells (6/15, 40%) (29). Similarly, 100-day survival 

probabilities were 86.2% for 108 cells, 77.9% for SOC, and 45.1% for 3×108 cells. Because 

a conventional phase 1 design would have escalated to the 3×108 cell arm, randomizing 

Thall et al. Page 4

Clin Cancer Res. Author manuscript; available in PMC 2024 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



saved nearly 30 patients from being treated with the higher dose, 3×108 cells, which had the 

shortest OS, and it prevented this dose from being selected.

This design is appropriate for any oncology trial of an agent when monotonicity in dose 

cannot be assumed. Two advantages of randomization are that the comparison between each 

dose of the agent and the active control is unbiased and, after the trial, patient cohorts treated 

with the selected dose or control may be expanded seamlessly to conduct a confirmatory 

randomized phase 3 trial, thus reducing phase 3 sample size. While two cell doses were 

considered in the COVID-19 ARDS trial, the randomized selection design is quite general. 

A larger number of doses, say K, may be included, and any endpoint may be used, subject to 

the practical requirement that the maximum sample size of (K+1)*n must be feasible, where 

n = number of patients per dose.

A Generalized Phase 1–2 Design to Optimize Response Duration

The following design extends phase 1–2 to include a long-term outcome. For many 

therapies, responders have a substantial risk of relapse. Clinical investigators aware of this 

problem often include a longer follow up period in a phase 1–2 dose-finding trial protocol to 

estimate response duration. A generalized phase 1–2 design, Gen 1–2, exploits this practice 

to identify a dose that maximizes the probability of long-term RD (27). The Gen 1–2 

paradigm can incorporate any phase 1–2 design, and tailor trials to accommodate a variety of 

clinical settings. Early outcomes may be binary or ordinal variables, such as toxicity grade 

and disease severity levels, and numerical utilities of (R,T) = (response, toxicity) may be 

used for choosing doses (2,3,31–35). A Gen 1–2 design schematic is given in Figure 2.

To illustrate a Gen 1–2 design, let one month be the follow up to evaluate response and 

toxicity, with long-term therapeutic success defined as the patient being alive with stable 

disease or better at six months. Stages 1 and 2 consist of a phase 1–2 trial based on toxicity 

and response, including rules to drop any dose having an unacceptably high toxicity or 

low response rate. In stage 1, doses are assigned to patient cohorts using the phase 1–2 

design’s rules. Stage 2 randomizes patients among acceptable doses, and identifies a set 

of nearly optimal candidate doses, rather than one dose. In stage 3, additional patients are 

randomized among the candidates, and all patients followed to six months. The dose with 

largest six-month RD rate is selected as optimal. The stage 3 sample size is determined by 

computer simulation to obtain a desired level of reliability. Computer simulations showed 

that a Gen 1–2 design has optimal dose selection rates up to an order of magnitude larger 

than those of conventional phase 1–2 designs (27). Computer software for implementing a 

Gen 1–2 design is available from https://github.com/yongzang2020

A Gen 1–2 design is being used for a trial of CAR-70 NK cells as targeted immunotherapy 

for solid tumors at MD Anderson Cancer Center (NCT05703854 at clinicaltrials.gov). 

Response and toxicity are evaluated in one month. To choose an optimal dose, responders 

are followed to estimate the probability of long-term success, defined as being alive and in 

remission at six months.
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A Hybrid Seamless Phase 1–2/3 Design

Korn et al. (36) considered the timing of dose optimization in drug development, and 

recommended that it should be done during or after phase 3. This solves the issues described 

above, but produces the problem that reliably comparing the rates of an outcome among 

multiple doses and a control in phase 3 requires a large multi-arm trial. Seamless phase 

2–3 designs (37–39) address this problem by combining randomized dose selection with 

confirmatory testing in a large-scale trial, with reliability defined by generalized power (GP), 

the probability of (i) selecting a truly optimal dose that provides a meaningful survival 

improvement over standard therapy, and (ii) concluding in a final test that the new agent at 

the selected dose is superior to the standard. GP quantifies how well the entire process of 

dose selection and comparative testing behaves.

Chapple and Thall (37) proposed a three-stage ‘phase 1–2/3’ design that combines phase 

1–2 and phase 3 in one trial. In stage 1, any phase 1–2 design based on [response, toxicity] 

may be used, with patients adaptively randomized among acceptably safe doses. A best 

acceptable dose is selected, and stage 2 begins with a phase 3 trial based on OS time, with 

patients randomized between a control and the new agent at the selected phase 1–2 dose. 

After a prespecified number of deaths in stage 2, dose is re-optimized to maximize estimated 

mean survival time, and phase 3 is completed with patients randomized between the control 

and the new agent at the re-optimized dose. A final treatment comparison is based on all 

response, toxicity, and survival time data (40). A phase 1–2/3 design schematic is given in 

Figure 3.

Computer simulations showed that a phase 1–2/3 design is greatly superior to conducting 

phase 3 without re-optimizing dose (37). Across a range of scenarios, dose re-optimization 

increases GP by 9% to 73%, and provides a substantial increase in expected survival time 

for patients enrolled in the trial. The price of dose re-optimization is that a phase 3 trial 

with N = 500 patients may require 10 to 100 additional patients to do phase 1–2/3. If 

eligibility criteria of the phase 1–2 and phase 3 cohorts differ, to account for heterogeneity 

so that patient prognosis is not conflated with dose effects, regression models for early 

response, toxicity, and survival time must be extended to include prognostic covariates. A 

similar approach can be taken in a Gen 1–2 design by extending regression models for 

early response and RD to include covariates. The main elaboration for phase 1–2/3 is dose 

re-optimization and dose switching during phase 3. The most demanding requirement is 

trial planning, which requires extensive computer simulations. A freely available software 

package, Phase123, to implement the design is available in an R package archive at https://

cran.r-project.org/web/packages/Phase123/.

To use Table 2 for choosing between the three designs in a given setting, one may compute 

each design’s expected sample size and trial duration for particular design parameters. For 

example, if K=4 doses are to be studied, with on average n=15 patients per dose, then the 

randomized controlled selection design would require up to (4+1)15 = 75 patients. The Gen 

1–2 design would require 4×15 + 10m = 70, 80, 90, or 100 patients, respectively, if m=1, 2, 

3 or 4 candidate doses are chosen in stage 2. The phase 1–2/3 design would require up to 60 

+ (N= phase 3 sample size) patients, where N varies with the phase 3 design. For anticipated 

accrual rate 10 patients per month, the respective accrual durations would be approximately 
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75/10 = 7.5 months for the randomized selection design, 70/10 = 7 to 100/10 = 10 months 

for Gen 1–2, and, if N=500 for phase 3, 60/10 + (10 to 100)/10 + 500/10 = 57 to 66 months 

for phase 1–2/3, plus final additional follow up time added to each of these durations

Future Research

Many important issues remain, including evaluating schedules or (dose, schedule) 

combinations (41). A complex issue is how best to give a therapy repeatedly over multiple 

cycles, with later doses chosen based on each patient’s previous doses and outcomes (42,43). 

Additional challenges include accounting for late onset toxicity or response, and low-grade 

toxicities. A major issue is incorporating pharmacokinetic (PK) and pharmacodynamic 

(PD) parameters when evaluating doses, since the area under a PK curve quantifies 

systemic exposure for a given dose. This requires additional PK and PD analyses that 

may greatly complicate adaptive decision making during a trial. The ultimate goal is to 

choose personalized doses to account for patient heterogeneity (31–33,44). Several designs 

for personalized dose-finding have been proposed (3,45–48). Future research will integrate 

precision medicine approaches with the designs discussed here to incorporate information 

from long-term outcomes, use randomization to fairly compare doses, and conduct Gen 1–2 

or phase 1–2/3 studies.
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Translational Relevance

We address limitations of conventional trial early-phase designs that hinder clinical 

translation of promising new agents by choosing suboptimal doses. These designs 

may select doses that are either unsafe or ineffective and do not optimize outcomes 

such as progression-free survival time, overall survival time, or remission duration. 

We highlight four strategies to improve this process, which include accounting for 

long-term outcomes, excluding doses that are unsafe or ineffective, ensuring adequate 

sample size, and employing randomization in dose selection. Three illustrative designs 

are discussed, each incorporating one or more of these recommendations. The examples 

provided underscore the potential of these methodologies to optimize the selected dose 

or schedule of a therapeutic intervention, thus enhancing patient outcomes and increasing 

the likelihood of securing regulatory approval. Such strategies, when effectively applied, 

could substantially improve dosage determination in oncology by maximizing long-term 

efficacy and patient safety.

Thall et al. Page 11

Clin Cancer Res. Author manuscript; available in PMC 2024 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Schematic of the randomized trial of cellular therapy for ARDS in COVID-19.
Patients were randomly assigned to different doses of cellular therapy or standard of care.
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Figure 2. Schematic of Gen 1–2 trial conduct.
In Stage 1, doses are assigned to successive patient cohorts using typical phase 1–2 design 

rules to optimize early efficacy and toxicity. The set of doses found to be acceptable 

during Stage 1 then are randomly assigned among patients in Stage 2 to select a set of 

acceptable doses and eliminate unacceptable doses more accurately. Additional patients 

then are randomized among the remaining acceptable doses and followed over an extended 

time period to establish efficacy in terms of long-term outcomes such as progression-free 

survival. The candidate dose with the best estimated long-term outcome is ultimately 

chosen.
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Figure 3. Schematic of phase 1–2/3 trial conduct.
A phase 1–2 design is conducted initially to select the optimal dose based on early efficacy 

and toxicity. A phase 3 design subsequently is activated with patients randomly assigned 

to either this dose or standard of care as a control therapy. After a prespecified number of 

long-term outcome events occur in both the treatment and control arms, dose is re-optimized 

to maximize estimated long-term outcome duration using data from patients enrolled in both 

the phase 1–2 and phase 3 stages. A final comparison is performed at the end of the trial 

using efficacy, toxicity, and long term outcome data from all patients.
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Table 1.

Examples of flaws with conventional designs and solutions provided by novel designs.

Disease Agent Design References Flaw Solution

Philadelphia 
chromosome-
positive 
leukemias

Ponatinib (oral 
tyrosine kinase 
inhibitor)

3+3 (18,19) Pick an unsafe dose of 45 mg PO 
daily continuously (18), which 
later was modified to starting 
with 45 mg PO daily then 15 mg 
PO daily once ≤1% BCR-ABL is 
achieved (19)

Include a dose toxicity 
rate safety monitoring 
rule

Non-small cell 
lung cancer

Onartuzumab 
(monoclonal antibody 
against MET)

3+3 (20,21) Pick a dose with a low response 
rate → Phase III failure

Include a dose 
response rate futility 
monitoring rule

Ovarian Cancer Niraparib (PARP 
inhibitor)

Accelerated 
titration 3+3 
design

(22,24) Pick a dose with a high grade 3 
hematologic toxicity rate

Account for toxicity 
grades and response 
using a utility function

High risk acute 
leukemias

Vorinostat (histone 
deacetylase inhibitor)

Time-to-event 
continual 
reassessment 
method (CRM)

(25) Pick a dose that yielded a worse 
overall survival than the other 
doses. Limited sample size to 
choose among the other doses

Account for long-term 
overall survival and 
enroll adequate sample 
size for reliable dose 
selection

Clear cell renal 
cell carcinoma

Sitravatinib (oral 
tyrosine kinase 
inhibitor) in 
combination 
with nivolumab 
immunotherapy

Late-onset 
efficacy-toxicity

(1) Unable to choose a dose giving 
better long-term survival

Account for long-term 
PFS or survival time 
when choosing a dose
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Table 2.

Comparisons between the three dose-finding designs

Design Sample size 
requirement*

Time 
requirement

Phases 
included

Advantages Limitations Recommended 
clinical scenarios

Randomize 
all doses 
versus an 
active control 
and select the 
best dose

(K+1) n Phase 1–2 1 + 2 Unbiased dose-vs-
control 
comparisons.
Can be expanded 
seamlessly to 
phase 3

Appropriate if 
Pr(response) and 
Pr(toxicity) are not 
monotone in dose

Randomization of all 
doses versus an active 
control is acceptable 
and selecting an 
optimal dose is the goal

Gen 1–2 K n + 10 m Phase 1–2 + 
10m more 
patients to 
estimate 
remission 
duration

1 + 2 Uses safety, 
response, and 
remission duration 
to optimize dose

Requires 10m 
more patients and 
6 to 12 months 
longer follow up 
than phase 1–2

A phase 1–2 trial 
is planned, including 
longer follow- up to 
assess duration of 
response/remission

Phase 1–2/3 K n + phase 3 
sample size

Phase 1–2 + 
Phase 1–2/3

1 + 2 + 3 Uses survival time 
to re-optimize the 
phase 1–2 dose 
and to do phase 3 
comparison

Requires time and 
resources for 
conducting both 
phase 1–2 and 
phase 3.

A phase 3 trial is being 
considered, but better 
dose optimization is 
desired

*
K = number of doses considered, n = average number of patients per dose in phase 1–2, m = number of candidate doses chosen in stage 2 of a Gen 

1–2 trial.
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