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Summary

Background: In sepsis and acute respiratory distress syndrome (ARDS) heterogeneity has 

contributed to difficulty identifying effective pharmacotherapies. In ARDS, two molecular 

phenotypes (“Hypoinflammatory” and “Hyperinflammatory”) have consistently been identified, 

with divergent outcomes and treatment responses. In this study, we sought to derive molecular 

phenotypes in critically ill adult sepsis patients, determine their overlap with prior ARDS 

phenotypes, and whether they respond differently to treatment in completed sepsis trials.

Methods: We used clinical data and plasma biomarkers from two prospective sepsis cohorts 

[VALID (N=1140) and EARLI (N=818)] in latent class analysis (LCA) to identify the optimal 

number of classes in each cohort independently. We used validated models trained to classify 

ARDS phenotypes to evaluate concordance of sepsis and ARDS phenotypes. We applied 

these models to the PROWESS-SHOCK and VASST trials to assign phenotypes and evaluate 

heterogeneity of treatment.

Findings: A two-class model best fit both VALID and EARLI (p<0.0001). In VALID, 804/1140 

(71%) were classified as Hypoinflammatory, and 336/1140 (29%) as Hyperinflammatory; in 

EARLI, the proportions were 530/818 (65%) and 288/818 (35%) respectively. Comparatively, we 

observed higher plasma pro-inflammatory cytokines, more vasopressor-use, more bacteraemia, 

lower Protein C, and higher mortality in the Hyperinflammatory phenotype (p<0.0001 for 

all). Classifier models indicated strong concordance between sepsis phenotypes and previously 

identified ARDS phenotypes (area under the curve 0.86-0.96, depending on model). Findings were 

similar excluding participants with both sepsis and ARDS. In PROWESS-SHOCK, 1142/1680 

(68%) were Hypoinflammatory and 538/1680 (32%) Hyperinflammatory, and response to 

activated protein C differed by phenotype (p=0.0043). In VASST, phenotype proportions were 

similar to other cohorts; however, no treatment interaction with the type of vasopressor was 

observed (p=0.72).
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Interpretation: Molecular phenotypes previously identified in ARDS are also identifiable in 

multiple sepsis cohorts and respond differently to activated protein C. Molecular phenotypes may 

represent a treatable trait in critical illness beyond the patient’s syndromic diagnosis.

INTRODUCTION

Sepsis and acute respiratory distress syndrome (ARDS) have for decades been referred to 

as “graveyards for pharmacotherapy” on account of the countless pharmaceutical agents 

that showed promise in pre-clinical and early-phase clinical studies, only to fail in larger 

randomised controlled trials (RCTs).(1, 2, 3) One reason for these repeated failures may 

be the considerable biological heterogeneity that characterizes sepsis and ARDS, where 

both syndromes are defined entirely by non-specific features, rather than specific pathologic 

entities.(2, 3) Taking a cue from oncology,(4, 5, 6) critical care has begun to make progress 

towards identifying molecular phenotypes; in some cases, these phenotypes appear to 

respond differently to therapies, suggesting that a precision medicine approach may hold 

promise for ending the therapeutic drought.(7, 8)

To that end, latent class analysis (LCA) of clinical and protein biomarker data has 

consistently identified two distinct molecular phenotypes of ARDS in multiple cohorts, 

including one cohort that enrolled only sepsis-associated ARDS patients.(9, 10, 11, 12, 

13, 14, 15, 16) These phenotypes, termed “Hyperinflammatory” and “Hypoinflammatory” 

based on patterns of inflammatory plasma cytokines observed in each group, have widely 

divergent clinical features, including significantly different clinical outcomes, and appear 

to respond differently to therapies including mechanical ventilation,(9, 17) fluid therapy,

(10) simvastatin,(11) and corticosteroids(13). If molecular phenotypes are consistently 

identifiable across critical illness syndromes, this finding could lay the foundation for a 

new taxonomy, opening the door to targeted clinical trials and therapies. However, it remains 

unknown whether these ARDS phenotypes are also observed in sepsis and whether they 

respond differently to therapies applied in sepsis.

To address these knowledge gaps, we analysed clinical and biological data from two 

observational cohorts and two RCTs. We hypothesized that in sepsis, LCA would identify 

phenotypes similar to the molecular phenotypes previously identified in ARDS. Since 

plasma protein C levels are consistently lower in the Hyperinflammatory phenotype, 

we hypothesized that this phenotype would preferentially benefit from activated Protein 

C. Finally, we hypothesized that the Hypoinflammatory phenotype would benefit from 

vasopressin use compared to norepinephrine, based on prior data suggesting a benefit among 

less severe septic patients.(18)

METHODS (Overview Figure 1)

Observational Patient Cohorts

To test the hypothesis that in sepsis we would identify similar molecular phenotypes as 

in ARDS, we performed LCA in two prospective observational cohorts. The first was 

the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study, an ongoing 

prospective cohort of critically ill patients enrolled on the morning after admission to the 
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medical, surgical, trauma or cardiovascular ICUs at Vanderbilt University Medical Center. 

VALID participants were included for this analysis if they met diagnostic criteria for sepsis 

on ICU day 1 or 2. Although in VALID the number of patients excluded from the study 

due to unavailability of protein biomarkers was larger, the demographics and baseline 

characteristics of these patients were similar to the studied population (Table S1). The 

second cohort was the Early Assessment of Renal and Lung Injury (EARLI) study, an 

ongoing prospective cohort of critically ill patients enrolled on or before ICU day 1 at UCSF 

Medical Center and Zuckerberg San Francisco General Hospital. Patients are identified 

in the Emergency Department and eligible for the study if an ICU admission has been 

requested for the patient. EARLI participants were included for this analysis if they met 

criteria for sepsis on ICU day 1 or 2.

Figure S1A and S1B show the screening and selection of patients in the two cohorts. Details 

of both study protocols and inclusion/exclusion criteria have been previously published.

(14) Studies were approved by their respective Institutional Review Boards, and informed 

consent was obtained from subjects or their surrogates, or in some cases waived, as 

previously described.(19, 20)

In both studies, diagnosis and source of sepsis and/or ARDS were determined by at least 

two board-certified physicians independently reviewing all clinical data from participants’ 

hospitalizations, blinded to biological data, and prior to LCA. Sepsis was defined using 

Sepsis-2 criteria, since both cohorts began enrolling before publication of Sepsis-3 in 

2016,(21) and ARDS was defined using the American-European Consensus Conference 

definition.(22)

Assay Procedures

Biological samples were collected on ICU day 2 in VALID, and either in the emergency 

department or ICU day 1 in EARLI. Blood samples were processed and plasma stored 

at −80°C until batch quantification. Plasma protein biomarkers, selected on the basis 

of contributing meaningfully to prior LCAs in ARDS,(9, 11, 12) were measured using 

multiplex bead-based assays or enzyme-linked immunoassay (ELISA)(details in online 

supplement) and included interleukin (IL)-8, IL-6, Protein C, soluble tumour necrosis 

factor receptor (sTNFR)-1, intracellular adhesion molecule-1, and plasminogen activator 

inhibitor-1 (EARLI only).

Latent Class Analysis

We performed LCA in each cohort independently using the same procedures as prior studies.

(14, 23) Clinical and protein biomarker data from the time of study enrolment were used 

as class-defining variables in the modelling (Table S2). Outcome data and severity scores 

(e.g. APACHE and SOFA scores) were not included in the modelling. We built five models, 

consisting of one-five classes respectively. We determined the best-fitting model using the 

Bayesian Information Criteria (BIC), Vuong-Lo-Mendell-Rubin likelihood ratio (VLMR) 

test, entropy, and the number of observations in the smallest class.(23) Once the optimal 

model was identified, we assigned class membership based on the highest probability. 

Details of data handling and model development are provided in the online supplement. 
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We compared differences between classes in clinical characteristics and outcomes, which 

included ICU-free days (censored at day 28) and in-hospital mortality.

In order to determine whether findings were being driven by sepsis patients with ARDS, we 

repeated the LCA in each cohort excluding patients that developed ARDS on either Day 1 or 

2 of study enrolment.

Classifier Models

Biomarker-based parsimonious classifier models (PCMs) have been developed and validated 

to accurately classify ARDS phenotypes.(24) PCMs rely on research plasma biomarkers 

such as IL-8, Protein C, and/or sTNFR-1, serum bicarbonate, and vasopressor-use and were 

trained in a combined cohort of three ARDS RCTs and validated in a fourth RCT. To 

determine the concordance of the LCA-derived sepsis phenotypes in this analysis with 

previously identified ARDS phenotypes, we classified phenotypes using several PCMs 

in EARLI and VALID, using the coefficients that were generated in ARDS cohorts. 

PCM classification performance was compared to the gold standard of LCA-derived class 

assignment using the area under receiver-operating characteristic curves (AUC).

Since plasma biomarkers are not routinely available in clinical practice, we have also 

previously developed and validated a classifier model which uses routinely available clinical 

data to identify LCA-derived phenotypes. This clinical-data-only classifier model (CCM), 

which was derived using machine learning algorithms (XGBoost), also performs with high 

accuracy.(17, 25) Briefly, the CCMs were trained in a combined cohort of three prior 

ARDS RCTs to predict the Hyperinflammatory phenotype using baseline vital signs and 

laboratory values. The model was validated in a holdout RCT of ARDS. We further tested 

the concordance of the sepsis phenotypes identified in this analysis with those previously 

identified in ARDS by applying the CCM in EARLI and VALID. For both the PCM and 

CCM, we used a probability cut-off of ≥ 0.5 to assign the Hyperinflammatory phenotype. 

Further details of these analyses are in the online supplement.

Testing for Heterogeneity of Treatment Effect

To determine whether the molecular phenotypes respond differently to randomly allocated 

treatments for sepsis, we undertook secondary analyses of two completed RCTs. 

PROWESS-SHOCK was a double-blind placebo-controlled RCT testing recombinant human 

activated Protein C (drotrecogin alfa; APC) for the treatment of septic shock in 1680 

patients.(26) APC did not significantly reduce mortality at 28 days. VASST was a double-

blind RCT comparing norepinephrine to early vasopressin for treatment of catecholamine-

dependent septic shock in 778 patients.(18) Vasopressin did not significantly reduce 

mortality compared to norepinephrine. Since plasma samples or sufficient biomarker data 

were unavailable for LCA in these trials, molecular phenotypes were identified using the 

CCM described above. In a subset of VASST, a limited set of protein biomarker data were 

available for comparison between the molecular phenotypes. We tested for heterogeneity 

of treatment effect (HTE) using logistic regression models with phenotype classification, 

treatment allocation, and their product as predictors, and the primary study outcome in both 

studies, 28-day mortality, as the dependent variable. As the CCM generates a probability 
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of belonging to the Hyperinflammatory phenotype, we repeated the above analysis using 

probability of Hyperinflammatory classification, treatment allocation, and their product as 

the predictors in the model.

Other statistical considerations

Descriptive data are presented as mean (± standard deviation; SD) for normally distributed 

data, median (interquartile range; IQR) for non-normally / skewed data, or count (%), and 

we tested differences between groups using the Student’s t-test, Wilcoxon rank test, or χ2 

test, respectively. Additionally, when comparing counts between two groups, we generated 

odds ratios (OR) with 95% confidence intervals (95% CI). We plotted Kaplan-Meier 

survival curves censored at day 28 from study enrolment day to compare survival between 

phenotypes stratified by treatment groups. LCA was performed using Mplus (V.8.1). All 

other analyses were performed using R-software on RStudio V.1.0.143.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all the 

data and final responsibility to submit the manuscript for publication.

RESULTS (see Figure 1 for overview)

Study population: VALID (N = 1140) and EARLI (N =818)

Baseline characteristics of the populations are described in Table 1. Patients in VALID were 

younger (56; SD 16 years) compared to EARLI (65; SD 16 years), and proportionately 

more patients were white (VALID 85% vs 48% EARLI). Vasopressor-use at enrolment 

was lower in VALID (48%) compared to EARLI (56%), although Acute Physiology and 

Chronic Health Evaluation (APACHE) II scores were similar. Prevalence of bacteraemia, as 

determined by positive blood cultures within seven days of study enrolment, was similar in 

the two cohorts (VALID 20% and EARLI 18%). In-hospital mortality was higher in EARLI 

(29%) compared to VALID (24%).

Latent Class Analysis in VALID and EARLI

In VALID, as more classes were added to the model, the BIC decreased. The greatest 

decrease, however, was observed when going from a 1-class to a 2-class solution. Based on 

VLMR, the 2-class model was a better fit than a 1-class model (p<0.0001; Table S3), and 

models with more classes did not show significantly improved fit. Therefore, we determined 

the 2-class model as the optimal fitting model for this cohort. Based on highest probability 

of class membership, 804 participants (71%) were classified to Class 1 and 336 (29%) to 

Class 2.The median probability of class membership was high, with a median of 0.99 in both 

class 1 (IQR 0.99–1.0) and Class 2 (IQR 0.91–1.0).

In EARLI, similar patters were observed with the BIC as VALID. Based on VLMR, the 

2-class model was a better fit than a 1-class model (p<0.0001; Table S3), and models 

comprising more classes did not fit significantly better. 530 (65%) participants were 

assigned to Class 1 and 288 (35%) were assigned to Class 2. The median probability for 
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class membership in EARLI was 0.99 in both class 1 (IQR 0.96–1.0) and Class 2 (IQR 

0.89–1.0).

Comparison of Class Features in VALID and EARLI

Class 1 and Class 2 had divergent baseline characteristics, with similar patterns across both 

cohorts (Tables S4–5). Demographics were largely similar between the two classes. Class 2 

was defined by higher levels of proinflammatory cytokines such as IL-8, IL-6, sTNFR-1 and 

markers of organ dysfunction such as creatinine and bilirubin (Figures 2A–B). Conversely, 

platelets, serum bicarbonate, and protein C levels were lower in Class 2. Vasopressor-use 

was more common in Class 2 than Class 1 (VALID: 69% vs 39%; EARLI: 85% vs 41%; 

p<0.0001 for both). In both cohorts, bacteraemia was more common in Class 2 than Class 1 

(VALID 31% vs 16%; OR 2.3, 95% CI: 1.7 – 3.2; EARLI 31% vs 10%, OR 3.9, 95% CI: 2.7 

– 5.6 ). Species level breakdown for positive blood cultures in each phenotype is presented 

in Figures S2A–B.

Outcomes were significantly worse in Class 2 compared to Class 1 (Table 2). In VALID, 

in-hospital mortality was 43% in Class 2 compared to 17% in Class 1 (OR 2.5, 95 CI: 2.1 – 

3.1); in EARLI, these proportions were 45% and 20% respectively (OR 2.3, 95% CI: 1.8 – 

2.9).

Concordance of Sepsis Classes with Previously Identified ARDS Phenotypes

When comparing phenotype classification using PCMs against LCA-derived classes, we 

observed high performance metrics for the PCMs in VALID (AUC’s 0.90-0.92; Figure S3A) 

and EARLI (AUC’s 0.93-0.96; Figure S3B), indicating high concordance between the sepsis 

classes and prior ARDS phenotypes (i.e. Class 1 corresponded to Hypoinflammatory and 

Class 2 to Hyperinflammatory phenotype). Details of individual model performance in each 

cohort, including confidence intervals of the AUCs and sensitivity and specificity using a 

probability cut-off of ≥ 0.5 to assign phenotype are presented in Table S6.

The previously validated CCM also indicated high concordance, with AUC’s in VALID 

and EARLI of 0.87 (95% CI: 0.85 – 0.89) and 0.90 (95% CI: 0.88 – 0.92) 

respectively. Hereafter, we refer to the sepsis classes as Hypoinflammatory (Class 1) and 

Hyperinflammatory (Class 2) phenotype for both cohorts.

Analyses Excluding ARDS

We repeated the LCA in both cohorts excluding participants diagnosed with ARDS on 

study days 1 or 2, leaving 768 participants in VALID and 572 in EARLI. Findings were 

very similar to the main analyses, with the 2-class model determined to be the best 

fitting for both cohorts (Table S3), with similarly divergent baseline characteristics and 

worse outcomes in the Hyperinflammatory phenotype (Table S7–8). The AUCs of the 

parsimonious ARDS classifier models in this subset ranged from 0.87-0.95 (Table S6), again 

indicating concordance of these sepsis-only phenotypes with previously identified ARDS 

phenotypes.
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Molecular Phenotypes in PROWESS-SHOCK and VASST

Next, using the CCM in PROWESS-SHOCK, 1142 (68%) participants were classified to 

the Hypoinflammatory and 538 (32%) to the Hyperinflammatory phenotypes. We observed 

divergent baseline characteristics between the phenotypes (Table S9). Bacteraemia was 

more common in the Hyperinflammatory phenotype (37% vs 26%; OR 1.7, 95% CI: 

1.4 – 2.2; Figure S2C). We observed significantly lower protein C and higher PAI-1 in 

Hyperinflammatory compared to Hypoinflammatory participants (p<0.0001 for both; Figure 

S4A), consistent with findings in EARLI (Table S5), and prior findings in ARDS molecular 

phenotypes.(9, 10, 11) 28-day mortality was significantly higher in the Hyperinflammatory 

compared to the Hypoinflammatory phenotype (36% vs 20%; OR 2.2, 95% CI: 1.7 – 

2.7; Table 2). Notably, we observed a significant treatment interaction between APC 

randomization groups and the molecular phenotypes for the primary outcome (p=0.0043 

for the interaction term), where APC treatment associated with higher mortality in the 

Hypoinflammatory phenotype (APC 23% vs Placebo 17%) and lower mortality in the 

Hyperinflammatory phenotype compared to placebo (APC 32% vs Placebo 39%). The 

survival plot for phenotypes stratified by treatment groups are presented in Figure S5A. 

Next, we evaluated the interaction of the continuous probabilities generated by the CCM 

for belonging to the Hyperinflammatory phenotype with the randomisation allocation group. 

Using this continuous scale, we observed similar findings, with a significant coefficient for 

the interaction term of probability and phenotype to predict mortality (p = 0.0048), with 

increased mortality associated with APC therapy in patients with lower probability of the 

Hyperinflammatory phenotype, and decreased mortality with APC therapy in patients with 

higher probability for the Hyperinflammatory phenotype (Figure 3).

In VASST, using the CCM, 455 (58%) of participants were Hypoinflammatory and 323 

(42%) were Hyperinflammatory. Differences in baseline clinical characteristics between 

the phenotypes are similar to all three other cohorts and described in Table S10. In a 

subset of patients with available biomarker data (n=285), pro-inflammatory biomarkers such 

as IL-6, IL-8, and TNF-α were significantly higher in the Hyperinflammatory phenotype 

(Figure S4B), consistent with the LCA-derived phenotypes in EARLI and VALID. 28-day 

mortality was significantly higher in the Hyperinflammatory phenotype compared to the 

Hypoinflammatory phenotype (51% vs 28%, OR 2.6, 95% CI: 2.0 – 3.6); Table 2). We 

did not observe a significant treatment interaction with randomised vasopressor intervention 

and the phenotypes for the primary outcome (p=0.72 for the interaction term; survival plot 

Figure S5B).

DISCUSSION

For the first time to our knowledge, we report that previously described molecular 

phenotypes of ARDS are consistently identifiable in multiple cohorts of critically ill 

sepsis patients. Moreover, even after excluding patients with ARDS from these analyses, 

the identified sepsis phenotypes were highly concordant with the Hypoinflammatory and 

Hyperinflammatory ARDS phenotypes. Including our prior studies in ARDS, we have 

now evaluated these phenotypes in over 10,000 critically-ill patients. We also report a 

higher prevalence of bacteraemia in the Hyperinflammatory phenotype, which has not been 
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described previously. Finally, in retrospective analysis of a completed RCT, we observed 

differential responses to APC between the phenotypes, with survival benefit for APC in the 

Hyperinflammatory and harm in the Hypoinflammatory phenotype.

These findings have several important implications. First, the finding of molecular 

phenotypes across ARDS and sepsis suggests that this phenotyping schema captures a well 

conserved and relatively uniform response to critical illness that is consistently detectable 

by quantifiable measurements. Our findings imply that the Hyperinflammatory phenotype 

may represent a consistent clinical-biological “trait” present in many critically ill patients 

irrespective of syndromic diagnoses. The identification of these molecular phenotypes in 

patients with acute hypoxaemic respiratory failure without ARDS further substantiates this 

hypothesis.(27) Further, the finding that these phenotypes respond differently to numerous 

interventions,(9, 10, 11, 13, 17) now including activated protein C, suggests that this “trait” 

may be treatable.

In both sepsis and ARDS, current syndromic definitions rely exclusively on clinical data 

without consistent links to pathology or biology. The molecular phenotyping schema 

presented in our study support consideration of a shift in that paradigm.(28) The phenotypes 

described in these analyses are defined by inherent clinical and biological features, which 

are combined in multivariate models. The reduction of dimensionality, both in terms of 

biology and complexity, offered by these phenotypes may be more likely to reveal biological 

pathways that are amenable to interventions. To that end, the finding of heterogeneity of 

treatment effect with APC adds to a list of interventions such as simvastatin, corticosteroids, 

fluid management and positive end-expiratory pressure which appear to have phenotype-

specific effects in retrospective analysis of previous studies, further supporting the need for 

prospective testing of phenotype-specific responses in future trials.(9, 10, 11, 13)

Molecular phenotypes offer a potential pathway to prognostic and/or predictive enrichment 

of future trials. However, it is unclear whether the observed potential benefit of APC in 

the Hyperinflammatory phenotype is due to prognostic or predictive enrichment or both. 

Given APC is purported to have antithrombotic and anti-inflammatory effects in sepsis, 

we speculate that the observed treatment benefit in the phenotype characterized by higher 

levels of endothelial injury markers and more severe dysregulation of coagulation and 

fibrinolysis (i.e. the hyperinflammatory phenotype) may be due to predictive enrichment 

of the population. This hypothesis is further reinforced by the finding that the effect size 

of benefit was more evident as probabilities of belonging to Hyperinflammatory phenotype 

increased. In the original trial,(26) no differential treatment effect was observed when the 

population was stratified by either plasma protein C levels or sepsis severity, suggesting 

that the phenotypes capture information that is not readily captured by simpler approaches. 

Furthermore, a previous LCA performed on PROWESS SHOCK, using only clinical data 

(no protein biomarkers) as class-defining variables, identified six phenotypes with no 

significant HTE.(29) This finding is consistent with other secondary analyses of ARDS 

RCTs that have shown the importance of including protein biomarkers for identifying 

clusters where significant HTE was observed with the randomized interventions.(30) Our 

approach contrasts with the prior LCA of PROWESS-SHOCK because we first used 

biological data to identify the phenotypes, and subsequently trained models using only 
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clinical data to identify these phenotypes, as opposed to using only clinical data to identify 

de novo phenotypes. Nevertheless, the findings of HTE in the phenotypes in PROWESS-

SHOCK should be interpreted with caution because these are secondary analyses, and 

further uncertainty is introduced because the CCM is a simplified classifier of the LCA-

derived phenotype.

Although this phenotyping schema appears to be robust, reproducible, and generalisable, 

several important knowledge gaps remain. First, it should be unambiguous that the routine 

clinical identification of the phenotypes is currently unwarranted. The main purpose of 

the phenotypes at this stage is to provide investigators with a consistent biologically 

and clinically meaningful schema that reduces the observed heterogeneity in critical 

illness syndromes, which have historically been treated as uniform entities in prior RCTs. 

Specifically, this phenotyping schema provides an intuitive approach to testing interventions 

in groups with divergent biology and trajectories; these groups have otherwise been treated 

uniformly in prior RCTs. Currently, there is an international collaboration that proposes 

to evaluate interventions in a phase II clinical trial in patients stratified according to these 

molecular phenotypes (NIHR154493).

Second, the optimal approach to identifying the phenotypes at the bedside remains 

uncertain. While our classifier models (PCM and CCM) are both promising in their 

respective performance metrics, each has their own limitations. The PCMs we have 

previously described are advantageous as they include several of the protein biomarkers 

(IL-8, IL-6, sTNFR-1, and protein C) that define the phenotypes. However, point-of-care 

quantification for most of these biomarkers remains experimental and is currently not widely 

available. In a small study of patients with COVID-19 associated ARDS, we have reported 

feasibility of point-of-care quantification of IL-6 and sTNFR-1 and real time, prospective, 

phenotype classification using PCMs.(31) These findings require validation in larger studies, 

and the ongoing PHIND study is currently enrolling patients to evaluate feasibility and 

validity of this approach in a multicentre observational study (NCT04009330).

While the CCM does not rely on quantification of protein biomarkers, its implementation 

as a real time classification tool in the clinical setting is limited by two factors. First, 

the XGBoost algorithm is a “black box”, meaning its inner workings are not visible to 

the operator. This characteristic may limit confidence of the bedside clinician to prescribe 

an intervention based on the CCM and/or use it for clinical decision-making. Second, 

the time period during which the CCM is effective beyond the initial phase of critical 

illness remains unknown. This information will be critical, as several interventions that 

patients receive early in their care seek to normalise physiology (e.g. lower heart rates, 

increase blood pressure, etc), which may impact model performance. Although the latent 

classes appear to remain stable over the first three days of critical illness,(32) data 

evaluating the biological trajectories of the phenotypes and clinical implications thereof 

remains underdeveloped and represents a third important unaddressed knowledge gap of 

our phenotyping approach. A fourth knowledge gap that warrants further investigation is 

whether including anti-inflammatory biomarkers and/or biomarkers of endothelial recovery 

in LCA models may point towards additional subclasses and/or phenotypes. We would 

anticipate that the addition of a single such biomarker is unlikely to dramatically alter 
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the findings of the presented LCA given that the phenotypes, by definition, are identified 

through multivariate modelling algorithms. To that end, the ARDS phenotyping schema 

described by Bos and colleagues only identified two phenotypes (which were biologically 

aligned with the Hypoinflammatory and Hyperinflammatory phenotypes), despite including 

IL-10 (an anti-inflammatory protein),(33) reinforcing the hypothesis that several biomarkers 

of alternative pathways will likely be needed to discover additional novel classes.

Our study has several strengths. LCAs were performed in two large independent 

observational cohorts, and the phenotypes’ clinical value evaluated in two RCTs. The 

identification of phenotypes using the CCM suggests that the phenotypes may be clinically 

implementable in the near future. This study also has some important limitations. We present 

only secondary analyses of RCTs conducted retrospectively. Another important limitation 

of this study, and more broadly the proposed phenotyping schema, is that it is likely 

too simplistic and fails to fully capture the complexity of these population. For example, 

other groups have described between three to four subgroups in critically ill patients with 

sepsis, based on transcriptional(34, 35, 36, 37) or clinical data(38). Specifically, in this 

schema, the Hypoinflammatory phenotype is the majority class yet remains biologically 

undifferentiated and heterogeneous. Taken together, these findings suggest that there are 

probably other meaningful subgroups subsumed within the Hypoinflammatory phenotype. 

More importantly, the evaluation of how these other phenotyping schema overlap with the 

Hypoinflammatory and Hyperinflammatory phenotypes, and whether these phenotypes can 

be cumulatively informative for patient care, are exciting future questions for the field. 

We anticipate that incorporating additional high resolution biological and clinical data will 

add additional complexity to these phenotypes, with ongoing iteration, refinement, and 

improvement needed. Further, the use of corticosteroids and other immunomodulatory drugs 

prior to biomarker quantification may have influenced the phenotype classification. This 

data was not systematically recorded in EARLI and VALID. Finally, although the CCM 

showed good face validity, its performance may further be improved by including variables 

that are known to be important in prognostication of sepsis and the inflammatory state, such 

as lactate and ferritin,(39, 40, 41) which were unavailable in our training data sets.

In summary, molecular phenotypes, which were previously described in ARDS, are also 

identifiable in sepsis and have now been evaluated in over 10,000 critically ill patients. 

The Hyperinflammatory phenotype is consistently and reproducibly associated with higher 

pro-inflammatory biomarkers, lower platelets and protein C, higher incidence of shock 

and bacteraemia, and increased mortality. These phenotypes appear to respond differently 

to activated protein C, adding to evidence accumulated from studies of simvastatin, fluid 

management, and mechanical ventilation that the hyper-inflammatory phenotype may 

represent a treatable trait. Further studies prospectively testing this hypothesis are needed 

to definitively determine whether the current paradigm of syndromic classification of critical 

illness should be amended to incorporate biological phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched PubMed and Google Scholar for either sepsis or ARDS, using the additional 

search terms “molecular phenotypes”, “phenotypes”, “heterogeneity”, and “heterogeneity 

of treatment effect” for research published between January 2010 and January 2023, 

with no language restrictions. Additionally, we considered work by co-authors and 

colleagues on the subject of critical care phenotyping. Heterogeneity is increasingly 

being recognised as a principal factor leading to the multitude of negative clinical trials in 

critical illness syndromes such as sepsis and acute respiratory distress syndrome (ARDS). 

To mitigate this heterogeneity in ARDS, investigators have consistently described two 

phenotypes of ARDS, called the Hypoinflammatory and Hyperinflammatory phenotypes, 

with distinct clinical characteristics and outcomes, and they appear to respond differently 

to randomised interventions in secondary analyses of randomised control trials. It is not 

known whether these phenotypes are specific to ARDS or whether they also exist in other 

critical illness syndromes such as sepsis.

Added value of this study

In this study, for the first time, we report that the Hypoinflammatory and 

Hyperinflammatory phenotypes were also identifiable in two observational cohorts of 

critically ill patients with sepsis. The Hyperinflammatory phenotype was associated 

with higher proinflammatory cytokines and organ failure. Using machine-learning 

models, we classified the phenotypes in two previously-conducted trials of sepsis and 

observed similar characteristics. In all four cohorts, mortality was significantly higher 

in the Hyperinflammatory phenotype, and these patients had longer ICU stays. In the 

PROWESS-SHOCK trial, which originally showed no treatment benefit, we observed 

differential treatment response to activated protein C, with apparent treatment benefit in 

the Hyperinflammatory phenotype and harm in Hypoinflammatory phenotype.

Implications of all the available evidence

Including this study, we have now identified the Hypoinflammatory and 

Hyperinflammatory phenotypes in over 10 000 critically ill patients with sepsis 

and/or ARDS, including paediatric populations. These findings suggest that the 

Hyperinflammatory phenotype may represent a treatable trait that goes beyond 

syndromic diagnosis. These phenotypes may enhance future clinical trials by providing 

investigators with a biologically and clinically consistent schema that enriches critical 

care populations, which historically have been treated as uniform in prior RCTs. Such 

prospectively designed trials will be required prior to use of these phenotypes for clinical 

decision-making.
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Figure 1: Summary of the Analysis Plan.
Latent class analysis (LCA) was used in VALID and EARLI because sufficient number 

of biomarkers were available across the entire cohort to recapitulate prior work used for 

discovering molecular phenotypes. In comparison, in PROWESS-SHOCK and VASST 

protein biomarker availability was insufficient for performing LCA as per our prior 

procedures. VALID: Validating Acute Lung Injury markers for Diagnosis; EARLI: Early 
Assessment of Renal and Lung Injury; PROWESS-SHOCK: Prospective Recombinant 
Human Activated Protein C Worldwide Evaluation in Severe Sepsis and Septic Shock trial; 
VASST: Vasopressin and Septic Shock trial; ICAM-1: intercellular adhesion molecule-1, 
IL-6: interleukin 6; IL-8: interleukin 8; PAI-1: plasminogen activator inhibitor-1; sTNFR-1: 
soluble tumour necrosis factor receptor-1; CCM = clinical classifier model; PCM = 
Parsimonious classifier model .
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Figure 2: Mean standardized values for continuous class-defining variables used in the latent 
class analysis models.
The variables are sorted from left to right in descending order for the highest values in the 

Hyperinflammatory phenotype. Standardized values were calculated by assigning the mean 

of the variables as 0 and standard deviation as 1. All variables were collected on the day of 

study enrolment. Panel A: VALID cohort. Panel B: EARLI Cohort. BMI: body mass index, 
SBP: systolic blood pressure, ICAM-1: intercellular adhesion molecule-1, IL-6: interleukin 
6, IL-8: interleukin 8, PAI-1: plasminogen activator inhibitor-1, sTNFR-1: soluble tumour 
necrosis factor receptor-1, WBC: white blood cell count, RR = Respiratory Rate, HR = 
Heart Rate.
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Figure 3: Differential treatment response to activated protein C (APC) according to probability 
of belonging to the Hyperinflammatory phenotype.
A logistic regression model was fit to predict mortality at Day 28 in the PROWESS-

SHOCK trial, with the probability of belonging to the Hyperinflammatory phenotype (x-

axis), treatment allocation, and their interaction term as predictor variables. The lines plot 

the estimated mortality in either placebo (red) or activated protein C (green) with 95% 

confidence intervals over a range of probabilities. P-value was generated using Wald test for 

the interaction term of probability and treatment allocation in the logistic regression model.
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Table 1
Baseline Characteristics of VALID and EARLI.

Data are presented as n (%), mean (± Standard deviation), or median (interquartile range).

VALID (n=1140) EARLI (n=818)

Age (years) 56 ± 16 65 ± 16

Sex (% female) 490 (43%) 358 (44%)

Race (%)

White 971 (85%) 394 (48%)

Black 150 (13%) 107 (13%)

Asian -- 213 (26%)

Others 19 (2%) 104 (13%)

APACHE II Score 27 (22 – 33) 26 (20 – 33)

Vasopressor use (%) 548 (48%) 459 (56%)

Temperature (C) 37.8 ± 1.1 37·8 ± 1.4

Systolic Blood Pressure (mmHg) 87 ± 16 88 ± 21

Heart Rate (bpm) 120 ± 22 125 ± 26

Respiratory Rate (breaths/min) 29 (24 – 35) 34 (29 – 40)

Hypoxia category

None 250 (23%) 196 (27%)

Mild 231 (21%) 145 (20%)

Moderate 344 (32%) 225 (31%)

Severe 261 (24%) 168 (23%)

Hematocrit (%) 30 ± 7 30 ± 7

WBC Count (106/mL) 14 (9 – 21) 13 (9 – 19)

Platelet (109/L) 168 (97 – 250) 158 (93 – 230)

Sodium (mEq/dL) 136 ± 5 135 ± 6

Creatinine (mg/dL) 1.5 (1.0 – 2.8) 1.4 (0.9 – 2.4)

Bicarbonate (mmol/L) 21 ± 5 20 ± 6

Albumin (g/dL) 2·7 ± 0·6 2.4 ± 0·7

Bilirubin (mg/dL) 1.1 (0.7 – 2.3) 1.0 (0.6 – 1.6)

Interleukin-6 (pg/mL) 61 (19-248) 99 (23 – 688)
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VALID (n=1140) EARLI (n=818)

Interleukin-8 (pg/mL) 21 (9 – 73) 19 (8 – 81)

Soluble TNF Receptor-1 (pg/mL) 3602 (2058 – 6773) 4159 (1976 – 9319)

Protein C (% Control) 60 ± 33 83 ± 58

ICAM-1 (ng/ml) 674 (455 – 1004) 623 (359 – 1118)

PAI1 (ng/ml) -- 6 (3-20)

Blood Culture Positive 233 (20%) 144 (18%)

Mechanical ventilation (%) 716 (63%) 393 (48%)

ICU-free days* 20 (0-24) 22 (0 – 25)

In-hospital mortality 276 (24%) 236 (29%)

Hypoxia categories were created based on the PaO2/FiO2 or (SPO2/FiO2 converted to PaO2/FiO2) where a value > 300 mmHg was assigned 

none, 300 - ≥ 200 mmHg was mild, 200 - ≥ 100 mmHg was moderate, and < 100 mmHg was severe.

*
Intensive care unit (ICU) free days were censored at Day 28, such that patients that died before Day 28 were assigned zero ICU-free days.

APACHE = Acute Physiology and Chronic Health Evaluation, BP = Blood Pressure, TNF = tumor-necrosis factor, PAI-1: plasminogen activator 
inhibitor-1, ICAM-1: intercellular adhesion molecule-1, ICU = Intensive care unit.
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Table 2
Clinical outcomes in the two molecular phenotypes.

Differences in outcome between the Hypoinflammatory and Hyperinflammatory phenotypes across four sepsis 

cohorts.

Hypoinflammatory Hyperinflammatory P-value

N ICU free days Mortality N ICU free days Mortality ICU free days Mortality

VALID* 804 21 (11 -24) 133 (17%) 336 7 (0 - 22) 143 (43%) < 0.0001 < 0.0001

EARLI* 530 23 (17 - 25) 107 (20%) 288 12 (0 - 23) 129 (45%) < 0.0001 < 0.0001

VALID*ARDS excluded 532 23 (17 - 25) 70 (13%) 236 16 (0 - 23) 80 (34%) < 0.0001 < 0.0001

EARLI*ARDS excluded 346 24 (21 - 25) 48 (14%) 226 22 (0 - 24) 77 (34%) < 0.0001 < 0.0001

PROWESS-SHOCK** 1142 13 (0 - 20) 233 (20%) 538 0 (0 - 14) 192 (36%) < 0.0001 <0.0001

VASST** 455 11 (0 - 20) 127 (28%) 323 0 (0 - 12) 163 (51%) < 0.0001 <0.0001

*
In-hospital mortality;

**
Mortality at Day 28.

Intensive care unit (ICU) free days were censored at Day 28, such that patients that died before Day 28 were assigned zero ICU-free days. P-values 
for ICU free days were generated using the Wilcoxon-rank test and for mortality using the Chi-square test.
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