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Abstract

Genetics and omics studies of Alzheimer’s disease and other dementia subtypes enhance our 

understanding of underlying mechanisms and pathways that can be targeted. We identified key 

remaining challenges: First, can we enhance genetic studies to address missing heritability? 

Can we identify reproducible omics signatures that differentiate between dementia subtypes? 

Can high-dimensional omics data identify improved biomarkers? How can genetics inform our 

understanding of causal status of dementia risk factors? And which biological processes are 

altered by dementia-related genetic variation? Artificial intelligence (AI) and machine learning 

approaches give us powerful new tools in helping us to tackle these challenges, and we review 

possible solutions and examples of best practice. However, their limitations also need to be 

considered, as well as the need for coordinated multidisciplinary research and diverse deeply 
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phenotyped cohorts. Ultimately AI approaches improve our ability to interrogate genetics and 

omics data for precision dementia medicine.

Keywords

Dementia; genetics; omics; artificial intelligence; machine learning; etiology; biomarkers; 
pathology; causality; risk factors; disease pathways

1. Introduction

Dementia results from a variety of heterogeneous pathologies, such as Alzheimer’s 

disease (AD), Parkinson’s disease dementia (PDD), Dementia with Lewy bodies (DLB), 

Frontotemporal Dementia (FTD), and cerebrovascular disease [1]. The number of people 

living with dementia worldwide is around 45 million and, as life expectancy increases 

and populations age, this number is expected to increase [2]. Genome-wide association 

studies (GWAS) have led to the identification of an increasing number of genetic loci 

associated with the risk of dementias and related neurodegenerative diseases in older adults, 

primarily of European ancestry [3][4][5][6][7][8][9][10]. However, even with established 

bonafide associations, the task of characterizing variants and genes in the context of complex 

disease molecular pathophysiology, as well as its interacting genes and pathways, remains a 

daunting challenge [11].

Recent progress in cutting-edge genetic and omics technologies, such as epigenomics, 

transcriptomics, proteomics and metabolomics, which refer to the comprehensive 

assessment of a set of specific types of biological molecules, allied with emerging 

computational methods, hold promise of faster discoveries. However, because of the large 

number of associations investigated in most omics scale studies, it is necessary to have large 

sample sizes collected in a consistent manner. Scaling up multidisciplinary dementia studies, 

such as those using omics approaches, comes with challenges and implies the need of 

coordinated efforts from clinicians, basic and computational scientists. Appropriate funding 

and infrastructures capable of dealing with large numbers of biological samples and big data 

are also needed.

As the omics field continues to expand in dementia research, artificial intelligence (AI)-

powered technologies, and in particular machine learning (ML) and deep learning (DL), are 

well-suited for the detection of undiscovered patterns in high-dimensional data and advance 

dementia research in unprecedented ways (Figure 1). COVID-19 demonstrated that progress 

can rapidly be made towards tackling a disease when certain scientific practices are altered 

[12]. Coordinated action across interested parties can result in extraordinary progress within 

short periods of time. Significant progress could be made rapidly in dementia research if 

interested parties were able to organize such that we could tackle the systemic problems that 

hold back the field, some of which are discussed below.

Here we identify and discuss five unresolved key questions in dementia research, which 

could be addressed using omics combined with advanced AI approaches: 1) How can 

we enhance genetic studies to inform our understanding of dementia risk? 2) Can we 
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find reproducible omics brain signatures that differentiate between dementia subtypes? 3) 

Can high-dimensional omics data identify improved molecular biomarkers for dementia 

compared to single marker approaches? 4) How do we use genetics to inform our 

understanding of causal risk factors? And 5) Which biological processes are altered by 

genetic risk for dementia-related diseases? Tackling these questions is crucial to improving 

our understanding of dementia, and involves coordinating a multitude of players whose 

expertise go well beyond omics. It also involves improving the availability of bioresources 

and clinical data as well as developing analytical tools and ML algorithms to deal with 

high-dimensional and heterogeneous data. We note some of the challenges which must be 

surmounted to answer these questions within the next decade. In each instance, we highlight 

possible solutions and exemplar projects and communities, who have set good examples that 

can be used to improve our performance as a dementia research community.

This review is one of a series of eight articles in a Special Issue on ‘Artificial Intelligence 
for Alzheimer’s Disease and Related Dementias’ published in Alzheimer’s & Dementia. 

Together, this series provides a comprehensive overview of current applications of AI 

to dementia, and future opportunities for innovation to accelerate research. Each review 

focuses on a different area of dementia research, including experimental models [this 
issue], drug discovery and trials optimization [this issue], genetics and omics (this article), 

biomarkers [this issue], neuroimaging [this issue], prevention [this issue], applied models 

and digital health [this issue], and methods optimization [this issue].

2. Key Challenges

2.1. How can we enhance genetic studies to inform our understanding of dementia risk?

2.1.1. State of the science—The majority of GWAS rely upon logistic or linear 

regression-based approaches to test for associations between individual genetic variants 

(single nucleotide polymorphisms; SNPs) and a binary or continuous outcome [13][14]. This 

process is repeated until an estimate of association has been generated separately for each 

genetic variant. Then p-values are used to gauge whether any of these individual associations 

are strong enough to be considered genome-wide significant when correcting for multiple 

testing (a conventional threshold for ‘hits’ is 5 × 10−8) [15]. After a GWAS has been 

conducted it is often then possible to construct a polygenic risk score (PRS) by summing the 

value for each genetic variant weighted by the effect size from the initial GWAS [16]. PRS 

have important applications as research tools, in clinical trials and in clinical practice, as 

they can facilitate causal inference modeling and genetic risk stratification on an individual 

level. Despite twin study heritability estimates of around 60–80% for AD [17], recent 

SNP-based estimates of common variant heritability of AD from GWAS and PRS are much 

lower (up to 20%) [18], suggesting that much of the genetic contribution to dementia risk 

remains unexplained. Other approaches are needed to uncover this missing heritability by 

integrating multi-omics or non-linear modeling.

2.1.2. What problems need addressing?—The diagnosis of dementia and its 

subtypes is imprecise [19]. Current GWAS are based on cases for whom diagnosis of a 

specific dementia subtype has been largely made based upon clinical signs and symptoms. 
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Thus, although current dementia GWAS are likely to be enriched for pathology related to the 

dementia subtype of interest, they will inevitably also contain other dementia subtypes and 

pathologies in their cases. This is problematic since etiology and risk factors are likely to 

differ for each dementia subtype, so genetic markers with small effect sizes that are specific 

to a single dementia subtype will be harder to detect than generalized dementia pathways.

There is currently a marked lack of diversity within dementia genetics studies, with GWAS 

discovery being largely confined to the genetics of AD in non-Hispanic White adults of 

European ancestry. Although some small GWAS have been conducted in non-European 

samples [20][21][22][23], have measured non-AD dementias [6][9][10], and incorporated 

dementia-related intermediate quantitative phenotypes or endophenotypes (such as amyloid-

beta and cerebral small vessel disease) [24][25][26], these studies are largely underpowered. 

Certain ancestries remain understudied, for example South Asians despite representing 

around a quarter of the total global population. Without enhancing diversity in GWAS, or 

developing appropriate reference panels and genotyping chips, we are unable to construct 

PRS for all ancestral groups. This perpetuates ethnic bias in future research and clinical 

practice. We need better methods that can leverage diversity when evaluating risk. Not only 

from the standpoint of genetics, but integrating multimodal data that may interact with 

genetic or epigenetic factors as part of comprehensive risk assessment and risk prediction.

The study of both coding and non-coding rare/structural variants associated with dementia 

risk needs to be further pursued through short- and long-read sequencing technologies, 

which are thought to be important contributors to missing heritability in dementia 

[27]. Under the hood, long-read sequencing is powered by DL, using GPU-powered 

alignment algorithms to better characterize the genome. Other potential reasons for missing 

heritability include unmeasured interactions between genes (epistasis) and failing to account 

for correlations between genetic variants due to population structure, dynastic effects, 

assortative mating or functional relationships [28].

2.1.3. Possible solutions—Perhaps the simplest way to enhance future GWAS is to 

further increase sample sizes and the diversity of these samples. This has been the main 

strategy so far, and has been reasonably successful in identifying additional genetic variants 

and, to a lesser degree, improving the phenotypic variance explained. It is reasonable to 

assume that by further increasing sample sizes (essentially more of the same) further 

discoveries will be made. Increasing sample sizes considerably will involve enhancing 

existing research studies or establishing new studies. It is also important to consider the 

existence of different dementia subtypes and how to distinguish them. It may be possible 

to take advantage of existing well characterized samples that have not previously been 

genotyped due to resource limitations, such as gold standard post-mortem brain bank 

material with linked clinical data. That said, the cost of new studies which include clinical 

characterization is likely to remain high, and the number of existing samples is finite, raising 

practical concerns. Although there is no theoretical upper limit, in practice a predictive 

accuracy plateau in part limited by heritability is often reached, beyond which additional 

training data is not helpful. Given the large amount of missing heritability remaining, it is 

likely that increasing sample sizes may be needed but will not be sufficient in future GWAS, 

and alternative approaches will be required [29].
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Leveraging population diversity, rather than omitting it, can both improve statistical power 

and better detect causal variants. For example, a transfer learning approach was used to 

enhance the findings from a modestly sized GWAS in a Japanese population using summary 

statistics from a larger European ancestry GWAS [21]. Conversely, trans-ancestry cohorts 

can also be used to improve genetic variant discovery and localization in European ancestry 

GWAS. Transfer learning heuristics can also potentially be employed with different rates 

across global and local admixture levels in some populations for higher accuracy.

As an alternative to the standard linear approaches employed in traditional GWAS, advanced 

ML approaches may offer various benefits [30] (Table 1), including the ability to: 1) capture 

main genetic effects more accurately; 2) capture multi-scale, non-linear epistatic interactions 

overlooked when investigating genetic variants individually; 3) better handle trans-ethnic 

variation; 4) flexibly integrate multimodal (e.g. neuroimaging, clinical biomarkers) and/or 

multi-omics data; and 5) accurately predict multiple outcomes, such as subtraits, symptoms, 

and endophenotypes, at once. For example, a gradient tree boosting method followed by an 

adaptive iterative genetic variant search was used to capture complex non-linear epistatic 

interactions and select interacting genetic variants with high predictiveness for breast cancer 

[31]. Similarly, improvements have been observed by applying DL to predict survival in 

age-related macular degeneration [32] and reduce multiple testing burden [33]. The tool 

DeepWAS [34] was used to identify genetic variants associated with multiple sclerosis and 

major depressive disorder while simultaneously predicting their cell-type-specific regulatory 

effects using multi-omics data integration. DeepNull [35] is a DL-based tool that models 

non-linear associations between the phenotype and non-genetic covariates. This improved 

GWAS hits detection by 6% and phenotypic prediction by 23% on average across 10 

different UK Biobank traits, while also substantially reducing the false positive rate. Despite 

these advances, few attempts have so far been made to apply these techniques to dementia. 

While early attempts to apply ML-based methods to improve AD risk variant prediction 

have yet to find substantial improvements over traditional GWAS, the cohorts in which these 

models have been applied are extremely underpowered [36][37], leaving ample opportunities 

to fully leverage ML-based methods on large-scale genomic data [38].

These ML approaches may provide the key to the development of PRS with greater 

predictive accuracy and specificity [39]. However, the degree of improvement offered by 

ML methods may be partly dependent on the complexity and inter-individual heterogeneity 

of the genetic architecture underlying the disease of interest. For instance, DeepPRS [40], 

a novel DL-based model that does not only rely on the additive effect of risk SNPs, 

outperformed more traditional PRS models across a variety of disease phenotypes, including 

AD. Thus we anticipate further improvements in these approaches will unlock some of 

the unexplained heritability observed in prior GWAS, enhancing future research, trials, and 

clinical practice.

2.1.4. Examples of best practice—The Global Parkinson’s Genetics Program (GP2) 

[41] is in the process of collecting 100,000 European Parkinson’s Disease cases, and 

a further 50,000 cases from under-represented populations around the world. They are 

primarily achieving this through collaborations and partnerships with researchers and 
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organizations in other countries across the world, highlighting that large collaborative efforts 

are crucial for success.

Recent work in multi-ancestry PRS is a good first step in the right direction [42], but with 

larger sample sizes of participant level data, a ML approach could perform well. Lake 

and colleagues leverage genetically quantified admixture and random effects models in a 

population with complex substructures using both random-effects derived risk scores and a 

risk heuristic that leverages the rates of genetic admixture to build a better predictive model 

[22].

2.2. Can we find reproducible omics brain signatures that differentiate between dementia 
subtypes?

2.2.1. State of the science—Omics technologies have been increasingly applied 

to human brain samples from individuals with dementia and related neurodegenerative 

conditions [43][44][45][46]. Similarly to the GWAS described in the previous section, the 

largest brain omics studies have focused exclusively on AD. For example, a meta-analysis 

of the AD human brain transcriptome [47], which using gene expression data from over 

2,000 samples identified 30 coexpression modules as the major source of AD transcriptional 

perturbations. Additionally, a meta-analysis of AD epigenome-wide association studies 

[48], using DNA methylation data from over 2,000 individuals identified 334 differentially 

methylated positions associated with AD neuropathology across cortical regions. Yet, 

robust disease-specific omics signatures or signatures shared across diseases are lacking. 

Neurodegenerative diseases are heterogeneous entities and there is extensive clinical, 

pathological and genetic overlap [49]. Co-pathologies alongside a dominant condition are 

frequent (e.g. presence of Lewy bodies in AD patients) [50]. Cross disease/pathology studies 

are starting to emerge, for example addressing epigenetic changes across neurodegenerative 

diseases [51][52], and disentangling amyloid-β and tau-pathology-associated transcriptomic 

profiles in AD [53]. However, to find distinguishing molecular signatures we require 

large well-powered trans-diagnostic cohorts, with a range of primary co-pathologies, and 

to develop powerful unsupervised ML methods to cluster omics data [54]. Although the 

increasing availability of single-disease datasets has opened the way to meta-analysis and 

multiple-cohort reanalysis [55][56][57][58][59][60], much more is needed to assess which 

mechanisms are conserved across pathologies and which are disease-specific.

2.2.2. What problems need addressing?—It is yet to be understood how and why 

selective vulnerability occurs in different brain regions and cell types across different 

neurodegenerative diseases. However, findings from omics studies are often not replicable at 

the gene/effect level even within a single disease. How then can replicability be enhanced? 

Several issues need to be addressed: First, studies are often undertaken in small cohorts, 

which lack statistical power to detect significant molecular changes, and may reflect 

sampling bias and disease heterogeneity [59]. Availability of brain tissue, especially for 

rare diseases and for matched cognitively normal controls [61], is a limiting factor. Second, 

phenotype definitions are not unified. The dominant pathology (e.g. AD or Parkinson’s 

disease) is often used as the label, but variable degrees of co-pathologies impact molecular 

signatures. Instead, multiple pathologies could be combined as a quantitative ‘polypathology 
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score’. Third, hemispheric asymmetry in neuronal processes is a fundamental feature 

of the human brain and drives symptom lateralization (e.g. Parkinson’s disease and 

FTD), which is reflected molecularly [62][63]. This interferes with histopathology to 

omics comparisons, mostly investigated in opposite hemispheres [62]. Fourth, genetic 

variability between individuals is often not accounted for in omics studies. Fifth, there 

is considerable heterogeneity across studies including differences in brain regions, brain 

cell type compositions, protocols and platforms to generate the molecular data, and 

analytic pipelines used. Sixth, the influence of confounding factors, such as batch effects, 

postmortem interval or RNA/DNA quality, can vary substantially between brain banks due 

to distinct standard procedures [64][65][66].

2.2.3. Possible solutions—Achieving well-powered cohorts will require an escalation 

in brain donations, especially for control brains. With appropriate funding of brain banks, 

or through encouraging and funding brain collection in large-scale population studies, this 

could be achieved. The adoption of standardized procedures across brain banks is crucial 

to ensure preservation of appropriate and comparable quality tissue for molecular analyses, 

and allow seamless integration of samples from different banks. Furthermore, omics studies 

require deep clinical and pathological phenotyping to reduce heterogeneity and to account 

for covariates in subsequent data analyses.

The ML paradigm may be useful in multiple ways for the identification of reliable 

and discriminatory brain omics signatures. There is a clear need to integrate omics data 

generated for samples both from different brain regions and different cohorts, thus enabling 

the latent space modeling of multimodal brain omics [67], different brain regions, different 

cell types [68][69] and different neurodegenerative phenotypes or diseases. This latent space 

will allow the uniform treatment of samples and a seamless creation of ML models for 

downstream tasks, such as diagnosis or interpretation.

Multi-omics data in well characterized pathology samples will allow us to refine dementia 

subtyping. AI can play a huge role in this. DL and computer vision can be used for 

generating harmonized digital pathology datasets [70]. These datasets and samples can then 

be input into the pipeline for omics characterization. Data from such pathology-based omics 

studies will be harmonized across sites using a number of unsupervised learning methods. 

At its core, single cell resolution using tools like scVI [71] rely on ML to annotate and 

quantify cellular components of multi-omics datasets which can then be used for multimodal 

subtyping at the intersection of genomics and pathology.

2.2.4. Examples of best practice—ML approaches applied to dementia brain omics 

data, such as epigenomics, transcriptomics and proteomics data, have started to emerge 

and illustrate the promise of using such methods to maximize findings from existing data. 

Huang and colleagues have recently developed EWASplus, a computational method that 

uses a supervised ML strategy to extend EWAS coverage to the entire genome [38], and 

implicates additional epigenetic loci for AD that are not found using array-based AD 

EWASs. Wang and colleagues implemented a DL method that analyzes RNA-seq data 

from brain donors to characterize post-mortem brain transcriptome signatures associated 

with amyloid-β plaques, tau neurofibrillary tangles and clinical severity in multiple AD and 
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related dementia populations [58]. In the proteomics space, Tasaki and colleagues applied 

a deep neural network approach to predict protein abundance from mRNA expression, in 

an attempt to track the early protein drivers of AD and related dementia subtypes [72]. 

These approaches demonstrate how such methodologies can be used to identify potential 

early protein drivers and possible drug targets for preventing or treating AD and related 

dementias.

2.3. Can high-dimensional omics data identify improved molecular biomarkers for 
dementia compared to single marker approaches?

2.3.1. State of the science—Technological advances and large, shared, international 

datasets allow a new approach to understanding diseases including biomarker identification. 

Single molecule assays such as Simoa, allow accurate measurement of plasma proteins 

[73]. Notably, plasma neurofilament light (NfL) has been comprehensively shown by many 

research groups to be substantially increased in a diverse array of neurological brain 

conditions when compared with age-matched controls, leading to the proposal of NfL 

being the first established blood-biomarker for neurological and cognitive decline [74]. 

Targeted biomarkers such as NfL have begun to be translated into clinical settings but 

the use of multi-omics data has so far been limited. However, omics modalities present 

opportunities for the identification and application of new biomarkers. For example, most 

dementias appear to have a considerable polygenic component, which present potential 

as multi-assay risk biomarkers. Genome sequences comprising petabytes of data can be 

resolved to common single nucleotide variation, rare variants, and structural variants all with 

potential as markers of disease risk. RNA expression data is currently used in biomarker 

discovery though not yet achieving the accuracy of blood proteins in disease prediction 

[75][76].

DNA methylation data can provide a route to identify non-recorded environmental exposures 

through imputation of these risk factors from published predictors [77]. This strategy could 

help validate epidemiological reports of environmental risk factors and help stratify patients 

across diagnostic boundaries, which may provide stimuli for additional analyses and clinical 

follow-up [78]. Genes where DNA methylation is altered by specific environmental factors 

could identify molecular pathways of relevance across dementias. In addition to markers of 

aging, they have also been used as predictors of cognitive function [79]. However, before 

these markers can be translated to the clinic they would need to demonstrate stringent 

accuracy in independent validation cohorts.

While these multimodal datasets described above can contribute to biomarker discovery, 

many diagnostics companies and regulatory bodies prefer a single readout approach. This 

is contrary to the basic concept that multimodal data can more accurately reflect complex 

biological systems.

2.3.2. What problems need addressing?—The development of large harmonized 

omics datasets is challenging. The first challenge relates to the issue of data quality: 

high dimensional omics data are acquired from different sources, in distinct formats and 

over multiple sites, and accompanied by patient medical records. As errors may occur 
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during measurement or processing (i.e. batch effects), they risk potentially compromising 

the reproducibility and the usability of the generated data. The second challenge is 

of a computational nature: the preliminary analyses of multi-omics data require a 

data harmonization process and the development of integration, clustering, functional 

characterization and visualization tools. Beyond this step, one of the goals in the biomarker 

study is the inference and the prediction of biological systems [80]. The statistical 

method traditionally deployed in the inference requires explicit assumptions, which are not 

necessarily intuitive in the large omics dataset [81]. Finally, given dimensionality constraints 

posed by integrating large multiple omics datasets, the computational burden and storage 

space requirements can be limiting. The last challenge is to make these datasets sharable and 

accessible to a large community [82]. The development of a large omics dataset therefore 

requires establishing standardized protocols for the acquisition, transfer and analysis of 

clinical and omics data that can be used by the scientific research community.

At its core, the issues with multimodal datasets needed for building the next generation of 

complex biomarkers is both a wide data and sparsity problem. Studies are simply not large 

enough, similar enough, or data easily accessible enough to identify better biomarkers which 

have clinical relevance.

2.3.3. Possible solutions—Recently, ML approaches have made considerable 

advances in genomics, multi-omics, biomedicine, and data-driven therapeutics discovery 

[83][84][85][39]. Application of DL approaches on large scale omics datasets allows 

researchers to detect new disease relationships with the data. Translating these discoveries 

into multi-panel tests will be key in applying potential biomarkers. As the costs of omics 

assays continue to drop, the standard use of high-throughput DNA, RNA, protein and 

metabolomics biomarkers in the clinic need to become a reality. Large-scale sequencing 

initiatives that focus on the genomic underpinnings of neurodegenerative diseases [41][86]

[87][88][89][90] will aid in the development of more targeted and cost-effective tests 

such as PRSs and metabolite panels [91]. Collectively, these initiatives will enable many 

opportunities for biomarker identification, validation in both diagnosis and early disease 

detection, as well as raise important ethical and technical challenges.

In its simplest terms, information theory dictates that adding impactful and independent 

features to a model should improve its predictability, although limiting analyses to such 

features may be difficult due to wide data issues in genomics. In ML, facing high 

dimensionality problems where the number of features is much greater than the number 

of samples is relatively frequent. That is why the problem of feature selection has worsened 

in recent decades [92][93]. In addition, techniques such as federated learning [94] are likely 

to be useful in analyzing biomarkers across datasets that cannot be combined for ethical or 

practical reasons safely.

2.3.4. Examples of best practice—Analyzing datasets from independent cohorts 

and then combining them in a meta-analysis can improve statistical power and the 

ability to detect significant associations. For example, a meta-analysis of 569 lipidomics 

species measured in the Australian Imaging, Biomarkers and Lifestyle (AIBL) cohort 

and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort identified multiple 
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lipids from several species predictive of prevalent and incident AD [95]. Within cohort 

integration of data modalities can also yield novel disease markers, for example, co-

expression networks of metabolite and gene expression data from the ADNI cohort 

identified new metabolite candidate markers [96]. The European Medical Information 

Framework Alzheimer’s Disease (EMIF-AD) project (http://www.emif.eu/emif-ad-2/), set 

up a pan-European platform for large-scale research on biomarkers and risk factors 

for neurodegenerative disorders. The EMIF-AD Multimodal Biomarker Discovery study 

harmonized and pooled clinical data from 11 cohort studies and samples from CSF, 

plasma, DNA, and MRI scans were centrally analyzed using different omics techniques 

(proteomics, metabolomics, and genomics) and integrated analysis has demonstrated the 

power of such approaches. The Accelerating Medicines Partnership - Alzheimer’s Disease 

(AMP-AD) (https://www.nia.nih.gov/research/amp-ad) allows researchers to access multiple 

cohorts via a single platform. It is a partnership between government, industry, and nonprofit 

organizations to transform the current model for developing new diagnostics and treatments 

for AD. The sharing of multi-omics datasets through this centralized data infrastructure, 

the AD Knowledge Portal, enables integrative and collaborative analyses to more easily 

and effectively advance biomarker identification and replication. Improved standardization 

and harmonization of multi-omics data across silos will benefit the field in the future. In 

addition, combining multi-omics and clinical data with wearable or other streaming data 

may yield exciting results such as has been seen in the Parkinson’s disease field by Rune 

Labs’ AppleWatch app (https://www.accessdata.fda.gov/cdrh_docs/pdf21/K213519.pdf).

2.4. How do we use genetics to inform our understanding of causal risk factors?

2.4.1. State of the science—It was recently estimated that reducing modifiable risk 

factors could prevent around 40% of all-cause dementia cases [97]. However, the evidence-

base for most hypothesized risk factors being causal is weak, with conflicting findings 

across studies depending on study design, time of risk factor measurement, type of outcome, 

sample size and study population [97][98]. Many studies are prone to bias by unmeasured or 

residual confounding, reverse causation due to dementia’s long latency period, and survival 

bias. Traditionally, randomized controlled trials (RCTs) have been necessary to confirm 

causal pathways between a risk factor and an outcome. However, these are notoriously 

challenging for dementia research because it would require monitoring participants over 

many decades due to the long and ill-defined prodromal period of dementia. In addition, 

it would be impractical or unethical to conduct an RCT of harmful risk factors such as air 

pollution and traumatic brain injury. These limitations make it difficult to ascertain which 

risk factors would be the most useful to target in interventions, and at what point in life such 

interventions would be most efficacious.

Mendelian randomization (MR) gives us a strong foundation to interrogate the causal status 

of risk factors. MR overcomes several limitations inherent to observational research, whilst 

utilizing more easily accessible cross-sectional rather than prospective data [99]. MR uses 

genetic variants as instrumental variables (IVs) for risk factors in what has been dubbed 

a natural RCT. Because an individual’s genome is assigned randomly at conception, it is 

largely independent of confounding factors that often cause bias in observational research. 

The genome also cannot be modified by subsequent disease, making bias due to reverse 
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causation unlikely. MR is a widely used method and can be a useful tool for understanding 

the etiology of risk factors [100][101][102][103][104], but it also has limitations that should 

be carefully considered [105][106]. Despite the clear advantages of MR studies few other 

methods have been developed that can explore the causal relationships between risk factors 

and dementia-related outcomes.

2.4.2. What problems need addressing?—There are several common problems that 

can impact causal inference if they are not duly addressed and can lead to unreliable 

conclusions being made. Power is problematic in many MR studies examining causality 

of risk factors on dementia [100]. Confidence intervals are often wide, so meaningful 

effects in either direction cannot be excluded. This is often the case for risk factors that 

are difficult to measure (e.g. sleep disturbance and physical inactivity) [107][108]. Weak 

instruments (i.e. those with an F-statistic <10) can introduce bias [109]. Examples of 

strong instruments that have been used in MR of dementia risk include plasma glucose 

[110], educational attainment and intelligence [111], type-2 diabetes mellitus and glycated 

hemoglobin (HbA1c) [112], but these only represent a small fraction of dementia risk 

factors.

Collider bias can also be introduced into causal analyses when an included sample suffers 

from selection bias, for example due to differential patterns of survival associated with the 

risk factor of interest [113]. Individuals need to live long enough to obtain a dementia 

diagnosis so observed causal effects of any risk factor associated with premature mortality 

(e.g. smoking) on dementia risk are likely biased [114]. Very few studies attempt to 

identify and, if necessary, correct for survival bias, despite it being demonstrated to produce 

spurious protective effects in MR studies of causal risk factors for AD and Parkinson’s 

disease [115][116]. Causal analyses may also be biased by population effects that confound 

the relationship between the genetic instrument and outcome variable (violating the 

‘independence’ MR assumption [117]). Certain dementia risk factors, such as educational 

attainment, have been shown to be highly influenced by assortative mating (i.e. non-random 

mating) within populations [117], but this has not yet been systematically assessed in studies 

of dementia risk factors, so we do not know the extent to which current causal estimates are 

being biased by these population effects.

Confounding due to horizontal pleiotropy is especially problematic in MR studies that 

measure the causal association between a complex risk factor (i.e. a phenotype that is 

highly polygenic) and an outcome. It is becoming increasingly apparent that many SNPs 

in the genome causally influence multiple traits, making the ‘exclusion restriction’ MR 

assumption (i.e. that the only path between the genetic instrument and the outcome is via 

the exposure) less likely to be upheld. In addition, even though many dementia risk factors 

are genetically inter-correlated [118] and co-occurrence of multiple risk factors within an 

individual increases dementia risk more than being exposed to a single risk factor [119], 

most studies only measure the causality of one risk factor on dementia. By only measuring 

bivariate relationships, we are likely overlooking synergistic effects or overlapping causal 

pathways between dementia risk factors, reducing our ability to identify shared biological 

pathways that are especially central in raising dementia risk and to characterize the patterns 

of pleiotropic effects between risk factors. There are methods to disentangle this such as 
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genomic or transcriptomic structural equation modeling-SEM [120][121], but they require 

well-powered GWAS, which are not available for all risk factors.

Aside from MR, few causal modeling methods have been developed for use with genetic 

data. Even in cases where new causal methods have been proposed, such as Bayesian 

network analysis (BN)[122], latent causal variable analysis (LCV) [123] and the multi-SNP 

mediation intersection-union test (SMUT)[124], these have not yet been applied in dementia 

risk factor research and there is a noticeable lack of causal ML modeling in the genomics 

field.

2.4.3. Possible solutions—One of the key ways that AI methods could be harnessed 

to improve causal analyses in dementia research is to use ML/DL to strengthen genetic 

instruments for MR. Traditionally, instruments are created from GWAS summary statistics 

that are measured using logistic regression and defined p-value thresholds, whereas COMBI 

[28] and DeepCOMBI [33] use Support Vector Machines (SVM) and deep neural networks, 

respectively, to identify SNPs related to a phenotype. Particularly, DeepCOMBI has been 

shown to replicate known disease loci, as well as identify novel ones. DeepMR integrates 

ML with MR by using multi-task DL models to initially learn the relationship between 

different sets of genomic marks (e.g. chromatin marks) associated with a pathway or 

phenotype of interest and then uses MR to examine causal relationships between them [125], 

which could help to identify more functionally relevant SNPs for inclusion in the exposure 

instrumental variable.

Existing methods that quantify and correct for known sources of bias should also be 

routinely implemented. Automated AI methods could help support this, for example MR-

MoE (MR-Mixture of Experts), which is an ML framework that applies random forest 

learning algorithms to MR results to identify the method for your analysis that is least likely 

to be biased by horizontal pleiotropy [126].

Several of the associations between dementia and its risk factors are likely non-linear. For 

example, the association between sleep duration and dementia is likely to be U-shaped: both 

too little and too much sleep have been associated with increased dementia risk [97][127]

[128]. In this instance, sleep duration is a categorical discrete rather than a truly continuous 

phenotype, and its genetic instruments are weak in comparison with other risk factors [110]. 

Non-linear MR accounts for non-linearity between continuous exposures and outcomes 

[129] but it has scarcely been applied to MR studies of dementia risk. One recent study 

used non-linear MR to assess the causal influence of sleep duration on dementia-related 

cognitive outcomes [130]. Thus, to use MR to understand non-linear relationships between 

risk factors and dementia, we should focus future GWAS efforts on improving the modeling 

of continuous risk factors in situations where observational evidence suggests that there is a 

non-linear causal relationship with dementia.

Room for future improvement includes the potential leveraging of tree-based, boosted, 

bagged or other ML algorithms to create interpretable model cascades of causal risk. This 

could increase the value of previous MR studies while at the same time addressing their 

Bettencourt et al. Page 13

Alzheimers Dement. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shortcoming of generally focusing on only a single exposure at a time. AI has the power to 

model multiple potentially connected causal risk factors at scale.

2.4.4. Examples of best practice—Recently, a multivariate GWAS was performed 

using random forest regression to predict causal SNPs for 56 neuroimaging phenotypes, 

which identified the APOE SNP rs429358 as the top locus as well as additional lead SNPs 

that mapped to genes relevant to brain disorders, which were not identified by traditional 

linear regression methods [131]. Another study introduced the MR-based Structure Learning 

(MRSL) algorithm, which used graph theory combined with multivariable MR to uncover 

causal and mediating pathways between 44 diseases and 26 biomarkers using publicly 

available GWAS summary statistics [132]. Together, these results highlight the potential 

benefits of utilizing ML-based multivariate approaches to model the genetics underlying 

inter-correlated risk factor traits when performing causal analyses in dementia research.

Noyce and colleagues previously assessed the impact of survival bias on estimates of the 

causal effect of BMI on Parkinson’s disease [116]. They performed simulations to estimate 

the likely effect that their MR analysis would show if survival bias was present, when 

assuming that BMI was not truly related to Parkinson’s disease. The objective was to see 

if the likely magnitude of the survival bias was large enough to explain the MR results 

estimated from the real data. They demonstrated that the seemingly protective effect of 

higher BMI on Parkinson’s disease risk was likely due to survival bias related to increased 

frailty in people with lower BMI, rather than being the true causal driver. Since effects 

from survival bias are likely to be especially important for causal analysis of risk factors in 

dementia research it is crucial that we start to consistently test for this and other common 

forms of bias in future studies to minimize the impact of spurious findings within our field.

2.5. Which biological processes are altered by genetic risk for dementia-related 
diseases?

2.5.1. State of the science—Highly penetrant variants in APP, PSEN1 or PSEN2 
have pointed to a central role of amyloid-β in early-onset AD [133]. Separately, GWAS 

for late-onset AD identified several biological processes enriched for genes associated with 

disease risk, including amyloid-β processing, lipid metabolism, and immune responses 

[134][135]. Although most AD GWAS associations are non-coding, rare coding variants 

have implicated key microglial genes such as TREM2 and PLCG2 [135][136]. Follow-up 

experiments in cellular and animal models confirmed the effects of these genes on microglial 

activation and lipid processing [137][138]. Epigenomic maps from purified cell populations 

[139] or single cells [140] have localized non-coding AD risk variants to microglia-specific 

enhancers, regulating genes including BIN1 and RIN3. An alternative way of linking risk 

variants to genes is to identify quantitative trait loci (QTLs) that influence gene expression, 

followed by a test for statistical colocalization with nearby GWAS loci. A variation on the 

previously discussed topic of MR called SMR is often used to establish causal inferences for 

the function of these QTLs in the context of disease risk on a per gene level. Recent studies 

in purified microglia from living [141] or post-mortem [142][143] donors have nominated 

some AD and Parkinson’s disease risk genes, but so far they are underpowered relative to 

bulk brain datasets. Thus, while genetic studies of AD indicate a clear role of microglia 
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[144][135][136][141][145], the roles of specific cell types are still being discovered in 

other neurodegenerative conditions, such as Parkinson’s disease [139][146] and amyotrophic 

lateral sclerosis [147].

2.5.2. What problems need addressing?—GWAS for different dementias have so 

far mainly used a case-control framework to identify genetic loci associated with a clinical 

diagnosis. However, this approach ignores the complexity of neuropathological changes that 

occur in patients, which usually predate clinical symptoms by years or decades, and which 

may involve multiple distinct pathologies [54][148]. The decoupling of genetic associations 

from specific pathologies makes it difficult to identify the most relevant cellular model for 

a given locus. In this absence, most cellular models have focused on a single cell type, and 

thereby fail to elucidate the probable interplay between different cell types that leads to 

neurodegeneration. Furthermore, identifying and validating the causal genes at GWAS loci 

continues to remain challenging, due to both the uncertainty in the specific causal variants 

and the cell types through which they act [149]. Additionally, GWAS loci may arise only 

in a specific cellular state, such as response to a pathology, as has been recently shown 

for the UNC13A amyotrophic lateral sclerosis/FTD locus [150][151]. As a result, the genes 

and biological processes that are identified as relevant have depended largely upon the prior 

hypotheses of investigators and on the cellular models and analysis methods that were used. 

Although the scale and resolution of single-cell transcriptomic and epigenomic datasets is 

increasing, there isn’t yet a robust and reproducible catalog of all cell types and cell states 

relevant to brain function and disease processes. Additionally, curated resources cataloging 

genes involved in many biological processes are often victims of bias due to publication and 

funding issues as well as reporting bias.

2.5.3. Possible solutions—New technologies have the potential to improve our 

understanding of neurodegenerative diseases, if applied systematically and at scale. Single-

cell technologies are beginning to reveal the cell type diversity of the human brain [152], 

and to identify cell type-specific gene expression changes in disease [140,153]. The GTEx 

project [154] was transformative in describing gene regulation across human tissues, 

enabling others to link these genetic effects to human disease risks. However, its sampling of 

bulk tissues limits its use for understanding biological mechanisms. Single-cell technologies 

now make it possible to envision a cell type-specific gene regulatory atlas of the human 

brain. Such an atlas should be built in a robust way across multiple labs, and include both 

healthy and diseased donors of different ages.

We must also seek to recapitulate the spatial dimension of cell type localization and gene 

expression. Only by probing gene expression directly in a tissue section can we reliably 

establish organ-wide patterns of gene expression, reconstruct cell-cell interactions and assess 

how neuropathology affects local gene expression. Mouse models have highlighted how 

amyloid plaques influence oligodendrocyte and microglia gene expression across disease 

stages [155]. Going forward, a brain-wide, spatially-resolved gene expression atlas, possibly 

integrating splicing information [156], would be a rich complement to a standard gene 

regulatory atlas.
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To understand the molecular mechanisms of neurodegenerative disease genetic associations, 

we need to perturb the function of candidate genes and measure their effects in relevant 

cellular models. However, an ad-hoc approach in the most accessible cell types will not 

lead to robust conclusions. With CRISPR-based tools these perturbations can be done at 

genome-wide scale, in specific cell types derived from human induced pluripotent stem 

cells (iPSCs), and with high-throughput phenotyping assays. As a community, we should 

coordinate to systematically investigate a broad set of candidate genes, across multiple 

cellular phenotypes and in a range of cellular models. Additionally, as part of therapeutic 

development, these perturbed screens will likely need to be carried out across networks 

upstream of known targets.

2.5.4. Examples of best practice—For psychiatric disease, the PsychENCODE 

project set an example by collecting multiple types of omic data from over a thousand 

post-mortem brains across three diseases and three brain regions [157][46,158]. Crucially, 

integrative analyses need to leverage these multiple omic layers to generate novel insights, 

as demonstrated in previous studies of bulk brain [46][159]. Recent studies have used 

scRNA-seq methods to examine specific brain regions in disease and control individuals for 

AD [153][160], amyotrophic lateral sclerosis and FTD [161], revealing cell type-specific 

effects of disease pathology. For all of these datasets and analyzes to be most useful, robust 

ML methods are needed to integrate distinct omics modalities and to ensure reproducible 

results. Promising approaches in this direction have recently been applied to large-scale 

single-cell data from mouse motor cortex [162], and the human immune system [163].

As genetic studies of dementias increase in size, so does the need to identify the causal 

genes at associated loci. New methods enable enhanced fine-mapping using functional 

genomic data (e.g. PolyFun [164]), and better prediction of enhancer-promoter connections 

(e.g. activity-by-contact score). One such example is the identification of USP6NL as the 

putative causal gene within the AD GWAS locus ‘ECHDC3’ by linking a functionally 

fine-mapped variant within a microglia enhancer with the USP6NL promoter [142]. This 

finding was further supported by strong colocalization between the GWAS-eQTL. This 

methodology has also been applied to Parkinson’s disease [165]. DL models have also 

shown dramatic improvements in predicting the effects of genetic variants on splicing, 

pathogenicity (coding variants), and gene expression. Along with experimental data, both 

variant effect predictions and fine-mapping data can be used as input to ML methods that 

directly predict the most likely causal genes at GWAS loci.

Beyond cellular maps and genetic associations, a systematic approach to model systems 

is needed. An NIH-funded project, the iPSC Neurodegenerative Disease Initiative (iNDI) 

[166], is creating more than 100 isogenic iPSC lines with mutations associated with 

dementias. How these are used to model neurodegeneration in specific derived cell types 

will be up to the creativity and vision of the research community.

CRISPR based studies and methods such as perturbSeq and CROPseq have pushed the 

boundaries of what can be assayed rapidly with edited cell lines [167]. These techniques 

are already being sought after by biotechs looking to quantify up and downstream effects 

of genetic and genomic therapeutic targets. Enough of this type of data, combined with DL 
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to recognize patterns of functionally connected genes or graph-based network models could 

identify communities of risk factors that are functionally connected to disease risk [168]. 

These new communities could serve as less biased pathways derived from the appropriate 

tissues and cell types.

3. Limitations of AI and ML in the dementia omics field

High-throughput methods, such the full suite of omics platforms, including genomic, 

transcriptomic, epigenomic, proteomic, metabolomic, and related technologies, have 

inaugurated a new era of systems biology. This provides abundant and detailed data, which 

conventional analytical and statistical approaches are often not capable of dealing with. 

AI and ML algorithms, which are designed to automatically mine data for insights into 

complex relationships in these massive datasets, are still at its infancy in dementia genetics 

and omics research, and far from being explored at its full capacity. Despite major strengths 

and achievements so far, it is worth having in mind possible caveats of AI models in the 

omics field, including the following examples: 1) Interpretation (the black box), as often 

the complexity of certain models makes it difficult to understand the learned patterns and 

consequently it is challenging to infer the causal relationship between the data and an 

outcome; 2) “Curse” of dimensionality: omics datasets represent a huge number of variables 

and often a small number of samples, as mentioned in multiple sections of this paper; 

3) Imbalanced classes: most models applied to omics data deal with disease classification 

problems (e.g. use of major pathology labels in the presence of co-pathologies, as mentioned 

in section 2.2); and 4) Heterogeneity and sparsity: data from omics applications is often 

heterogeneous and sparse since it comes from subgroups of the population (e.g. as 

highlighted in section 2.1), different platforms (e.g. multiple array and sequencing based 

platforms), multiple omics modalities (e.g. transcriptomics, epigenomics, proteomics) and is 

often resource intensive to generate. Many of these limitations, however, can be overcomed 

with improvements to data generation (e.g. larger more diverse harmonizable studies) and 

analysis (e.g. using dimensionality reduction strategies and interpretable ML approaches).

4. Concluding remarks

In conclusion, omics technologies, including genomics, epigenomics, transcriptomics, 

proteomics, and metabolomics, can provide increasingly comprehensive high-dimensional 

insights into the biological system of each individual when combined with AI approaches. 

This in turn can contribute immensely to a better understanding of AD and other forms of 

dementia, and to the development of personalized medicines. However, a number of thorny 

issues hamper the use of omics technologies and AI in dementia research. These include 

the need for better and more comprehensive and less biased genetics and omics dementia-

related data resources, the development of improved AI algorithms, and the need for 

more collaborative multidisciplinary collaboration. Increased funding, a more coordinated 

collaborative global effort, and a greater number of diverse and deeply phenotyped cohorts, 

together with innovative AI methods have the potential to overcome these challenges and 

to increase the pace of discovery that we are able to achieve. Ultimately, this would have a 

major impact on our understanding of the underlying disease processes and help to improve 

the prevention, diagnosis, and treatment of dementia.
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Highlights

• We have identified five key challenges in dementia genetics and omics studies

• AI can enable detection of undiscovered patterns in dementia genetics and 

omics data

• Enhanced and more diverse genetics and omics datasets are still needed

• Multidisciplinary collaborative efforts using AI can boost dementia research
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Figure 1. Illustration of multiple aspects of dementia research that can be enhanced by the use 
of appropriate genetics and omics data allied with the implementation of artificial intelligence 
approaches.
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Table 1.

Examples of artificial intelligence methods to potentially address current challenges in the study of dementia 

genetics and omics.

Challenge Use of AI/ML/DL

Multi-scale or non-linear epistatic 
interactions are overlooked when 
investigating genetic variants individually 
through GWAS

• ML accurately predicts multiple outcomes at a time
• Tree-based methods can be used to capture complex non-linear epistatic interactions and 
select interacting genetic variants

GWAS are limited by genetic detection of 
genome-wide hits

• DL models can deal with non-linear associations between the phenotype and non-genetic 
covariates to improve GWAS hits detection

GWAS are limited by European ancestry 
based research

• ML models in some cases are better to incorporate trans-ethnic variation and implement 
transfer learning

Cell-type effects and specific pathologies 
are difficult to reproducibly categorize

• DL can predict cell-type-specific regulatory effects using multi-omics data integration 
substantially reducing the false positive rate
• DL and computer vision can be used for generating harmonized digital pathology datasets

PRS are limited by predictive accuracy and 
hampered by heritability

• Novel DL-based model that does not only rely on the addictive effect of risk SNPs, may 
outperform more traditional PRS models across a variety of disease phenotypes

Causal inferences are often underpowered 
and limited in scope

• DeepMR [41] approaches integrate ML with MR by using multi-task DL models to learn the 
relationship between different sets of genomic marks associated with a pathway or phenotype 
of interest and then uses MR to examine causal relationships between them.

AI - artificial intelligence; ML - machine learning; DL - deep learning; GWAS - Genome-wide association studies; PRS - polygenic risk score; MR 
- Mendelian Randomization; DeepMR - Deep Mendelian Randomization.
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